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Abstract

Probabilistic topic models are a popular tool for the unsupervised analysis of text,
providing both a predictive model of future text and a latent topic representation
of the corpus. Practitioners typically assume that the latent space is semantically
meaningful. It is used to check models, summarize the corpus, and guide explo-
ration of its contents. However, whether the latent space is interpretable is in need
of quantitative evaluation. In this paper, we present new quantitative methods for
measuring semantic meaning in inferred topics. We back these measures with
large-scale user studies, showing that they capture aspects of the model that are
undetected by previous measures of model quality based on held-out likelihood.
Surprisingly, topic models which perform better on held-out likelihood may infer
less semantically meaningful topics.

1 Introduction

Probabilistic topic models have become popular tools for the unsupervised analysis of large document
collections [1]. These models posit a set of latent topics, multinomial distributions over words, and
assume that each document can be described as a mixture of these topics. With algorithms for fast
approxiate posterior inference, we can use topic models to discover both the topics and an assignment
of topics to documents from a collection of documents. (See Figure 1.)

These modeling assumptions are useful in the sense that, empirically, they lead to good models of
documents. They also anecdotally lead to semantically meaningful decompositions of them: topics
tend to place high probability on words that represent concepts, and documents are represented as
expressions of those concepts. Perusing the inferred topics is effective for model verification and
for ensuring that the model is capturing the practitioner’s intuitions about the documents. Moreover,
producing a human-interpretable decomposition of the texts can be a goal in itself, as when browsing
or summarizing a large collection of documents.

In this spirit, much of the literature comparing different topic models presents examples of topics and
examples of document-topic assignments to help understand a model’s mechanics. Topics also can
help users discover new content via corpus exploration [2]. The presentation of these topics serves,
either explicitly or implicitly, as a qualitative evaluation of the latent space, but there is no explicit
quantitative evaluation of them. Instead, researchers employ a variety of metrics of model fit, such as
perplexity or held-out likelihood. Such measures are useful for evaluating the predictive model, but
do not address the more explatory goals of topic modeling.

∗Work done while at Princeton University.
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Figure 1: The latent space of a topic model consists of topics, which are distributions over words, and a
distribution over these topics for each document. On the left are three topics from a fifty topic LDA model
trained on articles from the New York Times. On the right is a simplex depicting the distribution over topics
associated with seven documents. The line from each document’s title shows the document’s position in the
topic space.

In this paper, we present a method for measuring the interpretatability of a topic model. We devise
two human evaluation tasks to explicitly evaluate both the quality of the topics inferred by the
model and how well the model assigns topics to documents. The first, word intrusion, measures
how semantically “cohesive” the topics inferred by a model are and tests whether topics correspond
to natural groupings for humans. The second, topic intrusion, measures how well a topic model’s
decomposition of a document as a mixture of topics agrees with human associations of topics with a
document. We report the results of a large-scale human study of these tasks, varying both modeling
assumptions and number of topics. We show that these tasks capture aspects of topic models not
measured by existing metrics and–surprisingly–models which achieve better predictive perplexity
often have less interpretable latent spaces.

2 Topic models and their evaluations

Topic models posit that each document is expressed as a mixture of topics. These topic proportions
are drawn once per document, and the topics are shared across the corpus. In this paper we will
consider topic models that make different assumptions about the topic proportions. Probabilistic
Latent Semantic Indexing (pLSI) [3] makes no assumptions about the document topic distribution,
treating it as a distinct parameter for each document. Latent Dirichlet allocation (LDA) [4] and the
correlated topic model (CTM) [5] treat each document’s topic assignment as a multinomial random
variable drawn from a symmetric Dirichlet and logistic normal prior, respectively.

While the models make different assumptions, inference algorithms for all of these topic models
build the same type of latent space: a collection of topics for the corpus and a collection of topic
proportions for each of its documents. While this common latent space has explored for over two
decades, its interpretability remains unmeasured.

