
Denis Peskov, Joe Barrow, Pedro Rodriguez, Graham Neubig, and Jordan Boyd-Graber. Mitigating Noisy
Inputs for Question Answering. Conference of the International Speech Communication Association, 2019, 5 pages.

@inproceedings{Peskov:Barrow:Rodriguez:Neubig:Boyd-Graber-2019,
Title = {Mitigating Noisy Inputs for Question Answering},
Author = {Denis Peskov and Joe Barrow and Pedro Rodriguez and Graham Neubig and Jordan Boyd-Graber},
Booktitle = {Conference of the International Speech Communication Association},
Year = {2019},
Location = {Graz, Austria},
Url = {http://umiacs.umd.edu/~jbg//docs/2019_interspeech_asr},
}

Downloaded from http://umiacs.umd.edu/~jbg/docs/2019_interspeech_asr

Contact Jordan Boyd-Graber (jbg@boydgraber.org) for questions about this paper.

1

http://denispeskov.github.io/
https://www.pedro.ai/
http://umiacs.umd.edu/~jbg//docs/2019_interspeech_asr
http://umiacs.umd.edu/~jbg//docs/2019_interspeech_asr
http://umiacs.umd.edu/~jbg/docs/2019_interspeech_asr

Mitigating Noisy Inputs for Question Answering

Denis Peskov,1 Joe Barrow,1 Pedro Rodriguez,1 Graham Neubig,2 Jordan Boyd-Graber3

1University of Maryland Department of Computer Science and UMIACS
2Carnegie Mellon University Language Technology Institute

3University of Maryland Department of Computer Science, iSchool, UMIACS, and LSC
{dpeskov, jdbarrow, pedro}@cs.umd.edu, gneubig@cs.cmu.edu, jbg@umiacs.umd.edu

Abstract

Natural language processing systems are often down-
stream of unreliable inputs: machine translation, optical
character recognition, or speech recognition. For instance,
virtual assistants can only answer your questions after un-
derstanding your speech. We investigate and mitigate the
effects of noise from Automatic Speech Recognition sys-
tems on two factoid Question Answering (QA) tasks. Inte-
grating confidences into the model and forced decoding
are empirically shown to improve the accuracy of down-
stream neural QA systems. We create and train models on
a novel synthetic corpus of over 500,000 noisy sentences
and evaluate on two human corpora from Quizbowl and
Jeopardy! competitions.

1. Introduction
Progress on question answering (QA) has claimed human-
level accuracy. However, most factoid QA models are
trained and evaluated on clean text input, which becomes
noisy when questions are spoken due to Automatic Speech
Recognition (ASR) errors. This consideration is disre-
garded in trivia match-ups between machines and humans:
IBM Watson [1] on Jeopardy! and Quizbowl matches be-
tween machines and trivia masters [2] provide text data for
machines while humans listen. A fair test would subject
both humans and machines to speech input.

Unfortunately, there are no large spoken corpora of
factoid questions with which to train models; text-to-
speech software can be used as a method for generating
training data at scale for question answering models (Sec-
tion 2). Although synthetic data is less realistic than true
human-spoken questions it easier and cheaper to collect at
scale, which is important for training. These synthetic data
are still useful; in Section 4.1, models trained on synthetic
data are applied to human spoken data from Quizbowl
tournaments and Jeopardy!

Noisy ASR is particularly challenging for QA sys-
tems (Figure 1). While humans and computers might
know the title of a “revenge novel centering on Edmund
Dantes by Alexandre Dumas”, transcription errors may
mean deciphering “novel centering on edmond dance by
alexander <unk>” instead. Dantes and Dumas are low-
frequency words in the English language and hence likely
to be misinterpreted by a generic ASR model; however,
they are particularly important for answering the question.

Figure 1: ASR errors on QA data: original spoken words (top of
box) are garbled (bottom). While many words become into “noise”—
frequent words or the unknown token—consistent errors (e.g., “claren-
don” to “clarintin”) can help downstream systems. Additionally, words
reduced to <unk> (e.g., “kermit”) can be useful through forced decod-
ing into the closest incorrect word (e.g., “hermit” or even “car”).

