Practical Structured Learning Techniques for Natural Language Processing

by

Harold Charles Daumé 111

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

August 2006

Copyright 2006 Harold Charles Daumé III

http://pub. hal 3. name#daunme06t hesi s



“Arrest this man, he talks in maths...”

Radiohead, Karma Police

ii



Dedication

For Kathy, who keeps me sane and happy. ..

il



Acknowledgments

My thesis work has benefited tremendously from the influence, advice and support of
many colleagues, friends and family. I am eternally grateful to my adviser, Daniel Marcu,
for continuous help and support throughout my graduate career. Daniel’s grounding
kept me focused, but I am equally indebted to his support while I found my own path.
Many thanks also to the other members of my committee, especially Stefan Schaal (to
whom most blame goes for my interest in machine learning) and Andrew McCallum
(discussions with whom have greatly improved this work). The other members of my
thesis committee—Ed Hovy, Kevin Knight and Gareth James—have provided consistently
useful feedback. Many thanks also to John Langford for pushing me to also consider the
theoretical implications of this work. Many of the theoretical results in this thesis are

due to interactions with John, especially the central convergence theorem in Chapter 3.

My path to NLP was a circuitous one. Many thanks to Chris Quirk for pointing me
to LTI back at CMU when I didn’t even know NLP was a field. The entire LTI crowd was
incredibly supportive as I was getting to know the field, especially Eric Nyberg, Teruko
Mitamura, Lori Levin and Alon Lavie who guided my first year’s travels through this
field. My LTI experiences were made enjoyable by interactions with many other faculty
and students, especially Kathrin Probst, Alicia Tribble, Rosie Jones and Ben Han.

iv



Many thanks to Alex Fraser, my fantastic officemate, for both providing a sounding
board for ideas and teaching me how to use the ISI espresso machine. I'm also greatly
indebted to Mike Collins, Fernando Pereira and Ben Taskar: their encouragement and
enthusiasm has been priceless. Discussions with others, inside and outside ISI, have
greatly influenced this work. At the risk of forgetting someone, I have greatly enjoyed
my interactions with: Drew Bagnell, Jeff Bilmes, John Blitzer, Eric Brill, Mike Collins,
Kevin Duh, Mike Fleischman, Matti Kéaridinen, Sham Kakade, Philipp Koehn, Chin-Yew
Lin, David McAllester, Ryan McDonald, Dragos Munteanu, Ani Nenkova, Franz Och, Bo
Pang, Patrick Pantel, Deepak Ravichandran, Radu Soricut, Charles Sutton, Yee-Whye
Teh, Liang Zhou.

Finally, I thank my family and friends both for their support during this thesis as
well as before it. My parents always encouraged me intellectually and provided for me
a fantastic education. My friendships have salvaged my sanity on several occasions. A
special thanks to Jason Cheng, Rob Pierry, Charlie Sharp, Dane Tice and Mark Yohalem
for non-academic support. My love and gratitude goes out to Kathy, who now knows
much more about natural language processing and machine learning than she probably
ever wanted to. Her support, through the good times and the bad, was a necessary

nutrient for this thesis to properly develop.



Contents

ii

Dedication iii
Acknowledgments iv
List Of Tables X
List Of Figures xi
Abstract xiv
1 Introduction 1
1.1 Structure in Language . . . . . . . . . . ..o 1
1.2 Example Problem: Entity Detection and Tracking . . ... ... ... .. 2
1.3 The Roleof Search . . . . . . .. . ... ... .. ... . ... . ...... 3
1.4 Learning in Search . . . . . . . .. ... 4
1.5 Contributions . . . . . . .. L o 5

1.6 An Overview of This Thesis . . . . . . . . ... ... ... ... ...... 6

2 Machine Learning 8
2.1 Binary Classification . . . . . . . . .. ... 8
2.1.1 Perceptron . . . . . . .. 9

2.1.2 Logistic Regression . . . . . . . .. .. . oo 10

2.1.3  Support Vector Machines . . . . . ... ... .. ... ....... 12

2.1.4 Generalization Bounds . . . . . . ... ... ... ... ... ..., 13

2.1.5  Summary of Learners . . . . . . . ... ... 15

2.2 Structured Prediction . . . ... ... ... .. ... ... 16
2.2.1 Defining Structured Prediction . . . . .. .. .. .. ... ... 16

