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Abstract

Identification of short text similarity (STS) is a
high-utility NLP task with applications in a va-
riety of domains. We explore adaptation of STS
algorithms to different target domains and ap-
plications. A two-level hierarchical Bayesian
model is employed for domain adaptation (DA)
of a linear STS model to text from different
sources (e.g., news, tweets). This model is then
further extended for multitask learning (MTL)
of three related tasks: STS, short answer scor-
ing (SAS) and answer sentence ranking (ASR).
In our experiments, the adaptive model demon-
strates better overall cross-domain and cross-
task performance over two non-adaptive base-
lines.

1 Short Text Similarity: The Need for
Domain Adaptation

Given two snippets of text—neither longer than a few
sentences—short text similarity (STS) determines
how semantically close they are. STS has a broad
range of applications: question answering (Yao et
al., 2013; Severyn and Moschitti, 2015), text summa-
rization (Dasgupta et al., 2013; Wang et al., 2013),
machine translation evaluation (Chan and Ng, 2008;
Liu et al., 2011), and grading of student answers in
academic tests (Mohler et al., 2011; Ramachandran
et al., 2015).

STS is typically viewed as a supervised machine
learning problem (Bär et al., 2012; Lynum et al.,
2014; Hänig et al., 2015). SemEval contests (Agirre
et al., 2012; Agirre et al., 2015) have spurred recent
progress in STS and have provided valuable training
data for these supervised approaches. However, simi-
larity varies across domains, as does the underlying

text; e.g., syntactically well-formed academic text
versus informal English in forum QA.

Our goal is to effectively use domain adaptation
(DA) to transfer information from these disparate STS

domains. While “domain” can take a range of mean-
ings, we consider adaptation to different (1) sources
of text (e.g., news headlines, tweets), and (2) applica-
tions of STS (e.g., QA vs. answer grading). Our goal
is to improve performance in a new domain with few
in-domain annotations by using many out-of-domain
ones (Section 2).

In Section 3, we describe our Bayesian approach
that posits that per-domain parameter vectors share
a common Gaussian prior that represents the global
parameter vector. Importantly, this idea can be ex-
tended with little effort to a nested domain hierarchy
(domains within domains), which allows us to create
a single, unified STS model that generalizes across
domains as well as tasks, capturing the nuances that
an STS system must have for tasks such as short an-
swer scoring or question answering.

We compare our DA methods against two baselines:
(1) a domain-agnostic model that uses all training
data and does not distinguish between in-domain and
out-of-domain examples, and (2) a model that learns
only from in-domain examples. Section 5 shows that
across ten different STS domains, the adaptive model
consistently outperforms the first baseline while per-
forming at least as well as the second across training
datasets of different sizes. Our multitask model also
yields better overall results over the same baselines
across three related tasks: (1) STS, (2) short answer
scoring (SAS), and (3) answer sentence ranking (ASR)
for question answering.



2 Tasks and Datasets

Short Text Similarity (STS) Given two short texts,
STS provides a real-valued score that represents their
degree of semantic similarity. Our STS datasets come
from the SemEval 2012–2015 corpora, containing
over 14,000 human-annotated sentence pairs (via
Amazon Mechanical Turk) from domains like news,
tweets, forum posts, and image descriptions.

For our experiments, we select ten datasets from
ten different domains, containing 6,450 sentence
pairs.1 This selection is intended to maximize (a)
the number of domains, (b) domain uniqueness: of
three different news headlines datasets, for example,
we select the most recent (2015), discarding older
ones (2013, 2014), and (c) amount of per-domain
data available: we exclude the FNWN (2013) dataset
with 189 annotations, for example, because it limits
per-domain training data in our experiments. Sizes
of the selected datasets range from 375 to 750 pairs.
Average correlation (Pearson’s r) among annotators
ranges from 58.6% to 88.8% on individual datasets
(above 70% for most) (Agirre et al., 2012; Agirre et
al., 2013; Agirre et al., 2014; Agirre et al., 2015).

