

Links:
- Presentation: \url{http://www.youtube.com/watch?v=p-NXEAM6G70&list=UUIXpjlxPL50wSrP0_gOHISQ&index=2&feature=plcp}
- More Recent Paper: \url{http://umiacs.umd.edu/~jbg/docs/2014_acl_ptlda_mt.pdf}

Downloaded from \url{http://umiacs.umd.edu/~jbg/docs/acl_2012_tm_for_mt.pdf}

Contact Jordan Boyd-Graber (jbg@boydgraber.org) for questions about this paper.
Abstract

We propose an approach that biases machine translation systems toward relevant translations based on topic-specific contexts, where topics are induced in an unsupervised way using topic models; this can be thought of as inducing subcorpora for adaptation without any human annotation. We use these topic distributions to compute topic-dependent lexical weighting probabilities and directly incorporate them into our translation model as features. Conditioning lexical probabilities on the topic biases translations toward topic-relevant output, resulting in significant improvements of up to 1 \textsc{bleu} and 3 \textsc{ter} on Chinese to English translation over a strong baseline.

1 Introduction

The performance of a statistical machine translation (SMT) system on a translation task depends largely on the suitability of the available parallel training data. Domains (e.g., newswire vs. blogs) may vary widely in their lexical choices and stylistic preferences, and what may be preferable in a general setting, or in one domain, is not necessarily preferable in another domain. Indeed, sometimes the domain can change the meaning of a phrase entirely.

In a food related context, the Chinese sentence “粉丝很多” (“fěnsī hěnduō”) would mean “They have a lot of vermicelli”; however, in an informal Internet conversation, this sentence would mean “They have a lot of fans”. Without the broader context, it is impossible to determine the correct translation in otherwise identical sentences.

This problem has led to a substantial amount of recent work in trying to bias, or adapt, the translation model (TM) toward particular domains of interest (Axelrod et al., 2011; Foster et al., 2010; Snover et al., 2008).1 The intuition behind TM adaptation is to increase the likelihood of selecting relevant phrases for translation. Matsoukas et al. (2009) introduced assigning a pair of binary features to each training sentence, indicating sentences’ genre and collection as a way to capture domains. They then learn a mapping from these features to sentence weights, use the sentence weights to bias the model probability estimates and subsequently learn the model weights. As sentence weights were found to be most beneficial for lexical weighting, Chiang et al. (2011) extends the same notion of conditioning on provenance (i.e., the origin of the text) by removing the separate mapping step, directly optimizing the weight of the genre and collection features by computing a separate word translation table for each feature, estimated from only those sentences that comprise that genre or collection.

The common thread throughout prior work is the concept of a domain. A domain is typically a hard constraint that is externally imposed and hand-labeled, such as genre or corpus collection. For example, a sentence either comes from newswire, or weblog, but not both. However, this poses several problems. First, since a sentence contributes its counts only to the translation table for the source it came from, many word pairs will be unobserved for a given table. This sparsity requires smoothing. Second, we may not know the (sub)corpora our training

1Language model adaptation is also prevalent but is not the focus of this work.
data come from; and even if we do, “subcorpus” may not be the most useful notion of domain for better translations.

We take a finer-grained, flexible, unsupervised approach for lexical weighting by domain. We induce unsupervised domains from large corpora, and we incorporate soft, probabilistic domain membership into a translation model. Unsupervised modeling of the training data produces naturally occurring subcorpora, generalizing beyond corpus and genre. Depending on the model used to select subcorpora, we can bias our translation toward any arbitrary distinction. This reduces the problem to identifying what automatically defined subsets of the training corpus may be beneficial for translation.

In this work, we consider the underlying latent topics of the documents (Blei et al., 2003). Topic modeling has received some use in SMT, for instance Bilingual LSA adaptation (Tam et al., 2007), and the BiTAM model (Zhao and Xing, 2006), which uses a bilingual topic model for learning alignment. In our case, by building a topic distribution for the source side of the training data, we abstract the notion of domain to include automatically derived subcorpora with probabilistic membership. This topic model infers the topic distribution of a test set and biases sentence translations to appropriate topics. We accomplish this by introducing topic dependent lexical probabilities directly as features in the translation model, and interpolating them log-linearly with our other features, thus allowing us to discriminatively optimize their weights on an arbitrary objective function. Incorporating these features into our hierarchical phrase-based translation system significantly improved translation performance, by up to 1 BLEU and 3 TER over a strong Chinese to English baseline.