Pay no attention to the latent space behind the model

Although we focus on probabilistic topic models, the field began in earnest with latent semantic
analysis (LSA) [6]. LSA, the basis of pLSI’s probabilistic formulation, uses linear algebra to decom-
pose a corpus into its constituent themes. Because LSA originated in the psychology community,
early evaluations focused on replicating human performance or judgments using LSA: matching
performance on standardized tests, comparing sense distinctions, and matching intuitions about
synonymy (these results are reviewed in [7]). In information retrieval, where LSA is known as latent
semantic indexing (LSI) [8], it is able to match queries to documents, match experts to areas of
expertise, and even generalize across languages given a parallel corpus [9].
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The reticence to look under the hood of these models has persisted even as models have moved
from psychology into computer science with the development of pLSI and LDA. Models either use
measures based on held-out likelihood [4, 5] or an external task that is independent of the topic space
such as sentiment detection [10] or information retrieval [11]. This is true even for models engineered
to have semantically coherent topics [12].

For models that use held-out likelihood, Wallach et al. [13] provide a summary of evaluation
techniques. These metrics borrow tools from the language modeling community to measure how well
the information learned from a corpus applies to unseen documents. These metrics generalize easily
and allow for likelihood-based comparisons of different models or selection of model parameters
such as the number of topics. However, this adaptability comes at a cost: these methods only measure
the probability of observations; the internal representation of the models is ignored.

Griffiths et al. [14] is an important exception to the trend of using external tasks or held-out likelihood.
They showed that the number of topics a word appears in correlates with how many distinct senses
it has and reproduced many of the metrics used in the psychological community based on human
performance. However, this is still not a deep analysis of the structure of the latent space, as it does
not examine the structure of the topics themselves.

We emphasize that not measuring the internal representation of topic models is at odds with their
presentation and development. Most topic modeling papers display qualitative assessments of the
inferred topics or simply assert that topics are semantically meaningful, and practitioners use topics
for model checking during the development process. Hall et al. [15], for example, used latent
topics deemed historically relevant to explore themes in the scientific literature. Even in production
environments, topics are presented as themes: Rexa (http://rexa.info), a scholarly publication search
engine, displays the topics associated with documents. This implicit notion that topics have semantic
meaning for users has even motivated work that attempts to automatically label topics [16]. Our
goal is to measure the success of interpreting topic models across number of topics and modeling
assumptions.

3 Using human judgments to examine the topics

Although there appears to be a longstanding assumption that the latent space discovered by topic
models is meaningful and useful, evaluating such assumptions is difficult because discovering topics
is an unsupervised process. There is no gold-standard list of topics to compare against for every
corpus. Thus, evaluating the latent space of topic models requires us to gather exogenous data.

In this section we propose two tasks that create a formal setting where humans can evaluate the two
components of the latent space of a topic model. The first component is the makeup of the topics. We
develop a task to evaluate whether a topic has human-identifiable semantic coherence. This task is
called word intrusion, as subjects must identify a spurious word inserted into a topic. The second
task tests whether the association between a document and a topic makes sense. We call this task
topic intrusion, as the subject must identify a topic that was not associated with the document by the
model.

3.1 Word intrusion

To measure the coherence of these topics, we develop the word intrusion task; this task involves
evaluating the latent space presented in Figure 1(a). In the word intrusion task, the subject is presented
with six randomly ordered words. The task of the user is to find the word which is out of place or
does not belong with the others, i.e., the intruder. Figure 2 shows how this task is presented to users.

When the set of words minus the intruder makes sense together, then the subject should easily
identify the intruder. For example, most people readily identify apple as the intruding word in the
set {dog, cat, horse, apple, pig, cow} because the remaining words, {dog, cat,
horse, pig, cow} make sense together — they are all animals. For the set {car, teacher,
platypus, agile, blue, Zaire}, which lacks such coherence, identifying the intruder is
difficult. People will typically choose an intruder at random, implying a topic with poor coherence.

In order to construct a set to present to the subject, we first select at random a topic from the model.
We then select the five most probable words from that topic. In addition to these words, an intruder
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Word Intrusion Topic Intrusion

Figure 2: Screenshots of our two human tasks. In the word intrusion task (left), subjects are presented with a set
of words and asked to select the word which does not belong with the others. In the topic intrusion task (right),
users are given a document’s title and the first few sentences of the document. The users must select which of
the four groups of words does not belong.

word is selected at random from a pool of words with low probability in the current topic (to reduce
the possibility that the intruder comes from the same semantic group) but high probability in some
other topic (to ensure that the intruder is not rejected outright due solely to rarity). All six words are
then shuffled and presented to the subject.