Additionally, the introduction of distracting words (e.g.,
“dance”) causes QA models to make errors [3]. Section 2.1
characterizes the signal in this noise: key terms such as
named entities are often missing or corrupted, which is
detrimental for QA.

Previous approaches to mitigate ASR noise for an-
swering mobile queries [4] or building bots [5]—typically
use unsupervised methods such as term-based informa-
tion retrieval. Our datasets for training and evaluation can
produced supervised systems that directly answer spoken
questions. Machine translation [6] also uses ASR confi-
dences; we evaluate similar methods on QA.

Specifically, some accuracy loss from noisy inputs can
be mitigated through a combination of forcing unknown
words to be decoded as the closest option (Section 3.2),
and incorporating the uncertainties of the ASR model di-
rectly in neural models (Section 3.3).

The forced decoding method reconstructs missing
terms by using patterns in errors as well as terms related
to the transcribed input. Word-level confidence scores
incorporate uncertainty from the ASR system into neural
models. Section 4 compares these methods against base-
line methods on our synthetic and human speech datasets
for Jeopardy! and Quizbowl.

2. Spoken Question Answering Datasets
Neural networks require a large training corpus, but record-
ing hundreds of thousands of questions is not feasible.
Crowd-sourcing with the required quality control (speak-
ers who say “cyclohexane” correctly) is expensive. As
an alternative, we generate a data-set with Google Text-
to-Speech on 96,000 factoid questions from a trivia game
called Quizbowl [2], each with 4–6 sentences for a total
of over 500,000 sentences.1 We then decode these ut-
terances using the Kaldi chain model [7], trained on the
Fischer-English dataset [8] for consistency with past re-
sults on mitigating ASR errors in MT [6]. This model has
a Word Error Rate (WER) of 15.60% on the eval2000 test
set. The WER increases to 51.76% on our Quizbowl data,
which contains out of domain vocabulary. The most BLEU
improvement in machine translation under noisy condi-
tions could be found in this middle WER range, rather
than in values below 20% or above 80% [6]. Retraining
the model on the Quizbowl domain would mitigate this
noise; however, in practice one is often at the mercy of a
pre-trained recognition model and our methods address
this scenario. Machine translation has also been added
to machine translation data [9, 10]. Alternate methods
for collecting large scale audio data include Generative
Adversarial Networks [11] and manual recording [12].

The task of QA requires the system to provide a correct
answer out of many candidates based on the question’s
wording. We test on two varieties of different length and
framing. Quizbowl questions, which are generally four
to six sentences, tests a user’s depth of knowledge; early
clues are challenging and obscure but they progressively
become easy and well-known. Competitors can answer
these types of questions at any point. Computer QA is
competitive with the top players [13]. Jeopardy! ques-
tions are single sentences and can only be answered after
the question ends. To test this alternate syntax, we use
the same method of data generation on a dataset of over
200,000 Jeopardy questions [14].

2.1. Why QA is challenging for ASR

ASR changes the features of the recognized text in several
important ways: the overall vocabulary is quite different
and important words are corrupted. First, it reduces the
overall vocabulary. In our dataset, the vocab drops from
263,271 in the original data to a mere 33,333. This is
expected, as ASR only has 42,000 words in its vocab, so
the long tail of the Zipf’s curve is lost. Second, unique
words—which may be central to answering the question—
are lost or misinterpreted; over 100,000 of the words in
the original data occur only once. Finally, ASR systems
tend to deletes words which makes the sentences shorter;
in ourcase, the average length decreases from 21.62 to
18.85 words per sentence.

The decoding system is able to express uncertainty
by predicting <unk>. These account for slightly less than
10% of all our word tokens, but is a top-2 prediction for

1http://cloud.google.com/text-to-speech

30% of the 260,000 original words. For QA, words with a
high TF-IDF measure are valuable. While some words are
lost, others can likely be recovered: “hellblazer’ becomes
“blazer”, “clarendon” becoming “claritin”. We evaluate
this by fitting a TF-IDF model on the Wikipedia dataset and
then comparing the average TF-IDF per sentence between
the original and the ASR data. The average TF-IDF score
drops from 3.52 to 2.77 per sentence.