2.2.2  Feature Spaces for Structured Prediction . . ... ... ... ... 18

2.2.3 Structured Perceptron . . . . . . ... ... ... ... ... 18

2.2.4 Incremental Perceptron . . . . . .. ... ... ... ... 20

2.2.5 Maximum Entropy Markov Models . . . . . . .. ... ... .... 20

2.2.6 Conditional Random Fields . . . . ... ... .. ... ... .... 21

vi



2.3

2.2.7
2.2.8
2.29
2.2.10

Maximum Margin Markov Networks . . . . . .. . ... ... ...
SVMs for Interdependent and Structured Outputs . . . .. .. ..
Reranking . . . . . .. ..
Summary of Learners . . . . . . . ... ...

Learning Reductions . . . . . .. .. .. . . o oo

2.3.1
2.3.2
2.3.3

Reduction Theory . . . . . . . .. .. ...
Importance Weighted Binary Classification . . . . ... ... ...
Cost-sensitive Classification . . . . . . .. .. .. ... ... ...

2.4 Discussion and Conclusions . . . . . . . . . ... e

Search-based Structured Prediction

3.1
3.2
3.3
3.4

3.5
3.6

Contributions and Methodology . . . . . . . . .. .. .. .. ..

Generalized Problem Definition . . . . . . . . . . .. ... ... ... ..

Search-based Structured Prediction . . . . . . . . . . . ... ... ... ..

Training . . . . . . . . e e
3.4.1 Cost-sensitive Examples . . . . . . ... Lo oL
3.4.2 Optimal Policy . . . . . ... .. ..
3.4.3 Algorithm . . . . . . . .. ...
3.4.4 Simple Example . . . ... ... o o
3.4.5 Comparison to Local Classifier Techniques . . . . . . . . ... ...
3.4.6 Feature Computations . . . . . . . .. ... ... ... ... ...
Theoretical Analysis . . . . . . . . . . . .. ...
Policies . . . . . .
3.6.1 Optimal Policy Assumption . . . . . .. ... ... ... .. ....
3.6.2 Search-based Optimal Policies . . . . . . . .. ... ... ... ...
3.6.3 Beyond Greedy Search . . . . .. ... ... ... ..........
3.6.4 Relation to Reinforcement Learning . . . . . ... ... ... ...

3.7 Discussion and Conclusions . . . . . . . . . . ... oo

Sequence Labeling

4.1 Sequence Labeling Problems . . . . . . .. ... ... ... ... ...

4.2
4.3

4.4
4.5
4.6

4.1.1
4.1.2
4.1.3
4.14

Handwriting Recognition . . . . ... .. ... ... ... . ...,
Spanish Named Entity Recognition . . . . . . . ... ... ... ..
Syntactic Chunking . . . . .. ... . oL oL oL
Joint Chunking and Tagging . . ... ... ... ... .......

Loss Functions . . . . . . . . . . . e

Search and Optimal Policies . . . . . . . ... ... ... ... .......

4.3.1
4.3.2
4.3.3

Sequence Labeling . . . . . . . ... ... ...
Segmentation and Labeling . . . . . ... ... ... ... ...
Optimal Policies . . . . . . . . . . .. ... .. .. ... .

Empirical Comparison to Alternative Techniques . . . . . . . .. ... ..

Empirical Comparison of Tunable Parameters . . . . . . .. ... ... ..

Discussion and Conclusions . . . . . . . . . . .

30
31
32
33
33
33
34
34
36
37
39
40
41
41
42
43
44
45

47
48
48
49
50
50
51
52
52
53
53
54
o6
59

vii



5 Entity Detection and Tracking

5.1
5.2

5.3
5.4

5.5

5.6

5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Problem Definition . . . . . . . . . . ...
Prior Work . . . . . . ..
5.2.1 Mention Detection . . . . . . . . . . ... .. .o
5.2.2 Coreference Resolution . . . . . . . . ... . ... ... .. .....
5.2.2.1 Binary Classification . . . . . . . ... ... ... ... ..
5.2.2.2  Multilabel Classification . . . . . .. ... ... ......
5.2.2.3 Random Fields . . . . . . ... ... ... .. .......
5.2.2.4 Coreference Resolution Features . . . . ... .. ... ..
5.2.3 Shortcomings . . . . . . . ...

