
For today...
I If you want to follow along you should’ve run the setup script posted

on Piazza earlier today. You can get it here: http://cbcb.umd.

edu/~hcorrada/CFG/lectures/lect21_bioc/setup.R
I We will analyze a breast cancer dataset, the setup script above

downloads automatically to the current directory
I If that didn’t work, you can get it here:

ftp://ftp.umiacs.umd.edu/pub/data/hcorrada/chang03.rda
I While we wait to get started, make sure the following code works for

you

> library(affy)

> load("chang03.rda")

> show(chang03)

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 24 samples

element names: exprs, exprs.mas5, exprs.mas5.err

protocolData: none

phenoData

rowNames: GSM4901 GSM4902 ...

GSM4924 (24 total)

varLabels: Patient disease.state

... experiment.type (15 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
pubMedIds: 12907009

Annotation: hgu95av2

1 / 1

http://cbcb.umd.edu/~hcorrada/CFG/lectures/lect21_bioc/setup.R
http://cbcb.umd.edu/~hcorrada/CFG/lectures/lect21_bioc/setup.R
ftp://ftp.umiacs.umd.edu/pub/data/hcorrada/chang03.rda

Gene Expression Analysis with R and
Bioconductor: from measurements to annotated

lists of interesting genes

Héctor Corrada Bravo
based on slides developed by

Rafael A. Irizarry and Hao Wu

Computational Systems Biology and Functional Genomics
Spring 2013

2 / 1

Differential Expression and Annotation

Finding differentially expressed genes.

3 / 1

Workflow

4 / 1

The dataset

I We will use a breast cancer dataset obtained from:
http://pierotti.group.ifom-ieo-campus.it/biocdb/data/

experiment/ where you can find a large collection of free
microarray data sets for breast and ovarian cancer.

I The data for this experiment have already been normalized for us.
This is an extremely important step you have to be very careful
about, but we will skip it today.

5 / 1

http://pierotti.group.ifom-ieo-campus.it/biocdb/data/experiment/
http://pierotti.group.ifom-ieo-campus.it/biocdb/data/experiment/

Setup
I Let’s start by loading packages

> library(Biobase)

> library(genefilter)

> library(affy)
I and the data

> load("chang03.rda")

> show(chang03)

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 24 samples

element names: exprs, exprs.mas5, exprs.mas5.err

protocolData: none

phenoData

rowNames: GSM4901 GSM4902 ...

GSM4924 (24 total)

varLabels: Patient disease.state

... experiment.type (15 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
pubMedIds: 12907009

Annotation: hgu95av2
6 / 1

OOP

I Object oriented programming (OOP) is a powerful programming
paradigm. Object oriented programming allows us to construct
modular pieces of code which can be utilized as building blocks for
large systems.

I R is a functional language, not particularly object oriented, but
support exists for programming in an object oriented style.

I The Bioconductor project uses OOP extensively, and it is important
to understand basic features to work effectively with Bioconductor.

I R has two different OOP systems, known as S3 and S4. These two
systems are quite different, with S4 being more object oriented, but
sometimes harder to work with.

I In both systems, the object oriented system is much more
method-centric than languages like Java and Python - R’s system is
very Lisp-like.

7 / 1

Why?

As a (Bioconductor) user, it is important to have an understanding of S3
and S4.

I In order to understand and use a package unfamiliar to you.

I In order to diagnose and fix when things break (as they tend to do).

Pay close attention to how to get help, how to examine the definition of
a class and a method, and how to examine the code.

8 / 1

S3 Classes

First we will take a look at S3 classes. Base R uses S3 more or less
exclusively.

I “The greatest use of object oriented programming in R is through
print methods, summary methods and plot methods. These methods
allow us to have one generic function call, plot say, that dispatches
on the type of its argument and calls a plotting function that is
specific to the data supplied.” – R Manual (referring to the S3
system).

I An S3 class is (most often) a list with a class attribute. It is
constructed by the following code class(obj) <- "class.name".

9 / 1

S3 Classes

> xx <- rnorm(1000)

> class(xx)

> plot(xx)

> yy <- ecdf(xx)

> class(yy)

> plot(yy)

> plot

> plot.ecdf

> plot.default

> methods("plot")

> getS3method("plot", "histogram")

What plot does, depends on the class of the x argument. It is a
method. plot.ecdf is the ecdf method for plot.