2 Model Description

Lexical Weighting

Lexical weighting features estimate the quality of a phrase pair by combining the lexical translation probabilities of the words in the phrase\(^2\) (Koehn et al., 2003). Lexical conditional probabilities \(p(e|f)\) are obtained with maximum likelihood estimates from relative frequencies

\[
c(f, e) / \sum_c c(f, e). \text{ Phrase pair probabilities } p(\pi|\overline{f}) \text{ are computed from these as described in Koehn et al. (2003).}
\]

Chiang et al. (2011) showed that it is beneficial to condition the lexical weighting features on provenance by assigning each sentence pair a set of features, \(f_s(\pi|\overline{f})\), one for each domain \(s\), which compute a new word translation table \(p_s(e|f)\) estimated from only those sentences which belong to \(s\):

\[
c_s(f, e) / \sum_c c_s(f, e), \text{ where } c_s(\cdot) \text{ is the number of occurrences of the word pair in } s.
\]

Topic Modeling for MT

We extend provenance to cover a set of automatically generated topics \(z_n\). Given a parallel training corpus \(T\) composed of documents \(d_i\), we build a source side topic model over \(T\), which provides a topic distribution \(p(z_n|d_i)\) for \(z_n = \{1, \ldots, K\}\) over each document, using Latent Dirichlet Allocation (LDA) (Blei et al., 2003). Then, we assign \(p(z_n|d_i)\) to be the topic distribution for every sentence \(x_j \in d_i\), thus enforcing topic sharing across sentence pairs in the same document instead of treating them as unrelated. Computing the topic distribution over a document and assigning it to the sentences serves to tie the sentences together in the document context.

To obtain the lexical probability conditioned on topic distribution, we first compute the expected count \(e_{zn}(e, f)\) of a word pair under topic \(z_n\):

\[
e_{zn}(e, f) = \sum_{d_i \in T} \sum_{x_j \in d_i} c_j(e, f)
\]

(1)

where \(c_j(\cdot)\) denotes the number of occurrences of the word pair in sentence \(x_j\), and then compute:

\[
p_{zn}(e|f) = \frac{e_{zn}(e, f)}{\sum_e e_{zn}(e, f)}
\]

(2)

Thus, we will introduce 2-\(K\) new word translation tables, one for each \(p_{zn}(e|f)\) and \(p_{zn}(f|e)\), and as many new corresponding features \(f_{zn}(\pi|\overline{f})\), \(f_{zn}(\overline{f}|\pi)\). The actual feature values we compute will depend on the topic distribution of the document we are translating. For a test document \(V\), we infer topic assignments on \(V\), \(p(z_n|V)\), keeping the topics found from \(T\) fixed. The feature value then becomes

\[
f_{zn}(\pi|\overline{f}) = -\log \{p_{zn}(\pi|\overline{f}) \cdot p(z_n|V)\}, \text{ a combination of the topic dependent lexical weight and the}
\]

\(\text{Topic assignment on } V\).

\(^2\)For hierarchical systems, these correspond to translation rules.
topic distribution of the sentence from which we are extracting the phrase. To optimize the weights of these features we combine them in our linear model with the other features when computing the model score for each phrase pair:

\[\sum_p \lambda_p h_p(e, f) + \sum_{z_n} \lambda_{z_n} f_{z_n}(\pi|\mathcal{F}) \]

Combining the topic conditioned word translation table \(p_{zn}(e|f) \) computed from the training corpus with the topic distribution \(p(z_n|V) \) of the test sentence being translated provides a probability on how relevant that translation table is to the sentence. This allows us to bias the translation toward the topic of the sentence. For example, if topic \(k \) is dominant in \(T \), \(p_k(\pi|\mathcal{F}) \) may be quite large, but if \(p(k|V) \) is very small, then we should steer away from this phrase pair and select a competing phrase pair which may have a lower probability in \(T \), but which is more relevant to the test sentence at hand.