EDT Data Set and Evaluat
Entity Mention Detection

10 ) o

5.4.1 Search Space and Actions . . . . . . . ... ... ... ... ... .
5.4.2 Optimal Policy . . . . ... ...
5.4.3 Feature Functions . . . . . . . . . ... ... ...

5.4.3.1 Base Features . .. ... ... .. ... .. ........

5.4.3.2 Decision Features . . . ... ... ... ... .......
5.4.4 Experimental Results . . . . . .. .. ... ... . 0.
5.4.5 FError Analysis . . . . . .. ... Lo
Coreference Resolution . . . . . . . . . . . ... .. ... ... ... . ...
5.5.1 Search Space and Actions . . . . ... ... ... ... ... ...
5.5.2 Optimal Policy . . . . . . . .. ...
5.5.3 Feature Functions . . . ... ... ... ... ... ... ...

5.5.3.1 Base Features . . . . ... ... ... ... .. .....

5.5.3.2 Decision Features . . . . ... ... ... .........
5.5.4 Experimental Results . . . .. .. .. ... .. .00,
5.5.5 Error Analysis . . . . . . .. ...
Joint Detection and Coreference . . . . . . ... .. ... ... ......
5.6.1 Search Space and Actions . . . . ... ... ... ... ... ... .
5.6.2 Optimal Policy . . . . . . . .. ...
5.6.3 Experimental Results . . . ... ... ... ... ..........

Discussion and Conclusions

Vine-Growth Model . . .
Search Space and Actions

Multidocument Summarization

Data and Evaluation Criteria . . . . . . . . . . . . .. ... ... ...

Optimal Policy . . .. ..
Feature Functions . . . .
Experimental Results . . .
Error Analysis . . .. ..
Discussion and Conclusions

61
61
64
64
66
66
68
69
69
69
71
72
72
72
73
73
75
75
76
76
76
77
79
79
81
81
81
83
83
84
84
85

87
87
89
90
91
92
93
94
94

viii



7 Conclusions and Future Directions 96

7.1 Weak Feedback Models . . . . ... ... ... ... ... ......... 97
7.1.1 Comparison Oracle Model . . . . . . . ... ... .. ... ..... 97
7.1.2 Algorithm . . . . . ... ... 97
7.1.3 Analysis . . . . . .o 98
7.1.4 Experimental Results . . . .. .. ... ... ... 0. 99
7.1.5 Discussion . . . . . . . ... e 100

7.2 Hidden Variable Models . . . . . . . ... ... ... ... ... ...... 100
7.2.1 Translation Classification . . . . ... .. ... ... ........ 101
7.2.2 Search-based Hidden Variable Models . . . . . .. ... ... ... 102

7.2.2.1 Tterative Algorithm . . . . . .. ... ... ... ..... 103
7.2.2.2 Optimal Policy . . . .. ... ... ... ... ....... 104
7.2.3 Featuresand Data . . ... ... ... ... ... ... ....... 104
7.2.4 Experimental Results . . . ... ... ... ... .......... 106
7.2.5 Comparison to Expectation Maximization . . . . . . . ... .. .. 106

7.3 Other Applications for SEARN . . . . . . . . . . . . . ... . ... ... 108
7.3.1 Parsing . . ... ... e 108

7.4 Machine Translation . . . . . . . ... .. ... ... ... ... ... 110

7.5 Limitations . . . . . . . . .. 111

7.6 Conclusions . . . . . . . . . . . e 111

Bibliography 113
Appendix A

Summary of Notation . . . . .. ... . .. . 130

A.1 Common Sets and Functions . . . . . .. .. ... ... .. ........ 130

A.2 Vectors, Matrices and Sums . . . . . . . .. ... 130

A3 Complexity Classes . . . . . . . . . . o 131

Appendix B
Proofs of Theorems . . . . . . . . . . . o e 132

Appendix C
Relevant Publications . . . . . . . . . . . ... e 134

X



List Of Tables

21

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

6.1

Summary of structured prediction algorithms. . . . . . . . ... ... ...