Short Answer Scoring (SAS) SAS comes in dif-
ferent forms; we explore a form where for a short-
answer question, a gold answer is provided, and the
goal is to grade student answers based on how sim-
ilar they are to the gold answer (Ramachandran et
al., 2015). We use a dataset of undergraduate data
structures questions and student responses graded
by two judges (Mohler et al., 2011). These ques-
tions are spread across ten different assignments
and two examinations, each on a related set of top-
ics (e.g., programming basics, sorting algorithms).
Inter-annotator agreement is 58.6% (Pearson’s ρ) and
0.659 (RMSE on a 5-point scale). We discard as-
signments with fewer than 200 pairs, retaining 1,182
student responses to forty questions spread across
five assignments and tests.2

Answer Sentence Ranking (ASR) Given a factoid
question and a set of candidate answer sentences,
ASR orders candidates so that sentences containing

12012: MSRpar-test; 2013: SMT; 2014: Deft-forum, OnWN,
Tweet-news; 2015: Answers-forums, Answers-students, Belief,
Headlines and Images.

2Assignments: #1, #2, and #3; Exams: #11 and #12.

the answer are ranked higher. Text similarity is the
foundation of most prior work: a candidate sentence’s
relevance is based on its similarity with the ques-
tion (Wang et al., 2007; Yao et al., 2013; Severyn and
Moschitti, 2015).

For our ASR experiments, we use factoid questions
developed by Wang et al. (2007) from Text REtrieval
Conferences (TREC) 8–13. Candidate QA pairs of a
question and a candidate were labeled with whether
the candidate answers the question. The questions are
of different types (e.g., what, where); we retain 2,247
QA pairs under four question types, each with at least
200 answer candidates in the combined development
and test sets.3 Each question type represents a unique
topical domain—who questions are about persons
and how many questions are about quantities.

3 Bayesian Domain Adaptation for STS

We first discuss our base linear models for the three
tasks: Bayesian L2-regularized linear (for STS and
SAS) and logistic (for ASR) regression. We extend
these models for (1) adaptation across different short
text similarity domains, and (2) multitask learning
of short text similarity (STS), short answer scoring
(SAS) and answer sentence ranking (ASR).

3.1 Base Models

In our base models (Figure 1), the feature vector f
combines with the feature weight vector w (including
a bias term w0) to form predictions. Each parameter
wi ∈ w has its own zero-mean Gaussian prior with
its standard deviation σwi distributed uniformly in
[0,mσw ], the covariance matrix Σw is diagonal, and
the zero-mean prior L2 regularizes the model.

In the linear model (Figure 1a), S is the output
(similarity score for STS; answer score for SAS) and
is normally distributed around the dot product wTf .
The model error σS has a uniform prior over a pre-
specified range [0,mσS ]. In the logistic model (Fig-
ure 1b) for ASR, the probability p that the candidate
sentence answers the question, is (1) the sigmoid of
wTf , and (2) the Bernoulli prior of A, whether or
not the candidate answers the question.

The common vectors w and f in these models en-
able joint parameter learning and consequently mul-
titask learning (Section 3.3).

3what, when, who and how many.
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(b) Bayesian logistic regression for ASR.

Figure 1: Base models for STS, SAS and ASR. Plates
represent replication across sentence pairs. Each
model learns weight vector w. For STS and SAS, the
real-valued output S (similarity or student score) is
normally distributed around the weight-feature dot
product wTf . For ASR, the sigmoid of this dot prod-
uct is the Bernoulli prior for the binary output A,
relevance of the question’s answer candidate.

3.2 Adaptation to STS Domains

Domain adaptation for the linear model (Figure 1a)
learns a separate weight vector wd for each domain d
(i.e., applied to similarity computations for test pairs
in domain d) alongside a common, global domain-
agnostic weight vector w∗, which has a zero-mean
Gaussian prior and serves as the Gaussian prior mean
for each wd. Figure 2 shows the model. Both w∗ and
wd have hyperpriors identical to w in Figure 1a.4

Each wd depends not just on its domain-specific
observations but also on information derived from the
global, shared parameter w∗. The balance between
capturing in-domain information and inductive trans-

4Results do not improve with individual domain-specific
instances of σS and σw, consistent with Finkel and Manning
(2009) for dependency parsing and named entity recognition.
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Figure 2: Adaptation to different STS domains. The
outer plate represents replication across domains.
Joint learning of a global weight vector w∗ along
with individual domain-specific vectors wd enables
inductive transfer among domains.

fer is regulated by Σw; larger variance allows wd

more freedom to reflect the domain.

3.3 Multitask Learning

An advantage of hierarchical DA is that it extends
easily to arbitrarily nested domains. Our multitask
learning model (Figure 3) models topical domains
nested within one of three related tasks: STS, SAS,
and ASR (Section 2). This model adds a level to the
hierarchy of weight vectors: each domain-level wd is
now normally distributed around a task-level weight
vector (e.g., wSTS), which in turn has global Gaussian
mean w∗.5 Like the DA model, all weights in the
same level share common variance hyperparameters
while those across different levels are separate.