In many cases, document delineations may not be readily available for the training corpus. Furthermore, a document may be too broad, covering too many disparate topics, to effectively bias the weights on a phrase level. For this case, we also propose a local LDA model (LTM), which treats each sentence as a separate document.

While Chiang et al. (2011) has to explicitly smooth the resulting \(p_s(e|f) \), since many word pairs will be unseen for a given domain \(s \), we are already performing an implicit form of smoothing (when computing the expected counts), since each document has a distribution over all topics, and therefore we have some probability of observing each word pair in every topic.

Feature Representation After obtaining the topic conditional features, there are two ways to present them to the model. They could answer the question \(F_1 \): What is the probability under topic 1, topic 2, etc., or \(F_2 \): What is the probability under the most probable topic, second most, etc.

A model using \(F_1 \) learns whether a specific topic is useful for translation, i.e., feature \(f_1 \) would be

\[f_1 := p_{z=1}(\pi|\mathcal{F}) \cdot p(z = 1|V). \]

With \(F_2 \), we are learning how useful knowledge of the topic distribution is, i.e.,

\[f_1 := p(\arg\max_{z_n}(p(z_n|V)) \cdot p(\arg\max_{z_n}(p(z_n|V)))|V). \]

Using \(F_1 \), if we restrict our topics to have a one-to-one mapping with genre/collection\(^4\), we see that our method fully recovers Chiang (2011).

\(F_1 \) is appropriate for cross-domain adaptation when we have advance knowledge that the distribution of the tuning data will match the test data, as in Chiang (2011), where they tune and test on web. In general, we may not know what our data will be, so this will overfit the tuning set.

\(F_2 \), however, is intuitively what we want, since we do not want to bias our system toward a specific distribution, but rather learn to utilize information from any topic distribution if it helps us create topic relevant translations. \(F_2 \) is useful for dynamic adaptation, where the adapted feature weight changes based on the source sentence.

Thus, \(F_2 \) is the approach we use in our work, which allows us to tune our system weights toward having topic information be useful, not toward a specific distribution.

3 Experiments

Setup To evaluate our approach, we performed experiments on Chinese to English MT in two settings. First, we use the FBIS corpus as our training bitext. Since FBIS has document delineations, we compare local topic modeling (LTM) with modeling at the document level (GTM). The second setting uses the non-UN and non-HK Hansards portions of the NIST training corpora with LTM only. Table 1 summarizes the data statistics. For both settings, the data were lowercased, tokenized and aligned using GIZA++ (Och and Ney, 2003) to obtain bidirectional alignments, which were symmetrized using the grow-diag-final-and method (Koehn et al., 2003). The Chinese data were segmented using the Stanford segmenter. We trained a trigram LM on the English side of the corpus with an additional 150M words randomly selected from the non-NYT and non-LAT portions of the Gigaword v4 corpus using modified Kneser-Ney smoothing (Chen and Goodman, 1996). We used cdec (Dyer et al.,

\(^4\)By having as many topics as genres/collections and setting \(p(z_n|d_i) \) to 1 for every sentence in the collection and 0 to everything else.
2010) as our decoder, and tuned the parameters of the system to optimize BLEU (Papineni et al., 2002) on the NIST MT06 tuning corpus using the Margin Infused Relaxed Algorithm (MIRA) (Crammer et al., 2006; Eidelman, 2012). Topic modeling was performed with Mallet (Mccallum, 2002), a standard implementation of LDA, using a Chinese stoplist and setting the per-document Dirichlet parameter $\alpha = 0.01$. This setting of was chosen to encourage sparse topic assignments, which make induced subdomains consistent within a document.