Empirical comparison of performance of alternative structured prediction
algorithms against SEARN on sequence labeling tasks. (Top) Comparison
for whole-sequence 0/1 loss; (Bottom) Comparison for individual losses:
Hamming for handwriting and Chunking+Tagging and F for NER and
Chunking. SEARN is always optimized for the appropriate loss. . . . . . .

Evaluation of computation of expected loss: differences between both single
Monte-Carlo (MC 1) and ten Monte-Carlo (MC 10) against the optimal

approximation. . . . . . . ... oL

Evaluation of computation of vector encodings: changes in performance
for using word-at-a-time rather than chunk-at-a-time encodings. . . . . . .

Evaluation of beam sizes: differences between beam search and greedy
search (baseline is a beam of 10). . . . . . . ... ... ... ... ...

Evaluation of multiclass reduction strategies: comparing unweighted all
pairs to weighted all pairs. . . . . . . . . .. ... oo oL

A list of the four possible mention types with descriptions and examples. .
A list of the seven entity types, with descriptions and subtypes. . . . . . .

Coreference errors evaluated on a mention-type basis. . . . .. ... ...

Summarization results; values shown are Rouge 2 scores (higher is better).



List Of Figures

1.1

21

2.2

2.3

3.1

3.2

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

An example paragraph extract from a document from our training data

with entities identified. . . . . . . . ..o oo oo 2
The averaged perceptron learning algorithm. . . . . ... ... ... ... 10
Plot of several convex approximations to the zero-one loss function. . . . . 15
The averaged structured perceptron learning algorithm. . . . . .. .. .. 19
Complete SEARN Algorithm . . . . . ... ... ... ... 0. 35

Example structured prediction problem for motivating the SEARN algorithm. 36
Eight example words from the handwriting recognition data set. . . . . . 48
Example labeled sentence from the Spanish Named Entity Recognition task. 49
Example labeled sentence from the syntactic chunking task. . . . . . . .. 50
Example sentence for the joint POS tagging and syntactic chunking task. 51
Number of iterations of SEARN for each of the four sequence labeling prob-

lem. Upper-left: Handwriting recognition; Upper-right: Spanish named
entity recognition; Lower-left: Syntactic chunking; Lower-right: Joint chunk-

INg/tagging. . . . . . .. 59

An example paragraph extract from a document from our training data
with entities identified; reproduced from Figure 1.2. . . . .. .. ... .. 62

A partial sentence from our example text in original sequence-based format
and in the BIO-encoding. . . . . . . . . .. ... oo 65

ACE scores on the mention detection task for all ACE 2004 systems as
well as my SEARN-based system. . . . ... .. ... ... ... ... 75

xi



5.4

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

6.6

7.1

7.2

7.3

7.4

Running example for the computation of the optimal policy step for the
coreference task. . . . . . . . . L

ACE scores on the coreference subtask for the three ACE 2004 systems
that competed in this subtask, one baseline, and the SEARN-based system.

Comparison of different linkage types on the coreference task. . . . . . . .

ACE scores on the full EDT task for all ACE 2004 system, and my SEARN-
based joint system. . . . . . . .. ...

ACE scores on the full EDT task for all ACE 2004 system, my SEARN-
based joint system and a pipeline version of my SEARN-based system.

The dependency tree for the sentence “The man ate a sandwich with pickles”.
An example of the creation of a summary under the vine-growth model. .
An example query from the DUC 2005 summarization corpus. . . . . . . .
An example summary from the DUC 2005 summarization corpus. . . . . .

Example 100-word output from the BAYESUM system after rule-based sen-
tence compression and post-processing. . . . . . .. ... ... L.