Again, this hierarchical structure (1) jointly learns
global, task-level and domain-level feature weights
enabling inductive transfer among tasks and do-
mains while (2) retaining the distinction between
in-domain and out-of-domain annotations. A task-
specific model (Figure 1) that only learns from in-
domain annotations supports only (2). On the other
hand, a non-hierarchical joint model (Figure 4) sup-
ports only (1): it learns a single shared w applied
to any test pair regardless of task or domain. We
compare these models in Section 5.

5We use the same variable for the domain-specific parameter
wd across tasks to simplify notation.
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Figure 3: Multitask learning: STS, SAS and ASR. Global (w∗), task-specific (wSTS, wSAS, wASR) and
domain-specific (wd) weight vectors are jointly learned, enabling transfer across domains and tasks.
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Figure 4: A non-hierarchical joint model for STS,
SAS and ASR. A common weight vector w is learned
for all tasks and domains.

4 Features

Any feature-based STS model can serve as the base
model for a hierarchical Bayesian adaptation frame-
work. For our experiments, we adopt the feature set
of the ridge regression model in Sultan et al. (2015),
the best-performing system at SemEval-2015 (Agirre
et al., 2015).

Input sentences S(1) = (w
(1)
1 , ..., w

(1)
n ) and

S(2) = (w
(2)
1 , ..., w

(2)
m ) (where each w is a token)

produce two similarity features. The first is the pro-
portion of content words in S(1) and S(2) (combined)
that have a semantically similar word—identified us-
ing a monolingual word aligner (Sultan et al., 2014)—
in the other sentence. The overall semantic simi-
larity of a word pair (w

(1)
i , w

(2)
j ) ∈ S(1) × S(2) is

a weighted sum of lexical and contextual similari-
ties: a paraphrase database (Ganitkevitch et al., 2013,
PPDB) identifies lexically similar words; contextual
similarity is the average lexical similarity in (1) de-
pendencies of w(1)

i in S(1) and w(2)
j in S(2), and (2)

content words in [-3, 3] windows around w
(1)
i in

S(1) and w(2)
j in S(2). Lexical similarity scores of

pairs in PPDB as well as weights of word and con-
textual similarities are optimized on an alignment
dataset (Brockett, 2007). To avoid penalizing long
answer snippets (that still have the desired semantic
content) in SAS and ASR, word alignment propor-
tions outside the reference (gold) answer (SAS) and
the question (ASR) are ignored.

The second feature captures finer-grained sim-
ilarities between related words (e.g., cell and
organism). Given the 400-dimensional embed-
ding (Baroni et al., 2014) of each content word (lem-
matized) in an input sentence, we compute a sentence
vector by adding its content lemma vectors. The co-



Task Current SOA Our Model
STS Pearson’s r = 73.6% Pearson’s r = 73.7%

SAS
Pearson’s r = 51.8% Pearson’s r = 56.4%

RMSE = 19.6% RMSE = 18.1%

ASR
MAP = 74.6% MAP = 76.0%
MRR = 80.8% MRR = 82.8%

Table 1: Our base linear models beat the state of the
art in STS, SAS and ASR.

sine similarity between the S(1) and S(2) vectors is
then used as an STS feature. Baroni et al. develop
the word embeddings using word2vec6 from a cor-
pus of about 2.8 billion tokens, using the Continuous
Bag-of-Words (CBOW) model proposed by Mikolov
et al. (2013).

5 Experiments

For each of the three tasks, we first assess the perfor-
mance of our base model to (1) verify our sampling-
based Bayesian implementations, and (2) compare
to the state of the art. We train each model with a
Metropolis-within-Gibbs sampler with 50,000 sam-
ples using PyMC (Patil et al., 2010; Salvatier et al.,
2015), discarding the first half of the samples as burn-
in. The variances mσw and mσS are both set to 100.
Base models are evaluated on the entire test set for
each task, and the same training examples as in the
state-of-the-art systems are used. Table 1 shows the
results.

Following SemEval, we report a weighted sum of
correlations (Pearson’s r) across all test sets for STS,
where the weight of a test set is proportional to its
number of pairs. Our model and Sultan et al. (2015)
are almost identical on all twenty test sets from Se-
mEval 2012–2015, supporting the correctness of our
Bayesian implementation.