10 / 1

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=plot

S4 classes, why?

I Although S3 classes can be quite useful and powerful and fast they
do not facilitate the type of modularization and type safety that a
true object oriented system intends.

I S4 classes are more a traditional object oriented system with type
checking, multiple-dispatch, and inheritance.

I S4 is implemented in the methods package in base R.

I For thorough information on S4, read Chambers (1998)
“Programming with data” (also known as the green book) (first
chapter available at
http://www.omegahat.org/RSMethods/Intro.pdf) or Chambers
(2008) “Software for Data Analysis: Programming with R”.

I There are also several good, short, tutorials on the net.

11 / 1

http://www.omegahat.org/RSMethods/Intro.pdf

Defining an S4 class

> myRep <- representation(height = "numeric", weight = "numeric",

+ name = "character")

> setClass("personS4", representation = myRep)

> getClass("personS4")

> jimS4 <- new("personS4")

> jimS4

> jimS4 <- new("personS4", height = 2.54*12*6/100, weight = 180/2.2, name = "James")

> jimS4

> jimS4@name

> validObject(jimS4)

> jimS4@height <- "2"

12 / 1

Notes on the S4 class example

I It is rare for users to define their own S4 classes.

I The use of new to instantiate a new member of the class is not
always needed, often there are explicit constructor functions (see
later).

I The use of @ to access the class slots is heavily discouraged, instead
use accessor functions (see later).

13 / 1

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=new

Defining the print method

For completion, we define the print method for personS4. For S4
classes, it is not print, but rather show.

> setMethod("show", signature("personS4"),

+ function(object) {

+ cat("name:", object@name, "\n")

+ cat("height:", object@height, "meters", "\n")

+ cat("weight:", object@weight, "kilograms", "\n")

+ })

> jimS4

> getMethod("show", signature("personS4"))

14 / 1

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=print
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=show

S4 Generics

In order to make a new generic we need to call the function setGeneric.

> setGeneric("BMI", function(object) standardGeneric("BMI"))

> setMethod("BMI", "personS4", function(object) {

+ object@weight / object@height^2

+ })

> BMI(jimS4)

15 / 1

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=setGeneric

ExpressionSet

We will now deconstruct the ExpressionSet from the package Biobase.
This is a very important – and complicated – class from Bioconductor. It
will be very profitable to feel comfortable with this class, which is also an
excellent example of the power of S4 (and sometimes the frustration of
S4).
Some history: the ExpressionSet class is a new design, expanding the
older (deprecated) exprSet class (which you still see referenced). There is
a fair amount of historical baggage associated with this package.

16 / 1

ExpressionSet: Basic idea

Samples

Covariates

Features
(genes)

Samples

pData "slot"
(in phenoData)

exprs "slot"
(in assayData)

Covariates fData "slot"
(in featureData)

Features
(genes)

17 / 1

Exploring Biobase

Loading

> require(Biobase)

> library(help = Biobase)

> getClass("ExpressionSet")

> data(sample.ExpressionSet)

> sample.ExpressionSet

> head(exprs(sample.ExpressionSet))

> head(pData(sample.ExpressionSet))

> head(fData(sample.ExpressionSet))

18 / 1

phenoData / AnnotatedDataFrame

An AnnotatedDataFrame is essentially a versioned data.frame with some
descriptive labels of the columns.

> getClass("AnnotatedDataFrame")

> sample.phenoData <- phenoData(sample.ExpressionSet)

> sample.phenoData

> pData(sample.phenoData)

> varLabels(sample.phenoData)

> sampleNames(sample.phenoData)

> sample.phenoData$type

(Note the last one).
This also works directly from the ExpressionSet:

> pData(sample.ExpressionSet)

> varLabels(sample.ExpressionSet)

> sampleNames(sample.ExpressionSet)

> sample.ExpressionSet$type

> head(featureNames(sample.ExpressionSet))

19 / 1

Accessing the ExpressionSet

I Accessing the relevant data involves calling accessor functions. We
should try to avoid ever accessing the data directly with the “@”
accessor because it is less future-proof. Unlike many object oriented
programming languages R does not provide a mechanism for
protecting data, such as “private” member variables in many
languages.

I Have a look at ?ExpressionSet to see what other methods are
available.