3. Mitigating Noise
This section discusses two approaches to mitigating the ef-
fects of missing and corrupted information caused by ASR
systems. The first approach—forced decoding—exploits
systematic errors to arrive at the correct answer. The sec-
ond uses confidence information from the ASR system to
down-weight the influence of low-confidence terms. Both
approaches improve accuracy over a baseline DAN model
and show promise for short single-sentence questions. An
IR approach is more effective on long questions.

3.1. IR Baseline

The IR baseline reframes Jeopardy! and Quizbowl QA
tasks as document retrieval ones with an inverted search
index. We create one document per distinct answer; each
document has a text field formed by concatenating all
questions with that answer together. At test time questions
are treated as queries, and documents are scored using
BM25 [15, 16]. We implement this baseline with Elastic
Search and Apache Lucene.

3.2. Forced Decoding

We have systematically lost information. We could pre-
dict the answer if we had access to certain words in the
original question and further postulate that wrong guesses
are better than knowing that a word is unknown.

We explore commerical solutions—Bing, Google,
IBM, Wit—with low transcription errors. However, their
APIs ensure that an end-user often cannot extract anything
more than one-best transcriptions, along with an aggregate
confidence for the sentence. Additionally, the proprietary
systems are moving targets, harming reproducibility.

We use Kaldi [17] for all experiments. Kaldi is a
commonly-used, open-source tool for ASR; its maximal
transparency enables approaches that incorporate uncer-
tainty into downstream models. Kaldi provides not only
top-1 predictions, but also confidences of words, entire
lattices, and phones (Table 1). Confidences are the same
length as the text, range from 0.0 to 1.0 in value, and cor-
respond to the respective word or phone in the sequence.
The mean one-best confidence is 91%.

The typical end-use of an ASR system wants to know
when when a word is not recognized. By default, a graph
will have a token that represents an unknown; in Kaldi,
this becomes <unk>. At a human-level, one would want
to know that an out of context word happened.

However, when the end-user is a downstream model,
a systematically wrong prediction may be better than a

Table 1: As original data are translated through ASR, it degrades in
quality. One-best output captures per-word confidence. Full lattices
provide additional words and phone data captures the raw ASR sounds.
Confidence models and forced decoding could be used for such data.

Clean For 10 points, name this revenge novel
centering on Edmond Dantes, written by
Alexandre Dumas . . .

1-Best for0.935 ten0.935 points0.871 same0.617 this1
. . . revenge novel centering on <unk> writ-
ten by alexander <unk> . . .

“Lattice” for0.935 [eps]0.064 pretend0.001 ten0.935

pretend point points point name same
named name names this revenge novel . . .

Phones f_B0.935 er_E0.935 t_B0.935 eh_I1 n_E0.935

. . . p_B oy_I n_I t_I s_E sil s_B ey_I m_E
dh_B ih_I s_E r_B iy_I v_I eh_I n_I jh_E
n_B aa_I v_I ah_I l_I . . .

generic statement of uncertainty. So by removing all refer-
ence to <unk> in the model’s Finite State Transducer, we
force the system to decode “Louis Vampas” as “Lousiana”
rather than <unk>. The risk we run with this method is
introducing words not present in the original data. For
example, “count” and “mount” are similar in sound but
not in context embeddings. Hence, we need a method to
downweight incorrect decoding.

3.3. Confidence augmented DAN

We build on Deep Averaging Networks [18, DAN], as-
suming that deep bag-of-words models can improve pre-
dictions and be robust to corrupted phrases. The errors
introduced by ASR can hinder sequence neural models as
key phrases are potentially corrupted and syntactic infor-
mation is lost.

The original Deep Averaging Network, or DAN, clas-
sifier has three sections: a “neural-bag-of-words” (NBOW)
encoder, which composes all the words in the document
into a single vector by averaging the word vectors; a se-
ries of hidden transformations, which give the network
depth and allow it to amplify small distinctions between
composed documents; and a softmax predictor.