3.2 Topic intrusion

The topic intrusion task tests whether a topic model’s decomposition of documents into a mixture of
topics agrees with human judgments of the document’s content. This allows for evaluation of the
latent space depicted by Figure 1(b). In this task, subjects are shown the title and a snippet from a
document. Along with the document they are presented with four topics (each topic is represented by
the eight highest-probability words within that topic). Three of those topics are the highest probability
topics assigned to that document. The remaining intruder topic is chosen randomly from the other
low-probability topics in the model.

The subject is instructed to choose the topic which does not belong with the document. As before, if
the topic assignment to documents were relevant and intuitive, we would expect that subjects would
select the topic we randomly added as the topic that did not belong. The formulation of this task
provides a natural way to analyze the quality of document-topic assignments found by the topic
models. Each of the three models we fit explicitly assigns topic weights to each document; this task
determines whether humans make the same association.

Due to time constraints, subjects do not see the entire document; they only see the title and first
few sentences. While this is less information than is available to the algorithm, humans are good
at extrapolating from limited data, and our corpora (encyclopedia and newspaper) are structured to
provide an overview of the article in the first few sentences. The setup of this task is also meaningful
in situations where one might be tempted to use topics for corpus exploration. If topics are used
to find relevant documents, for example, users will likely be provided with similar views of the
documents (e.g. title and abstract, as in Rexa).

For both the word intrusion and topic intrusion tasks, subjects were instructed to focus on the
meanings of words, not their syntactic usage or orthography. We also presented subjects with the
option of viewing the “correct” answer after they submitted their own response, to make the tasks
more engaging. Here the “correct” answer was determined by the model which generated the data,
presented as if it were the response of another user. At the same time, subjects were encouraged to
base their responses on their own opinions, not to try to match other subjects’ (the models’) selections.
In small experiments, we have found that this extra information did not bias subjects’ responses.

4 Experimental results

To prepare data for human subjects to review, we fit three different topic models on two corpora.
In this section, we describe how we prepared the corpora, fit the models, and created the tasks
described in Section 3. We then present the results of these human trials and compare them to metrics
traditionally used to evaluate topic models.
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4.1 Models and corpora

In this work we study three topic models: probabilistic latent semantic indexing (pLSI) [3], latent
Dirichlet allocation (LDA) [4], and the correlated topic model (CTM) [5], which are all mixed
membership models [17]. The number of latent topics, K, is a free parameter in each of the
models; here we explore this with K = 50, 100 and 150. The remaining parameters – βk, the topic
multinomial distribution for topic k; and θd, the topic mixture proportions for document d – are
inferred from data. The three models differ in how these latent parameters are inferred.

pLSI In pLSI, the topic mixture proportions θd are a parameter for each document. Thus, pLSI
is not a fully generative model, and the number of parameters grows linearly with the number of
documents. We fit pLSI using the EM algorithm [18] but regularize pLSI’s estimates of θd using
pseudo-count smoothing, α = 1.
LDA LDA is a fully generative model of documents where the mixture proportions θd are treated as
a random variable drawn from a Dirichlet prior distribution. Because the direct computation of the
posterior is intractable, we employ variational inference [4] and set the symmetric Dirichlet prior
parameter, α, to 1.
CTM In LDA, the components of θd are nearly independent (i.e., θd is statistically neutral). CTM
allows for a richer covariance structure between topic proportions by using a logistic normal prior
over the topic mixture proportions θd. For each topic, k, a real γ is drawn from a normal distribution
and exponentiated. This set of K non-negative numbers are then normalized to yield θd. Here, we
train the CTM using variational inference [5].

We train each model on two corpora. For each corpus, we apply a part of speech tagger [19] and
remove all tokens tagged as proper nouns (this was for the benefit of the human subjects; success in
early experiments required too much encyclopedic knowledge). Stop words [20] and terms occurring
in fewer than five documents are also removed. The two corpora we use are 1.) a collection of
8447 articles from the New York Times from the years 1987 to 2007 with a vocabulary size of 8269
unique types and around one million tokens and 2.) a sample of 10000 articles from Wikipedia
(http://www.wikipedia.org) with a vocabulary size of 15273 unique types and three million tokens.