> featureNames(sample.ExpressionSet)

> sampleNames(sample.ExpressionSet)

> head(exprs(sample.ExpressionSet))

20 / 1

ExpressionSet 2

An ExpressionSet contains information

I About characteristics of the samples (phenoData / pData).

I About gene-level measurements (assayData / exprs).

I About the microarray (featureData / fData) (rarely used).

All linked together appropriately. Linking allows for easy subsetting.
The expression matrix has dimension Nfeatures × Narrays

21 / 1

Subsetting ExpressionSets

We can subset the ExpressionSet object just as we can subset a matrix.
Columns refer to samples and rows refer to features.

> Type <- phenoData(sample.ExpressionSet)$type

> cases <- grep("Case", Type)

> controls <- grep("Control", Type)

> casesEx <- sample.ExpressionSet[,cases]

> controlsEx <- sample.ExpressionSet[,controls]

What is the class of casesEx and controlsEx?

> sample.ExpressionSet[sample(nrow(sample.ExpressionSet), size = 10, replace = FALSE), 5:10]

Subsetting is used a lot!
Remember to read the ”ExpressionSet Introduction” vignette in Biobase.

22 / 1

ExpressionSet: again

Samples

Covariates

Features
(genes)

Samples

pData "slot"
(in phenoData)

exprs "slot"
(in assayData)

Covariates fData "slot"
(in featureData)

Features
(genes)

23 / 1

Our new dataset

Let’s get information about the experiment

> cat(abstract(experimentData(chang03)))

BACKGROUND: Systemic chemotherapy for operable breast cancer substantially

decreases the risk of death. Patients often have de novo resistance or incomplete

response to docetaxel, one of the most active agents in this disease. We

postulated that gene expression profiles of the primary breast cancer can predict

the response to docetaxel. METHODS: We took core biopsy samples from primary

breast tumours in 24 patients before treatment and then assessed tumour response

to neoadjuvant docetaxel (four cycles, 100 mg/m2 daily for 3 weeks) by cDNA

analysis of RNA extracted from biopsy samples using HgU95-Av2 GeneChip. FINDINGS:

From the core biopsy samples, we extracted sufficient total RNA (3-6 microg) for

cDNA array analysis using HgU95-Av2 GeneChip. Differential patterns of expression

of 92 genes correlated with docetaxel response (p=0.001). Sensitive tumours had

higher expression of genes involved in cell cycle, cytoskeleton, adhesion,

protein transport, protein modification, transcription, and stress or apoptosis;

whereas resistant tumours showed increased expression of some transcriptional and

signal transduction genes. In leave-one-out cross-validation analysis, ten of 11

sensitive tumours (90% specificity) and 11 of 13 resistant tumours (85%

24 / 1

Our new dataset

sensitivity) were correctly classified, with an accuracy of 88%. This 92-gene

predictor had positive and negative predictive values of 92% and 83%,

respectively. Correlation between RNA expression measured by the arrays and

semiquantitative RT-PCR was also ascertained, and our results were validated in

an independent set of six patients. INTERPRETATION: If validated, these molecular

profiles could allow development of a clinical test for docetaxel sensitivity,

thus reducing unnecessary treatment for women with breast cancer.

25 / 1

Our new dataset
I Find the dimensions of the expression data

> dim(exprs(chang03))

[1] 12625 24

I Find the dimensions of the measured covariates
> dim(pData(chang03))

[1] 24 15

I Look at the names of the measured covariates
> names(pData(chang03))

[1] "Patient"

[2] "disease.state"

[3] "Tumour.type..IMC.invasive.mammary.carcinoma..IDC.invasive.ductal.carcinoma."

[4] "Age..years."

[5] "Menopausal.status"

[6] "Ethnic.origin"

[7] "Bidimensional.tumour.size..cm."

[8] "Clinical.axillary.nodes"

[9] "Oestrogen..receptor.status"

[10] "Progesterone..receptor.status"

[11] "HER.2..immunhistochemical.analysis."