The encoded representation r is the averaged embed-
dings of input words. The word vectors exist in an em-
bedding matrix E, from which we can look up a specific
word w with E[w]. The length of the document is N . To
compute the composed representation r, the DAN averages
all of the word embeddings:

r =

∑N
i E[wi]

N
(1)

The network weights W, consist of a weight-bias pair
for each layer of transformations (W(hi), b(hi)) for each
layer i in the list of layers L. To compute the hidden
representations for each layer, the DAN linearly transforms
the input and then applies a nonlinearity: h0 = σ(W(h0)r+
b(h0)). Successive hidden representations hi are: hi =

σ(W(hi)hi-1+b(hi)). The final layer in the DAN is a softmax
output: o = softmax(W(o)hL + b(o)). We modify the
original DAN models to use word-level confidences from
the ASR system as a feature.

In increasing order of complexity, the variations
are: a Confidence Informed Softmax DAN, a Confidence
Weighted Average DAN, and a Word-Level Confidence
DAN. We represent the confidences as a vector c, where
each cell ci contains the ASR confidence of word wi.

The simplest model averages the confidence across
the whole sentence and adds it as a feature to the final
output classifier. For example in Table 1, “for ten points”
averages to 0.914. We introduce an additional weight in
the output Wc, which adjusts our prediction based on the
average confidence of each word in the question.

However, most words have high confidence, and thus
the average confidence of a sentence or question level is
high. To focus on which words are uncertain we weight
the word embeddings by their confidence attenuating un-
certain words before calculating the DAN average.

Weighting by the confidence directly removes un-
certain words, but this is too blunt an instrument, and
could end up erasing useful information contained in low-
confidence words, so we instead learn a function based
on the raw confidence from our ASR system. Thus, we
recalibrate the confidence through a learned function f :

f(c) = W(c)c + b(c) (2)

and then use that scalar in the weighted mean of the DAN
representation layer:

r** =

∑N
i E[wi] ∗ f(ci)

N
. (3)

In this model, we replace the original encoder r with
the new version r** to learn a transformation of the ASR
confidence that down-weights uncertain words and up-
weights certain words. This final model is referred to in
the results as “Confidence Model”.

Architectural decisions were determined by hyperpa-
rameters sweeps and are consistent across experiments
and include: having a single hidden layer of 1000 dimen-
sionality for the DAN, multiple drop-out, and batch-norm
layers, and a scheduled ADAM optimizer. Our DAN models
train until convergence, as determined by early-stopping.
Code is implemented in PyTorch [19], with TorchText for
batching.2

4. Results
Achieving 100% accuracy on this dataset is not a realistic
goal, as not all test questions are answerable (specifically,
some answers do not occur in the training data and hence
cannot be learned by a machine learning system). Base-
lines for the DAN (Table 2) establish realistic goals: a DAN
trained and evaluated on the same train and dev set, only

2Code, data, and additional analysis available at https://

github.com/DenisPeskov/QBASR

Table 2: Both forced decoding (FD) and the best confidence model im-
prove accuracy. Jeopardy only has an At-End-of-Sentence metric, as
questions are one sentence in length. Combining the two methods leads
to a further joint improvement. The IR and DAN with clean data accu-
racies are provided as reference.

Quizbowl Jeopardy!

Synth Human Synth Human

Model Start End Start End

Methods Tested on Clean Data
IR 0.064 0.544 0.400 1.000 0.190 0.050
DAN 0.080 0.540 0.200 1.000 0.236 0.033

Methods Tested on Corrupted Data
IR base 0.021 0.442 0.180 0.560 0.079 0.050
DAN 0.035 0.335 0.120 0.440 0.097 0.017
FD 0.032 0.354 0.120 0.440 0.102 0.033
Confidence 0.036 0.374 0.120 0.460 0.095 0.033
FD+Conf 0.041 0.371 0.160 0.440 0.109 0.033

in the original non-ASR form, correctly predicts 54% of
the answers. Noise drops this to 44% with the best IR
model and down to ≈ 30% with neural approaches.

Since the noisy data quality makes full recovery un-
likely, we view any improvement over the neural model
baselines as recovering valuable information. At the
question-level, strong IR outperforms the DAN by around
10%.

Since IR can avoid all the noise while benefiting from
additional independent data points, it scales as the length
of data increases. There is additional motivation to inves-
tigate this task at the sentence-level. Computers can beat
humans at the game by knowing certain questions imme-
diately; the first sentence of the Quizbowl question serves
as a proxy for this threshold. Our proposed combination
of forced decoding with a neural model led to the highest
test accuracy results and outperforms the IR one at the
sentence level.