4.2 Evaluation using conventional objective measures

There are several metrics commonly used to evaluate topic models in the literature [13]. Many of
these metrics are predictive metrics; that is, they capture the model’s ability to predict a test set of
unseen documents after having learned its parameters from a training set. In this work, we set aside
20% of the documents in each corpus as a test set and train on the remaining 80% of documents. We
then compute predictive rank and predictive log likelihood.

To ensure consistency of evaluation across different models, we follow Teh et al.’s [21] approximation
of the predictive likelihood p(wd|Dtrain) using p(wd|Dtrain) ≈ p(wd|θ̂d), where θ̂d is a point estimate
of the posterior topic proportions for document d. For pLSI θ̂d is the MAP estimate; for LDA and
CTM θ̂d is the mean of the variational posterior. With this information, we can ask what words the
model believes will be in the document and compare it with the document’s actual composition.
Given document wd, we first estimate θ̂d and then for every word in the vocabulary, we compute
p(w|θ̂d) =

∑
z p(w|z)p(z|θ̂d). Then we compute the average rank for the terms that actually

appeared in document wd (we follow the convention that lower rank is better).

The average word likelihood and average rank across all documents in our test set are shown in
Table 1. These results are consistent with the values reported in the literature [4, 5]; in most cases
CTM performs best, followed by LDA.

4.3 Analyzing human evaluations

The tasks described in Section 3 were offered on Amazon Mechanical Turk (http://www.mturk.com),
which allows workers (our pool of prospective subjects) to perform small jobs for a fee through a
Web interface. No specialized training or knowledge is typically expected of the workers. Amazon
Mechanical Turk has been successfully used in the past to develop gold-standard data for natural
language processing [22] and to label images [23]. For both the word intrusion and topic intrusion
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Table 1: Two predictive metrics: predictive log likelihood/predictive rank. Consistent with values reported in the
literature, CTM generally performs the best, followed by LDA, then pLSI. The bold numbers indicate the best
performance in each row.

CORPUS TOPICS LDA CTM PLSI

NEW YORK TIMES
50 -7.3214 / 784.38 -7.3335 / 788.58 -7.3384 / 796.43

100 -7.2761 / 778.24 -7.2647 / 762.16 -7.2834 / 785.05
150 -7.2477 / 777.32 -7.2467 / 755.55 -7.2382 / 770.36

WIKIPEDIA
50 -7.5257 / 961.86 -7.5332 / 936.58 -7.5378 / 975.88

100 -7.4629 / 935.53 -7.4385 / 880.30 -7.4748 / 951.78
150 -7.4266 / 929.76 -7.3872 / 852.46 -7.4355 / 945.29
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Figure 3: The model precision (Equation 1) for the three models on two corpora. Higher is better. Surprisingly,
although CTM generally achieves a better predictive likelihood than the other models (Table 1), the topics it
infers fare worst when evaluated against human judgments.

tasks, we presented each worker with jobs containing ten of the tasks described in Section 3. Each
job was performed by 8 separate workers, and workers were paid between $0.07 – $0.15 per job.

Word intrusion As described in Section 3.1, the word intrusion task measures how well the inferred
topics match human concepts (using model precision, i.e., how well the intruders detected by the
subjects correspond to those injected into ones found by the topic model).

Let ωm
k be the index of the intruding word among the words generated from the kth topic inferred by

model m. Further let imk,s be the intruder selected by subject s on the set of words generated from the
kth topic inferred by model m and let S denote the number of subjects. We define model precision
by the fraction of subjects agreeing with the model,

MPm
k =

∑
s 1(i

m
k,s = ωm

k )/S. (1)

Figure 3 shows boxplots of the precision for the three models on the two corpora. In most cases
LDA performs best. Although CTM gives better predictive results on held-out likelihood, it does not
perform as well on human evaluations. This may be because CTM finds correlations between topics
and correlations within topics are confounding factors; the intruder for one topic might be selected
from another highly correlated topic. The performance of pLSI degrades with larger numbers of
topics, suggesting that overfitting [4] might affect interpretability as well as predictive power.

Figure 4 (left) shows examples of topics with high and low model precisions from the NY Times
data fit with LDA using 50 topics. In the example with high precision, the topic words all coherently
express a painting theme. For the low precision example, “taxis” did not fit in with the other political
words in the topic, as 87.5% of subjects chose “taxis” as the intruder.