[12] "species"

[13] "tissue.type"

[14] "sample.type"

[15] "experiment.type"

26 / 1

Our new dataset

I Make a table of the disease.state variable

> table(pData(chang03)$disease.state)

docetaxel resistant tumor

14

docetaxel sensitive tumor

10

I Look at disease state by progestorone receptor status

> table(pData(chang03)$disease.state, pData(chang03)$Progesterone..receptor.status)

+ -

docetaxel resistant tumor 8 6

docetaxel sensitive tumor 6 4

27 / 1

More Exploration
Let’s do a boxplot of the expression measurements
> boxplot(exprs(chang03))

28 / 1

More Exploration
Oh yeah, work in log space
> y <- log2(exprs(chang03))

> boxplot(y, col=as.numeric(pData(chang03)$disease.state)+1)

29 / 1

Exploration: The MA plot

I We are interested in genes with large differences between docetaxel
resistant patients and docetaxel sensitive patients

I One way to measure those differences are with old-changes, e.g.,
there was a two-fold increase in average expression of gene G in
docetaxel resistant patients

I So, why not look at average log ratios?

I We can make MA plots:
I M: difference in average log intensities
I A: average log intensities

30 / 1

More Exploration: MA plot

> Index <- as.numeric(pData(chang03)$disease.state)

> d <- rowMeans(y[,Index==2]) - rowMeans(y[, Index==1])

> a <- rowMeans(y)

> smoothScatter(a, d, main="MA plot", xlab="A", ylab="M")

> abline(h=c(-1,1), col="red")

31 / 1

More Exploration: MA plot

32 / 1

Differential Expression Analysis

I Observations: X1,X2, . . . ,XM and Y1,Y2, . . . ,YN

I Averages:

X̄ =
1

M

M∑
i=1

Xi Ȳ =
1

N

N∑
i=1

Yi

I Variances:

s2X =
1

M − 1

M∑
i=1

(Xi − X̄)2

s2Y =
1

N − 1

N∑
i=1

(Yi − Ȳ)2

33 / 1

Differential Expression Analysis

Let’s look at one gene to decipher the math

> g <- y[23,]

> m <- mean(g[Index==1])-mean(g[Index==2])

> plot(jitter(Index), g, col=Index+1, xaxt="n", xlab="Patient type", ylab="log2(Expression)", main=paste("log-ratio:", round(m,3)))

> axis(1, labels=c("RES", "SENS"), at=1:2)

34 / 1

Differential Expression Analysis
Let’s look at one gene to decipher the math

35 / 1

Differential Expression Analysis

The t-statistic:
Ȳ − X̄√
s2Y
N +

s2X
M

36 / 1

Estimating the variance

I If different genes (or probes) have different variation, then it is not a
good idea to use average log ratios even if we do care about
significance

I Under a random model, we need to estimate SD

I The t-test divides by SD

I But, with few replicates, estimates of SD are not stable

I This explains why the t-test is not powerful

I There are many proposals for estimating variation

I Many borrow strength across genes

I Empirical Bayes approaches are popular

I SAM, an ad-hoc procedure, is even more popular

37 / 1

Differential Expression

Let’s use limma (Empirical Bayes) moderated t-test

> library(limma)

> design <- model.matrix(~factor(chang03$disease.state))

> fit <- lmFit(y, design)

> ebayes <- eBayes(fit)

38 / 1

Heatmap

Let’s look at the top 150 differentially expressed genes

I The function topTable makes this very easy

I Note that we adjust for false discovery rate (fdr). Another
fundamentally important issue in genomic data analysis I won’t
discuss today

I Then make a heatmap

> tab <- topTable(ebayes, coef=2, adjust="fdr", n=150)

> labCol <- c("RES", "SENS")[Index]

> heatmap(y[rownames(tab),], labCol=labCol)

39 / 1

Heatmap

40 / 1

Annotation

I One of the largest challenges in analyzing genomic data is
associating the experimental data with the available biological
metadata, e.g., sequence, gene annotation, chromosomal maps,
literature.

I AND MAKING THAT DATA AVAILABLE FOR COMPUTATION

I Bioconductor provides three main packages for this purpose:
I annotate (end-user)
I AnnBuilder (developer)
I annaffy (end-user)

41 / 1

WWW Resources

I Nucleotide databases: e.g. GenBank

I Gene databases: e.g. Entrez Gene, UniGene

I Protein sequence and structure databases: e.g. SwissProt, Protein
DataBank (PDB)

I Literature databases: PubMed, OMIM

I Chromosome maps: e.g., NCBI Map Viewer

I Pathways: e.g., KEGG

I Entrez is a search and retrieval system that integrates information
from databases at NCBI (National Center for Biotechnology
Information)

I If you know of some we should be using, please let us know

42 / 1

annotate: matching IDs

Important tasks

I Associate manufacturers or in-house probe identifiers to other
available identifiers, e.g.