A strong TF-IDF IR model can top the best neural
model at the multi-sentence question level in Quizbowl;
multiple sentences are important because they progres-
sively become easier to answer in competitions. However,
our models improve accuracy on the shorter first-sentence
level of the question. This behavior is expected since
textscir methods are explicitly designed to disregard noise
and can pinpoint the handful of unique words in a long
paragraph; conversely they are less accurate when they
extract words from a single sentence.

4.1. Qualitative Analysis & Human Data

The synthetic dataset facilitates large-scale machine learn-
ing, but ultimately we care about performance on human
data. For Quizbowl we record questions read by domain
experts at a competition. To account for variation in
speech, we record five questions across ten different speak-
ers, varying in gender and age; this set of fifty questions
is used as the human test data. Figure 3 has examples of
variations. For Jeopardy! we manually parsed a complete
episode by question.

Table 3: Variation in different speakers causes different transcriptions
of a question on Oxford.

Speaker Text

Base John Deydras, an insane man who claimed to be Edward II,
stirred up trouble when he seized this city’s Beaumont Palace.

S1 unk an insane man who claimed to be the second unk trouble
when he sees unk beaumont → Richard_I_of_England

S2 john dangerous insane man who claims to be the second stir-
ring up trouble when he sees the city’s beaumont → London

S3 unk dangerous insane man who claim to be unk second third
of trouble when he sees the city’s unk palace → Baghdad

The predictions of the regular DAN and the
confidence version can differ. For input about
The House on Mango Street, which contains words like
“novel”, “character”, and “childhood” alongside a cor-
rupted name of the author, the regular DAN predicts
The Prime of Miss Jean Brodie, while our version pre-
dicts the correct answer.

4.2. Discussion & Future Work

Confidences are a readily human-interpretable concept
that may help build trust in the output of a system. Trans-
parency in the quality of up-stream content can lead to
downstream improvements in a plethora of NLP tasks.

Exploring sequence models or alternate data represen-
tations may lead to further improvement.

Including full lattices may mirror past results for ma-
chine translation [6] for the task of question answering.
Phone-level approaches work in Chinese [12], but our
phone models had lower accuracies than the baseline, per-
haps due to a lack of contextual representation. Using
unsupervised approaches for ASR [20, 21] and training
ASR models for decoding Quizbowl or Jeopardy! words
are avenues for further exploration.

5. Conclusion
Question answering, like many NLP tasks are impaired by
noisy inputs. Introducing ASR into a QA pipeline corrupts
the data. A neural model that uses the ASR system’s confi-
dence outputs and systematic forced decoding of words
rather than unknowns improves QA accuracy on Quizbowl
and Jeopardy! questions. Our methods are task agnostic
and can be applied to other supervised NLP tasks. Larger
human-recorded question datasets and alternate model
approaches would ensure audio questions are answered
accurately, allowing human and computer trivia players to
compete on an equal playing field.

6. Acknowledgments
This work was supported by NSF Grants IIS-1748663 and
IIS-1748642. The views expressed in this paper are our
own. We thank the reviewers and the Quizbowl and Kaldi
communities for their help.

7. References
[1] D. A. Ferrucci, “Build Watson: an overview of DeepQA

for the Jeopardy! challenge,” in 19th International Confer-
ence on Parallel Architecture and Compilation Techniques,
2010, pp. 1–2.

[2] J. Boyd-Graber, S. Feng, and P. Rodriguez, Human-
Computer Question Answering: The Case for Quizbowl.
Springer Verlag, 2018.

[3] R. Jia and P. Liang, “Adversarial examples for evaluating
reading comprehension systems,” in Proceedings of Empir-
ical Methods in Natural Language Processing, 2017, pp.
2021–2031.

[4] T. Mishra and S. Bangalore, “Qme!: A speech-based
question-answering system on mobile devices,” in Human
Language Technologies:, 2010, pp. 55–63.

[5] A. Leuski, R. Patel, D. Traum, and B. Kennedy, “Building
effective question answering characters,” in Proceedings of
the Annual SIGDIAL Meeting on Discourse and Dialogue,
2009, pp. 18–27.