The relationship between model precision, MPm
k , and the model’s estimate of the likelihood of

the intruding word in Figure 5 (top row) is surprising. The highest probability did not have the
best interpretability; in fact, the trend was the opposite. This suggests that as topics become more
fine-grained in models with larger number of topics, they are less useful for humans. The downward
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Each model is accompanied by a regression line. Increasing likelihood does not increase the agreement between
human subjects and the model for either task (as shown by the downward-sloping regression lines).

sloping trend lines in Figure 5 implying that the models are often trading improved likelihood for
lower interpretability.

The model precision showed a negative correlation (Spearman’s ρ = −0.235 averaged across all
models, corpora, and topics) with the number of senses in WordNet of the words displayed to the
subjects [24] and a slight positive correlation (ρ = 0.109) with the average pairwise Jiang-Conrath
similarity of words1 [25].

Topic intrusion In Section 3.2, we introduced the topic intrusion task to measure how well a topic
model assigns topics to documents. We define the topic log odds as a quantitative measure of the
agreement between the model and human judgments on this task. Let θ̂md denote model m’s point
estimate of the topic proportions vector associated with document d (as described in Section 4.2).
Further, let jmd,s ∈ {1 . . .K} be the intruding topic selected by subject s for document d on model
m and let jmd,∗ denote the “true” intruder, i.e., the one generated by the model. We define the topic
log odds as the log ratio of the probability mass assigned to the true intruder to the probability mass

1Words without entries in WordNet were ignored; polysemy was handled by taking the maximum over all
senses of words. To handle words in the same synset (e.g. “fight” and “battle”), the similarity function was
capped at 10.0.
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Figure 6: The topic log odds (Equation 2) for the three models on two corpora. Higher is better. Although CTM
generally achieves a better predictive likelihood than the other models (Table 1), the topics it infers fare worst
when evaluated against human judgments.

assigned to the intruder selected by the subject,

TLOm
d = (

∑
s log θ̂

m
d,jmd,∗

− log θ̂md,jmd,s
)/S. (2)

The higher the value of TLOm
d , the greater the correspondence between the judgments of the model

and the subjects. The upper bound on TLOm
d is 0. This is achieved when the subjects choose

intruders with a mixture proportion no higher than the true intruder’s.

Figure 6 shows boxplots of the topic log odds for the three models. As with model precision, LDA and
pLSI generally outperform CTM. Again, this trend runs counter to CTM’s superior performance on
predictive likelihood. A histogram of the TLO of individual Wikipedia documents is given in Figure 4
(right) for the fifty-topic LDA model. Documents about very specific, unambiguous concepts, such as
“Lindy Hop,” have high TLO because it is easy for both humans and the model to assign the document
to a particular topic. When documents express multiple disparate topics, human judgments diverge
from those of the model. At the low end of the scale is the article “Book” which touches on diverse
areas such as history, science, and commerce. It is difficult for LDA to pin down specific themes in
this article which match human perceptions.

Figure 5 (bottom row) shows that, as with model precision, increasing predictive likelihood does
not imply improved topic log odds scores. While the topic log odds are nearly constant across
all numbers of topics for LDA and pLSI, for CTM topic log odds and predictive likelihood are
negatively correlated, yielding the surprising conclusion that higher predictive likelihoods do not lead
to improved model interpretability.

5 Discussion

We presented the first validation of the assumed coherence and relevance of topic models using
human experiments. For three topic models, we demonstrated that traditional metrics do not capture
whether topics are coherent or not. Traditional metrics are, indeed, negatively correlated with the
measures of topic quality developed in this paper. Our measures enable new forms of model selection
and suggest that practitioners developing topic models should thus focus on evaluations that depend
on real-world task performance rather than optimizing likelihood-based measures.

In a more qualitative vein, this work validates the use of topics for corpus exploration and information
retrieval. Humans appreciate the semantic coherence of topics and can associate the same documents
with a topic that a topic model does. An intriguing possibility is the development of models that
explicitly seek to optimize the measures we develop here either by incorporating human judgments
into the model-learning framework or creating a computational proxy that simulates human judgments.
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