Example 100-word output from the SEARN-based Vine Growth model after
POSt-Processing. . . . . . . . . .. e e e e e

Learning curves for weak-feedback experiments on syntactic chunking; y-
axes are 1 — F. (Left) X-axis is amount of supervised data available.
The higher (circled blue) curve is the purely supervised setting; the lower
(crossed black) curve is when the remaining data is used as a weak-feedback
oracle. (Right) The higher (red diamond) curve is keeping the amount of
supervised data constant (200 words) and varying the amount of oracle
data; the lower (crossed black) curve is replicated from left. . . . . . . ..

Two example alignments used in the translation classification task. The
left alignment is for a positive example; the right alignment is for a negative
example. . . ... e

Custom corpus used for proof of concept experiments for hidden variable
alignments model. . . . . . . .. ... ...

Three alignments found during the SEARN-based hidden variable training;
the left two are positive examples, the right-most example is negative.

82

83

85

xii



7.5 (Left) The dependency tree for the sentence “the man ate a big sandwich .”
(Right) The sequence of shift-reduce steps that leads to this parse structure.109

xiii



Abstract

Natural language processing is replete with problems whose outputs are highly complex
and structured. The current state-of-the-art in machine learning is not yet sufficiently
general to be applied to general problems in NLP. In this thesis, I present SEARN (for
“search-learn”), an approach to learning for structured outputs that is applicable to the
wide variety of problems encountered in natural language (and, hopefully, to problems in
other domains, such as vision and biology). To demonstrate SEARN’s general applicability,
I present applications in such diverse areas as automatic document summarization and
entity detection and tracking. In these applications, SEARN is empirically shown to

achieve state-of-the-art performance.

SEARN is based on an integration of learning and search. This contrasts with standard
approaches that define a model, learn parameters for that model, and then use the model
and the learned parameters to produce new outputs. In most NLP problems, the “produce
new outputs” step includes an intractable computation. One must therefore employ a
heuristic search function for the production step. Instead of shying away from search,
SEARN attacks it head on and considers structured prediction to be defined by a search
problem. The corresponding learning problem is then made natural: learn parameters so
that search succeeds.

xiv



The two application domains I study most closely in this thesis are entity detection
and tracking (EDT) and automatic document summarization. EDT is the problem of
finding all references to people, places and organizations in a document and identifying
their relationships. Summarization is the task of producing a short summary for either
a single document or for a collection of documents. These problems exhibit complex
structure that cannot be captured and exploited using previously proposed structured
prediction algorithms. By applying SEARN to these problems, I am able to learn models
that benefit from complex, non-local features of both the input and the output. Such
features would not be available to structured prediction algorithm that require model
tractability. These improvements lead to state-of-the-art performance on standardized
data sets with low computational overhead.

SEARN operates by transforming structured prediction problems into a collection of
classification problems, to which any standard binary classifier may be applied (for in-
stance, a support vector machine or decision tree). In fact, SEARN represents a family of
structured prediction algorithms depending on the classifier and search space used. From
a theoretical perspective, SEARN satisfies a strong fundamental performance guarantee:
given a good classification algorithm, SEARN yields a good structured prediction algo-
rithm. Such theoretical results are possible for other structured prediction only when
the underlying model is tractable. For SEARN, I am able to state strong results that
are independent of the size or tractability of the search space. This provides theoretical

justification for integrating search with learning.

XV



Chapter 1

Introduction

I present an efficient, theoretically justified learning algorithm for structured prediction
that achieves state-of-the-art performance in a wide range of natural language processing
problems. Structured prediction is a generalized task that encompasses many problems
in natural language processing, as well as many problems from computational biology,
computational vision and other areas. The key issue in structured prediction that differen-
tiates it from more canonical machine learning tasks (such as classification or regression)
is that the objects being predicted have internal structure. Adequately representing this
internal structure is key to obtaining good solutions to real-world problems, and an al-
gorithm that can function under any notion of structure is to be preferred to one with
restricted applicability.