[6] M. Sperber, G. Neubig, J. Niehues, and A. Waibel, “Neural
lattice-to-sequence models for uncertain inputs,” in Pro-
ceedings of the Association for Computational Linguistics,
2017.

[7] V. Peddinti, G. Chen, V. Manohar, T. Ko, D. Povey, and
S. Khudanpur, “Jhu aspire system: Robust lvcsr with tdnns,
ivector adaptation and rnn-lms,” in Automatic Speech
Recognition and Understanding (ASRU), IEEE Workshop
on, 2015, pp. 539–546.

[8] C. Cieri, D. Miller, and K. Walker, “The fisher corpus:
a resource for the next generations of speech-to-text,” in
Proceedings of the Language Resources and Evaluation
Conference, 2004.

[9] P. Michel and G. Neubig, “Mtnt: A testbed for machine
translation of noisy text,” in Proceedings of Empirical
Methods in Natural Language Processing, 2018.

[10] Y. Belinkov and Y. Bisk, “Synthetic and natural noise both
break neural machine translation,” in Proceedings of the
International Conference on Learning Representations,
2017.

[11] C. Donahue, B. Li, and R. Prabhavalkar, “Exploring speech
enhancement with generative adversarial networks for ro-
bust speech recognition,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 2018,
pp. 5024–5028.

[12] C.-H. Lee, S.-M. Wang, H.-C. Chang, and H.-Y. Lee,
“Odsqa: Open-domain spoken question answering dataset,”
in 2018 IEEE Spoken Language Technology Workshop
(SLT). IEEE, 2018, pp. 949–956.

[13] I. Yamada, R. Tamaki, H. Shindo, and Y. Takefuji, “Studio
Ousia’s quiz bowl question answering system,” in NIPS
Competition: Building Intelligent Systems, 2018, pp. 181–
194.

[14] M. Dunn, L. Sagun, M. Higgins, V. U. Güney, V. Cirik, and
K. Cho, “Searchqa: A new Q&A dataset augmented with
context from a search engine,” CoRR, vol. abs/1704.05179,
2017.

[15] J. Ramos, “Using tf-idf to determine word relevance in
document queries,” in Proceedings of the International
Conference of Machine Learning, 2003.

[16] S. Robertson, H. Zaragoza et al., “The probabilistic rele-
vance framework: Bm25 and beyond,” Foundations and
Trends in Information Retrieval, vol. 3, no. 4, pp. 333–389,
2009.

[17] D. Povey, A. Ghoshal, G. Boulianne, N. Goel, M. Hanne-
mann, Y. Qian, P. Schwarz, and G. Stemmer, “The Kaldi
speech recognition toolkit,” in IEEE Workshop on Auto-
matic Speech Recognition and Understanding, 2011.

[18] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé
III, “Deep unordered composition rivals syntactic methods
for text classification,” in Proceedings of the Association
for Computational Linguistics, 2015.

[19] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer,
“Automatic differentiation in pytorch,” in Conference on
Neural Information Processing Systems: Autodiff Work-
shop: The Future of Gradient-based Machine Learning
Software and Techniques, 2017.

[20] F. Wessel and H. Ney, “Unsupervised training of acoustic
models for large vocabulary continuous speech recogni-
tion,” IEEE Transactions on Speech and Audio Processing,
vol. 13, no. 1, pp. 23–31, 2004.

[21] H. Lee, P. Pham, Y. Largman, and A. Y. Ng, “Unsupervised
feature learning for audio classification using convolutional
deep belief networks,” in Proceedings of Advances in Neu-
ral Information Processing Systems, 2009, pp. 1096–1104.

[22] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU:
a method for automatic evaluation of machine translation,”
in Proceedings of the Association for Computational Lin-
guistics, 2002, pp. 311–318.

[23] C. E. Shannon, “A mathematical theory of communication,”
Bell system technical journal, vol. 27, no. 3, pp. 379–423,
1948.

Figure 2: A comparison of BLEU score distributions across human
speakers (color-coded) to our artificial method, visualized by the step
line. The distributions of BLEU scores are similar, with human data
being slightly lower, justifying our weak supervision training approach.