Following Mohler et al. (2011), for SAS we use
RMSE and Pearson’s r with gold scores over all an-
swers. These metrics are complementary: correlation
is a measure of consistency across students while
error measures deviation from individual scores. Our
model beats the state-of-the-art text matching model
of Mohler et al. (2011) on both metrics.7

6https://code.google.com/p/word2vec/
7Ramachandran et al. (2015) report better results; however,

they evaluate on a much smaller random subset of the test data
and use in-domain annotations for model training.

Finally, for ASR, we adopt two metrics widely
used in information retrieval: mean average preci-
sion (MAP) and mean reciprocal rank (MRR). MAP

assesses the quality of the ranking as a whole whereas
MRR evaluates only the top-ranked answer sentence.
Severyn and Moschitti (2015) report a convolutional
neural network model of text similarity which shows
top ASR results on the Wang et al. (2007) dataset.
Our model outperforms this model on both metrics.

5.1 Adaptation to STS Domains
Ideally, our domain adaptation (DA) should allow
the application of large amounts of out-of-domain
training data along with few in-domain examples to
improve in-domain performance. Given data from n
domains, two other alternatives in such scenarios are:
(1) to train a single global model using all available
training examples, and (2) to train n individual mod-
els, one for each domain, using only in-domain ex-
amples. Section 2 shows results from our DA model
and these two baselines on the ten STS datasets. We
fix the training set size and split each domain into
train and test folds randomly.

Models have access to training data from all ten
domains (thus nine times more out-of-domain ex-
amples than in-domain ones). Each model (global,
individual, and adaptive) is trained on relevant anno-
tations and applied to test pairs, and Pearson’s r with
gold scores is computed for each model on each in-
dividual test set. Since performance can vary across
different splits, we average over 20 splits of the same
train/test ratio per dataset. Finally, we evaluate each
model with a weighted sum of average correlations
across all test sets, where the weight of a test set is
proportional to its number of pairs.

Figure 5 shows how models adapt as the train-
ing set grows. The global model clearly falters with
larger training sets in comparison to the other two
models. On the other hand, the domain-specific
model (i.e., the ten individual models) performs
poorly when in-domain annotations are scarce. Im-
portantly, the adaptive model performs well across
different amounts of available training data.

To gain a deeper understanding of model perfor-
mance, we examine results in individual domains.
A single performance score is computed for every
model-domain pair by taking the model’s average
correlation in that domain over all seven training set
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Figure 5: Results of adaptation to STS domains across
different amounts of training data. Table shows
mean±SD from 20 random train/test splits. While
the baselines falter at extremes, the adaptive model
shows consistent performance.

sizes of Figure 5. We then normalize each score by
dividing by the best score in that domain. Each cell
in Table 2 shows this score for a model-domain pair.
For example, Row 1 shows that—on average—the
individual model performs the best (hence a correla-
tion ratio of 1.0) on QA forum answer pairs while the
global model performs the worst.

While the adaptive model is not the best in every
domain, it has the best worst-case performance across
domains. The global model suffers in domains that
have unique parameter distributions (e.g., MSRpar-
test: a paraphrase dataset). The individual model
performs poorly with few training examples and in
domains with noisy annotations (e.g., SMT: a ma-
chine translation evaluation dataset). The adaptive
model is much less affected in such extreme cases.
The summary statistics (weighted by dataset size)
confirm that it not only stays the closest to the best
model on average, but also deviates the least from its
mean performance level.

5.1.1 Qualitative Analysis
We further examine the models to understand why

the adaptive model performs well in different extreme
scenarios, i.e., when one of the two baseline models
performs worse than the other. Table 3 shows fea-
ture weights learned by each model from a split with
seventy-five training pairs per domain and how well
each model does.

Dataset Glob. Indiv. Adapt.
Answers-forums (2015) .9847 1 .9999
Answers-students (2015) .9850 1 .9983
Belief (2015) 1 .9915 .9970
Headlines (2015) .9971 .9998 1
Images (2015) .9992 .9986 1
Deft-forum (2014) 1 .9775 .9943
OnWN (2014) .9946 .9990 1
Tweet-news (2014) .9998 .9950 1
SMT (2013) 1 .9483 .9816
MSRpar-test (2012) .9615 1 .9923

Mean .9918 .9911 .9962
SD .0122 .0165 .0059

Table 2: Correlation ratios of the three models vs.
the best model across STS domains. Best scores are
boldfaced, worst scores are underlined. The adap-
tive model has the best (1) overall score, and (2)
consistency across domains.