1.1 Structure in Language

Many tasks in natural language processing can be formulated as mappings from inputs
x € X to outputs y € Y. For example, in machine translation, X might be the set of
all French sentences and ) might be the set of all English sentences. In this setting,
one can view machine translation as the task of developing a mapping from X to )
that obeys some properties (adequacy of the translation to the original and fluency of
the translation). Other common NLP tasks also fit naturally into this framework. In
automatic document summarization, z € X' is a document (or document collection) and
y € Y is a summary. In information extraction, z € X is a document and y € Y is the
relevant “information” contained in z. In sequence labeling and parsing, x is a sentence
and y is the corresponding annotation.

For each of these problems, specialized solutions have been developed. Beginning with
the influential work in machine translation by Brown et al. (1993), we have witnessed a
burgeoning of statistical approaches to natural language problems. We have high perfor-
mance models for machine translation (Och, 2003), parsing (Collins, 2003; Charniak and
Johnson, 2005), information extraction (Bikel, Schwartz, and Weischedel, 1999; Florian
et al., 2004; Wellner et al., 2004), summarization (Knight and Marcu, 2002; Barzilay,
2003; Zajic, Dorr, and Schwartz, 2004), part of speech tagging (Brill, 1995) and syntactic
chunking (Punyakanok and Roth, 2001; Zhang, Damerau, and Johnson, 2002; Sutton,
Rohanimanesh, and McCallum, 2004; Sutton, Sindelar, and McCallum, 2005), to name a

1



JERUSALEMYAM . — The commanderioM, of Israelifie o troopsion', in the

- OUGPE-3
West Bank['; 5 said there was a simple goal to the helicopter assassination on Thurs-

PRE
L.OC— VEH—6
PRE NOM

day of a gun—w1eld1ng local Palestinian{"F - leaderfoY ¢ . “ ITR , hope it will reduce the
violence and bring back reason to this areajoy o 7, Maj Genprr o Yitzhak Eitaniit o told
reportersion' o at a briefing hours after three missilesio ; fired from an Apachel%"
helicopteryor » killed Hussein Obaiyatiah ¢ . along with two middle-aged womenjioY
standing near hispRo ¢ vanioM |4 in Beit Sahurfat ;, , near BethlehemfaY |- . Instead

, it has touched off one of the bloodiest and most intense weekends of fighting yet

in the six-week-old conflict , with gunfire crackling through the West Bank[3Y - and
Gaza Stripyon 16 - Five Palestiniansip ' |, and an Israelifyy 5 soldierfiy' ;¢ were shot

dead on Friday .

Figure 1.1: An example paragraph extract from a document from our training data with
entities identified.

few. With a handful of exceptions (primarily the work stemming from the use of condi-
tional random fields), the majority of these techniques have required the development of
specialized algorithms for performing the parameter learning. One goal of this thesis is
to provide a generic learning technique that can be applied to a large variety of problems,
allowing the researcher to focus effort on other aspects of natural language problems.

1.2 Example Problem: Entity Detection and Tracking

For the purposes of clear exposition, I will use the entity detection and tracking (EDT)
problem as a running example throughout the thesis. (Additionally, of all the tasks I
attack in this thesis, EDT is the most significant.)

The entity detection and tracking problem focuses on discovering the set of entities
discussed in a document and identifying the textual span of the document (the mentions)
that refer to these entities. As part of the detection phase, a system must also identify,
for each entity, its corresponding entity type (person, place, organization, etc.) and, for
each mention of an entity, its mention type (name, nominal, pronoun, etc.).

In Figure 1.2, I show one paragraph from the data set I use, wherein entities have
been identified, types have been disambiguated and coreference chains have been marked.
In this paragraph, I underline every entity mention. Each mention is followed by a
superscript that identifies the mention type and a subscript that identifies both the entity
type and coreference chain of that mention. For instance, the word “commander” is a
nominal reference to a person, identified as entity number 2. At the beginning of the
second sentence, the word “I” is a pronominal mention also referring to entity 2 (and
hence is the same entity). A few of the coreference chains that appear in this extract are:
{JERUSALEM}, {commander, I, Gen, Yitzhak Eitan}, {Israeli, Israeli} and {troops}.