A. Further Data Analysis

One potential concern with the synthetically-generated
dataset is that ASR systems might be either better or worse
at recognizing text-to-speech(TTS) speech. If the ASR
system is trained on human data, then it might be an
out-of-domain sample, or there might be systematic pro-
nunciation issues that lower ASR accuracy. Alternatively,
TTS-generated speech might prove more regular or cleaner
than human speech, so an ASR system may produce a
higher transcription accuracy on this data. Thus, we de-
termine the distributional overlap between the ASR output
on both the synthetic and natural data.

We compare BLEU scores [22] between the gold stan-
dard data and the decoded data for between the human and
synthetic data variations. By using BLEU scores, which
capture n-gram overlap between the target and source
text, we can compare the variance in ASR between the
two datasets. Figure 2 illustrates this variance. Addition-
ally, Figure 3 shows the comparison of Word Error Rate
(WER). Human data has more instances of higher WER
and lower BLEU scores than the auto-generated data on the
same questions; however, the two sources of speech data
generally follow a similar distribution and our results are
comparable in accuracy to our synthetic data. Therefore,
we conclude that our method serves as a good approx-
imation for the task, which allows weak supervision to
work.

B. Negative Results

Alternative methods were applied to mitigate ASR-induced
noise in the course of experimentation, including noisy
channel techniques typically used in Information Retrieval
and lattice-structured Recurrent Neural Networks. For
completeness, we discuss the results of these two experi-
ments in this section. While neither method provided an
improvement on the question answering task, their discus-
sion might prove useful for future research.

Figure 3: Similarly a comparison of WER score distributions across
human speakers (color-coded) to our artificial method, visualized by the
step line. The distributions of WER scores are similar as well. Speakers
are color-coded. The background step line is the WER of the automatic
TTS approach.

B.1. Noisy Channel Expansion

In both Information Retrieval and NLP it is often useful
to model processes that induce noise using Shannon’s
noisy channel model [23]. We know the answer would
be predictable if we had access to certain words in the
original question. The noisy channel model allows us
to reconstruct the original data as cleanly as possible by
modeling the process by which noise was induced, in
this case the trip from text to speech and back to text.
We propose two forms of query expansion based on this
model, both of which are typically used in Cross Language
Information Retrieval.

The first model uses IBM Model 3 to generate an
alignment table between the corrupted ASR data and the
original text data. The alignment table serves as the un-
derlying corruption model which we are aiming to reverse.
We use our training data a second time and generate possi-
ble word candidates that were missed during decoding.

The second model uses a more robust version of
the same Information Retrieval technique looks at two-
way translations between ASR and original data based on
(Xu, 2008). Whereas the first model included many junk
translations—stop-words such as “unk” or “the” would be
mapped to a long tail of meaningful words—this version
does not suffer from this problem: even if “the” maps to
“Monte”, “Monte” does not map back to “the”.

In both cases, the reconstructed data was used to train
the DAN model. That neither was able to improve over
the confidence modeling DAN indicates that the errors
made by the ASR system were likely not recoverable with
the translation models we used. This is unsurprising, as
many low-frequency important words were mapped to a
handful of high-frequency terms, collapsing the space and
preventing simple recoverability.

B.2. Lattice-Structured RNN

The confidence models are not calculate on a full lattice,
and hence cannot not reconstruct alternate paths in situa-
tions with low confidences. A more complex model can

ingest the entire lattice, and not the top word prediction.
The lattice can update multiple words needed, as their
relationships are preserved. “Leo Patrick” can now be
reinterpreted as “Cleopatra”, as the lattice relationship al-
lows alternate paths to be explored. The confidence values
provide additional value about what path to follow within
a lattice.

We produce three variations:

1. A “lattice” LSTM that consumes the full lattice by
linearizing the graphs with a topological sort and
feeding it through a normal LSTM.

2. A lattice LSTM without confidences. This network
only sees the word vectors when consuming the
lattice structure.

3. A lattice LSTM with confidences integrated as fea-
tures. The confidences are concatenated to the word
vector inputs.

This sequence demonstrates the gain from each part
of the model. The first tests the benefit of additional data.
The second tests the benefit of the structure of this data.
The third tests the importance of the confidence of each
item in the data.

Unfortunately, none of these experiments outper-
formed the confidence augmented DAN. These may be
due to instability or training issues, however.