Dataset Var. Glob. Indiv. Adapt.

SMT
w1 .577 .214 .195
w2 .406 -.034 .134
r .4071 .3866 .4071

MSRpar-test
w1 .577 1.0 .797
w2 .406 -.378 .050
r .6178 .6542 .6469

Answers-students
w1 .577 .947 .865
w2 .406 .073 .047
r .7677 .7865 .7844

Table 3: Feature weights and correlations of different
models in three extreme scenarios. In each case, the
adaptive model learns relative weights that are more
similar to those in the best baseline model.

All three domains have very different outcomes
for the baseline models. We show weights for the
alignment (w1) and embedding features (w2). In
each domain, (1) the relative weights learned by the
two baseline models are very different, and (2) the
adaptive model learns relative weights that are closer
to those of the best model. In SMT, for example,
the predictor weights learned by the adaptive model
have a ratio very similar to the global model’s and
does just as well. On Answers-students, however,
it learns weights similar to those of the in-domain
model, again approaching best results for the domain.

Table 4 shows the effect of this on two specific
sentence pairs as examples. The first pair is from



Now, the labor of cleaning up at the
karaoke parlor is realized.

Gold=.52
∆G=.1943
∆I=.2738
∆A=.2024

Up till now on the location the cleaning
work is already completed.
The Chelsea defender Marcel Desailly
has been the latest to speak out. Gold=.45

∆G=.2513
∆I=.2222
∆A=.2245

Marcel Desailly, the France captain and
Chelsea defender, believes the latter is
true.

Table 4: Sentence pairs from SMT and MSRpar-test
with gold similarity scores and model errors (Global,
Individual and Adaptive). The adaptive model error
is very close to the best model error in each case.

SMT; the adaptive model has a much lower error
than the individual model on this pair, as it learns
a higher relative weight for the embedding feature
in this domain (Table 3) via inductive transfer from
out-of-domain annotations. The second pair, from
MSRpar-test, shows the opposite: in-domain annota-
tions helps the adaptive model fix the faulty output
of the global model by upweighting the alignment
feature and downweighting the embedding feature.

The adaptive model gains from the strengths of
both in-domain (higher relevance) and out-of-domain
(more training data) annotations, leading to good re-
sults even in extreme scenarios (e.g., in domains with
unique parameter distributions or noisy annotations).

5.2 Multitask Learning
We now analyze performance of our multitask learn-
ing (MTL) model in each of the three tasks: STS,
SAS and ASR. Multitaks baselines resemble DA’s:
(1) a global model trained on all available training
data (Figure 4), and (2) nineteen task-specific models,
each trained on an individual dataset from one of the
three tasks (Figure 1). The smallest of these datasets
has only 204 pairs (SAS assignment #1); therefore,
we use training sets with up to 175 pairs per dataset.
Because the MTL model is more complex, we use
a stronger regularization for this model (mσw=10)
while keeping the number of MCMC samples un-
changed. As in the DA experiments, we compute
average performance over twenty random train/test
splits for each training set size.

Figure 6 shows STS results for all models across
different training set sizes. Like DA, the adaptive
model consistently performs well while the global

global 71.79
±0.39

71.94
±0.34

72.05
±0.39

72.07
±0.29

72.11
±0.38

72.23
±0.31

72.05
±0.41

individual 70.57
±1.45

72.06
±0.56

72.32
±0.55

72.67
±0.44

72.73
±0.51

72.9
±0.33

72.75
±0.41

adaptive 71.99
±0.43
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Figure 6: Multitask learning for STS: mean±SD from
twenty random train/test splits. The adaptive model
consistently performs well while the baselines have
different failure modes.

and individual models have different failure modes.
However, the individual model does better than in
DA: it overtakes the global model with fewer training
examples and the differences with the adaptive model
are smaller. This suggests that inductive transfer and
therefore adaptation is less effective for STS in the
MTL setup than in DA. Later in this section, coarse-
grained ASR annotations (binary as opposed to real-
valued) in MTL may provide an explanation for this.

The performance drop after 150 training pairs is a
likely consequence of the random train/test selection
process.

For SAS, the adaptive model again has the best
overall performance for both correlation and error
(Figure 7). The correlation plot is qualitatively simi-
lar to the STS plot, but the global model has a much
higher RMSE across all training set sizes, indicating
a parameter shift across tasks. Importantly, the adap-
tive model remains unaffected by this shift.