I Affymetrix IDs → Entrez Gene IDs
I Affymetrix IDs → GenBank accession number

I Associate probes with biological data such as chromosomal position,
pathways

43 / 1

annotate: matching IDs

Affy ID 41046 s at
Entrez Gene ID 9203

GenBank accession # X95808
Gene symbol ZMYM3

PubMed ID 8817323, 8889548, 9205841
Chromosomal Location X, Xq13.1

44 / 1

Annotation data packages

I Bioconductor provides annotation data packages that contain many
different mappings to interesting data

I Mappings between Affy IDs and other probe IDs: hgu95av2.db for
HGU95Av2 GeneChip series, also, hgu133a.db, hu6800.db, etc.

I Affy CDF data packages, e.g. hgu95av2cdf
I Probe sequence data packages, e.g. hgu95av2probe

I These packages are updated and expanded regularly as new data
becomes available

I They can be installed through biocLite()

I AnnBuilder provides tools for building annotation data packages

45 / 1

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=biocLite()

annotate: matching IDs

I Find out and load annotation package we need

> annotation(chang03)

[1] "hgu95av2"

> library(annotate)

> library(hgu95av2.db)

I Let’s get matching IDs for the first 3 probesets on our list using the
lookUp function

> probeset <- as.character(rownames(tab)[1:3])

> lookUp(probeset, "hgu95av2.db", "ACCNUM")

$`36125_s_at`
[1] "L38696"

$`33781_s_at`
[1] "AF075599"

$`40549_at`
[1] "L04658"

46 / 1

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=lookUp

annotate: matching IDs
> lookUp(probeset, "hgu95av2.db", "SYMBOL")

$`36125_s_at`
[1] "RALY"

$`33781_s_at`
[1] "UBE2M"

$`40549_at`
[1] "CDK5"

> lookUp(probeset, "hgu95av2.db", "GENENAME")

$`36125_s_at`
[1] "RALY heterogeneous nuclear ribonucleoprotein"

$`33781_s_at`
[1] "ubiquitin-conjugating enzyme E2M"

$`40549_at`
[1] "cyclin-dependent kinase 5"

47 / 1

annotate: matching IDs
> lookUp(probeset, "hgu95av2.db", "UNIGENE")

$`36125_s_at`
[1] "Hs.136947"

$`33781_s_at`
[1] "Hs.406068"

$`40549_at`
[1] "Hs.647078"

> lookUp(probeset, "hgu95av2.db", "CHR")

$`36125_s_at`
[1] "20"

$`33781_s_at`
[1] "19"

$`40549_at`
[1] "7"

48 / 1

annotate: matching IDs

> lookUp(probeset, "hgu95av2.db", "CHRLOC")

$`36125_s_at`
20

32581458

$`33781_s_at`
19

-59067079

$`40549_at`
7 7

-150750902 -150750899

> lookUp(probeset, "hgu95av2.db", "MAP")

49 / 1

annotate: matching IDs

$`36125_s_at`
[1] "20q11.21-q11.23"

$`33781_s_at`
[1] "19q13.43"

$`40549_at`
[1] "7q36"

> sapply(lookUp(probeset, "hgu95av2.db", "PMID"), head)

36125_s_at 33781_s_at 40549_at

[1,] "7533788" "9694792" "1181841"

[2,] "8125298" "10207026" "1330687"

[3,] "8889548" "10722740" "1639063"

[4,] "9376072" "10828074" "7566346"

[5,] "10500250" "11574546" "7834371"

[6,] "11780052" "12477932" "7949095"

50 / 1

annotate: matching IDs

For some common IDs, you can use more user-friendly functions provided
by annotate

> getSYMBOL(probeset, "hgu95av2.db")

36125_s_at 33781_s_at 40549_at

"RALY" "UBE2M" "CDK5"

> gg <- getGO(probeset, "hgu95av2.db")

> getGOdesc(gg[[1]][[1]]$GOID, "ANY")

$`GO:0000398`
GOID: GO:0000398

Term: mRNA splicing, via

spliceosome

Ontology: BP

Definition: The joining together of

exons from one or more primary

transcripts of messenger RNA

(mRNA) and the excision of

intron sequences, via a

51 / 1

annotate: matching IDs

spliceosomal mechanism, so that

mRNA consisting only of the

joined exons is produced.