Results Results for both settings are shown in Table 2. GTM models the latent topics at the document level, while LTM models each sentence as a separate document. To evaluate the effect topic granularity would have on translation, we varied the number of latent topics in each model to be 5, 10, and 20. On FBIS, we can see that both models achieve moderate but consistent gains over the baseline on both BLEU and TER. The best model, LTM-10, achieves a gain of about 0.5 and 0.6 BLEU and 2 TER. Although the performance on BLEU for both the 20 topic models LTM-20 and GTM-20 is suboptimal, the TER improvement is better. Interestingly, the difference in translation quality between capturing document coherence in GTM and modeling purely on the sentence level is not substantial.

On the NIST corpus, LTM-10 again achieves the best gain of approximately 1 BLEU and up to 3 TER. LTM performs on par with or better than GTM, and provides significant gains even in the NIST data setting, showing that this method can be effectively applied directly on the sentence level to large training corpora which have no document markings. Depending on the diversity of training corpus, a varying number of underlying topics may be appropriate. However, in both settings, 10 topics performed best.

Table 1: Corpus statistics

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Sentences</th>
<th>Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBIS</td>
<td>269K</td>
<td>10.3M</td>
</tr>
<tr>
<td>NIST</td>
<td>1.6M</td>
<td>44.4M</td>
</tr>
</tbody>
</table>

Table 2: Performance using FBIS training corpus (top) and NIST corpus (bottom). Improvements are significant at the $p < 0.05$ level, except where indicated (ns).

<table>
<thead>
<tr>
<th>Model</th>
<th>MT03</th>
<th>MT05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>↑BLEU</td>
<td>↓TER</td>
</tr>
<tr>
<td>BL</td>
<td>28.72</td>
<td>65.96</td>
</tr>
<tr>
<td>GTM-5</td>
<td>28.95*ns</td>
<td>65.45</td>
</tr>
<tr>
<td>GTM-10</td>
<td>29.22</td>
<td>64.47</td>
</tr>
<tr>
<td>GTM-20</td>
<td>29.19</td>
<td>63.41</td>
</tr>
<tr>
<td>LTM-5</td>
<td>29.23</td>
<td>64.57</td>
</tr>
<tr>
<td>LTM-10</td>
<td>29.29</td>
<td>63.98</td>
</tr>
<tr>
<td>LTM-20</td>
<td>29.09*ns</td>
<td>63.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>MT03</th>
<th>MT05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>↑BLEU</td>
<td>↓TER</td>
</tr>
<tr>
<td>BL</td>
<td>34.31</td>
<td>61.14</td>
</tr>
<tr>
<td>MERT</td>
<td>34.60</td>
<td>60.66</td>
</tr>
<tr>
<td>LTM-5</td>
<td>35.21</td>
<td>59.48</td>
</tr>
<tr>
<td>LTM-10</td>
<td>35.32</td>
<td>59.16</td>
</tr>
<tr>
<td>LTM-20</td>
<td>33.90*ns</td>
<td>60.89*ns</td>
</tr>
</tbody>
</table>

4 Discussion and Conclusion

Applying SMT to new domains requires techniques to inform our algorithms how best to adapt. This paper extended the usual notion of domains to finer-grained topic distributions induced in an unsupervised fashion. We show that incorporating lexical weighting features conditioned on soft domain membership directly into our model is an effective strategy for dynamically biasing SMT towards relevant translations, as evidenced by significant performance gains. This method presents several advantages over existing approaches. We can construct a topic model once on the training data, and use it infer topics on any test set to adapt the translation model. We can also incorporate large quantities of additional data (whether parallel or not) in the source language to infer better topics without relying on collection or genre annotations. Multilingual topic models (Boyd-Graber and Resnik, 2010) would provide a technique to use data from multiple languages to ensure consistent topics.
Acknowledgments

Vladimir Eidelman is supported by a National Defense Science and Engineering Graduate Fellowship. This work was also supported in part by NSF grant #1018625, ARL Cooperative Agreement W911NF-09-2-0072, and by the BOLT and GALE programs of the Defense Advanced Research Projects Agency, Contracts HR0011-12-C-0015 and HR0011-06-2-001, respectively. Any opinions, findings, conclusions, or recommendations expressed are the authors’ and do not necessarily reflect those of the sponsors.

References