The ASR results in Figure 8 show a different pat-
tern. Contrary to all results thus far, the global
model performs the best in this task. The individ-
ual model consistently has lower scores, regardless
of the amount of training data. Importantly, the adap-
tive model stays close to the global model even with
very few training examples. The ASR datasets are
heavily biased towards negative examples; thus, we
use stratified sampling to ensure each ASR training
set has balanced examples.



global 58.49
±1.12

58.84
±0.88

58.81
±1.18

58.94
±1.58

58.59
±2.39

59.25
±2.79

60.14
±2.77

individual 55.8
±4.65

60.15
±1.86

60.98
±1.15

61.38
±2.0

61.45
±2.21

61.79
±2.52

63.02
±2.51

adaptive 59.64
±1.74

60.97
±1.51
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±1.07
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63.16
±2.49
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(a) Correlation.

global 29.01
±0.92

28.95
±0.66

29.01
±0.78

28.9
±0.52

28.9
±0.68

28.59
±0.72

28.06
±0.8

individual 19.94
±0.88

19.03
±0.41

18.76
±0.33

18.81
±0.45

18.57
±0.52

18.65
±0.58

18.37
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±0.32
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±0.44
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(b) Error.

Figure 7: Multitask learning for SAS: mean±SD from 20 random train/test splits. The adaptive model
performs the best, and successfully handles domain shift evident from the global model error.
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75.76
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±1.14
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±1.23
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(a) Mean Average Precision.

global 82.82
±0.63

82.95
±0.91

83.23
±1.15
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±1.67

20 50 75 100 125 150 175
# of Training Pairs per Dataset

76

77

78

79

80

81

82

83

84

M
ea

n 
R

ec
ip

ro
ca

l R
an

k 
(%

)

global
individual
adaptive

(b) Mean Reciprocal Rank.

Figure 8: Multitask learning for ASR: mean±SD from 20 random train/test splits. Least affected by coarse-
grained in-domain annotations, the global model performs the best; the adaptive model stays close across all
training set sizes.



A reason for the global model’s strength at ASR

may lie in the finer granularity of the real-valued
STS and SAS scores compared to binary ASR anno-
tations. If a fine granularity is indeed desirable in
training data, as a model that ignores in-domain and
out-of-domain distinction, the global model would be
affected the least by coarse-grained ASR annotations.
To test this hypothesis, we train a linear model on all
STS examples from SemEval 2012–2015 and apply it
to the ASR test set via a logistic transformation. This
model indeed demonstrates better results (MAP=.766,
MRR=.839) than our base model trained on ASR anno-
tations (Table 1). This is an unusual scenario where
in-domain training examples matter less than out-of-
domain ones, hurting domain-specific and adaptive
models.

Going back to STS, this finding also offers an expla-
nation of why adaptation might have been less useful
in multitask learning than in domain adaptation, as
only the former has ASR annotations.

6 Discussion and Related Work

For a variety of short text similarity tasks, domain
adaptation improves average performance across dif-
ferent domains, tasks, and training set sizes. Our
adaptive model is also by far the least affected by ad-
verse factors such as noisy training data and scarcity
or coarse granularity of in-domain examples. This
combination of excellent average-case and very reli-
able worst-case performance makes it the model of
choice for new STS domains and applications.

Although STS is a useful task with sparse data,
few domain adaptation studies have been reported.
Among those is the supervised model of Heilman
and Madnani (2013a; 2013b) based on the multilevel
model of Daumé III (2007). Gella et al. (2013) report
using a two-level stacked regressor, where the second
level combines predictions from n level 1 models,
each trained on data from a separate domain. Unsu-
pervised models use techniques such as tagging ex-
amples with their source datasets (Gella et al., 2013;
Severyn et al., 2013) and computing vocabulary sim-
ilarity between source and target domains (Arora et
al., 2015). To the best of our knowledge, ours is
the first systematic study of supervised DA and MTL

techniques for STS with detailed comparisons with
comparable non-adaptive baselines.

7 Conclusions and Future Work

We present hierarchical Bayesian models for super-
vised domain adaptation and multitask learning of
short text similarity models. In our experiments,
these models show improved overall performance
across different domains and tasks. We intend to ex-
plore adaptation to other STS applications and with
additional STS features (e.g., word and character n-
gram overlap) in future. Unsupervised and semi-
supervised domain adaptation techniques that do not
assume the availability of in-domain annotations or
that learn effective domains splits (Hu et al., 2014)
provide another avenue for future research.
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