Synonym: mRNA splicing

Synonym: nuclear mRNA splicing via

U12-type spliceosome

Synonym: nuclear mRNA splicing via

U2-type spliceosome

Synonym: nuclear mRNA splicing, via

spliceosome

Synonym: pre-mRNA splicing

Synonym: splicing AT-AC intron

Synonym: splicing GT-AG intron

Synonym: GO:0006374

Synonym: GO:0006375

Secondary: GO:0006374

Secondary: GO:0006375

52 / 1

annotate: PubMed example

I Let’s use all the genes on our list

> probenames <- as.character(tab$ID)

I Load the XML package, and get pubmed abstracts for the first 2
genes

> library(XML)

> absts <- pm.getabst(probenames[1:2], "hgu95av2.db")

> absts[[1]][[1]]

An object of class 'pubMedAbst':
Title: Epstein-Barr virus-induced autoimmune responses. I.

Immunoglobulin M autoantibodies to proteins mimicking and not

mimicking Epstein-Barr virus nuclear antigen-1.

PMID: 7533788

Authors: JH Vaughan, JR Valbracht, MD Nguyen, HH Handley, RS Smith, K

Patrick, GH Rhodes

Journal: J Clin Invest

Date: Mar 1995

I Let’s look at the titles

53 / 1

annotate: PubMed example

> titl <- pm.titles(absts[1])

> strwrap(titl, simplify=FALSE)

[[1]]

[1] "c(\"Epstein-Barr virus-induced autoimmune responses. I. Immunoglobulin M"

[2] "autoantibodies to proteins mimicking and not mimicking Epstein-Barr"

[3] "virus nuclear antigen-1.\", \"Oligo-capping: a simple method to replace"

[4] "the cap structure of eukaryotic mRNAs with oligoribonucleotides.\","

[5] "\"Construction and characterization of a full length-enriched and a"

[6] "5'-end-enriched cDNA library.\", \"The p542 gene encodes an autoantigen"

[7] "that cross-reacts with EBNA-1 of the Epstein Barr virus and which may"

[8] "be a heterogeneous nuclear ribonucleoprotein.\","

54 / 1

annaffy

I Provides simplified mappings between Affymetrix IDs and annotation
data

I Relies on chip-level annotation packages created by AnnBuilder

I Supplies functions to produce mappings for almost all environments
in a given annotation package

I Primary function of annaffy is to produce very nice HTML or text
tables containing

I Links to databases
I Statistics
I Expression measures (color-coded to intensity for easy viewing)

55 / 1

annaffy

I Load some more annotation databases we will use

> library("KEGG.db")

> library("GO.db")

> library("annaffy")

I Make a table

> atab <- aafTableAnn(probenames, "hgu95av2.db", aaf.handler())

I Save it as HTML

> saveHTML(atab, file="report2.html")

> browseURL("report2.html")

56 / 1

Examining the R session

> sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: x86_64-apple-darwin13.0.0 (64-bit)

locale:

[1] en_US.utf-8/en_US.utf-8/en_US.utf-8/C/en_US.utf-8/en_US.utf-8

attached base packages:

[1] parallel stats graphics

[4] grDevices utils datasets

[7] methods base

other attached packages:

[1] GO.db_2.10.1

[2] hgu95av2.db_2.10.1

[3] org.Hs.eg.db_2.10.1

[4] RSQLite_0.11.4

[5] DBI_0.2-7

57 / 1

Examining the R session
[6] annotate_1.40.0

[7] AnnotationDbi_1.24.0

[8] limma_3.18.9

[9] genefilter_1.44.0

[10] affy_1.40.0

[11] Biobase_2.22.0

[12] BiocGenerics_0.8.0

[13] RColorBrewer_1.0-5

[14] BiocInstaller_1.12.0

loaded via a namespace (and not attached):

[1] affyio_1.30.0

[2] IRanges_1.20.6

[3] preprocessCore_1.24.0

[4] splines_3.0.2

[5] stats4_3.0.2

[6] survival_2.37-4

[7] tools_3.0.2

[8] XML_3.98-1.1

58 / 1

Examining the R session

[9] xtable_1.7-1

[10] zlibbioc_1.8.0

59 / 1