Entity detection and tracking is interesting from three separate angles. From a lin-
guistics perspective, identifying coreference is a challenging problem. An analysis of
what sources of knowledge are required to adequately solve this problem would greatly
increase our state of knowledge. From a computer science perspective, it is computation-
ally challenging. Even just the coreference task—identifying the entity chains given the



mentions—turns out to be FNP-hard! under any reasonable model. This can be shown
by reduction to graph partitioning (McCallum and Wellner, 2004). Developing efficient
algorithms for solving this problem is of utmost importance to building a system that
can function in the real-world. Finally, from a machine learning perspective, this task is
interesting because it exhibits significantly complex structure. A machine learning tech-
nique that could solve EDT directly would need to be able to make much more complex
decisions than simple “yes/no” answers.

Like all natural language processing problems, the primary difficulty in the EDT
task is ambiguity and the multiple diverse sources of information required to resolve
this ambiguity. Consider, for instance, the example paragraph shown in Figure 1.2.
Identifying that the “I” in the second sentence is the same person as the “commander”
in the first sentence is an extremely challenging inference to make. In fact, it is possible
that the two mentions actually refer to two different entities who happen to agree in
what they say. Identifying that the “Gen” entity is the same as “Yitzhak Eitan” requires
some knowledge of syntax, as does linking this entity with the pronoun “I.” On the other
hand, identifying that the “Apache” referred to in the second sentence is coreferent with
“helicopter” form the first sentence requires external knowledge that an Apache is a type
of helicopter. Identifying that “his” in the second sentence is coreferent with “Hussein
Obaiyat” and not “Yitzhak Eitan” requires further syntactic knowledge.

From a machine learning perspective, the EDT problem is hard because of the ne-
cessity for tying decisions together. That is, the decision at the end of the example in
Figure 1.2 that stipulates that “West Bank” is a named location is wholly tied to the
decision at the beginning of the example that the same string is also a named location.
Learning under the influence of such mutually reinforced decisions is challenging. A
significant contribution of this thesis is a technique for dealing with this difficulty.

1.3 The Role of Search

Natural language processing problems like those discussed in Section 1.6—and structured
prediction problems more generally—all include a search component. This component is
inherantly tied to the fact that structured prediction involves producing something more
complex than a single scalar response. To find the best (or approximate best) output,
some variety of search is necessary.

In real-world NLP applications, search comes in many flavors. In very rare cases,
one can apply dynamic programming-based exact search techniques. This occurs most
frequently in sequence labeling problems or in natural language parsing. However, in
order to make the problems amenable to dynamic programming (and hence efficient),
restrictions must be placed on the models and feature spaces. In particular, the “Markov
assumption” must be used in sequence labeling tasks: this states that the features used
to predict the label for the word at position ¢ can only refer to the k most recent other
labels (for typical k& € {0,1,2}). In the case of parsing, a similar assumption is used: that
the grammar is context free. Although these assumptions patently violate what we know
about language, they are necessary for maintaining a polynomial time search algorithm.

!See Appendix A.3 for a discussion of the computational complexity classes relevant to this thesis.



Unfortunately, being polynomial time is often not sufficient in practice. For instance,
lexicalized context free parsing is O(N®), where N is the length of the sentence (Manning
and Schutze, 2000). Even worse, synchronous context free parsing, as used in syntactic
machine translation, is O(N'?), where N is the length of the input sentence (Huang
and Chiang, 2005). Even simple sequence labeling is O(NK?), where N is the length
of the sentence and K is the number of possible labels. When K is very large (on the
order of hundreds), such as for phoneme recognition, K? is very costly (Pal, Sutton, and
McCallum, 2006). In other applications, there simply is no polynomial time solution
under even very simplified models; see (Germann et al., 2003) for an example in machine
translation.

The effectively intractable (intractable or high-order polynomial) nature of these im-
portant problems has led to the use of approximate search algorithms. These include
greedy search (Germann et al., 2003), beam search (Och, Zens, and Ney, 2003; Pal, Sut-
ton, and McCallum, 2006), approximate A* search (Klein and Manning, 2003b), lazy
pruning, hill-climbing search, and others (Russell and Norvig, 1995). None of these al-
gorithms is guaranteed to find the best possible output. In practice, this is a significant
problem. Each requires domain-specific tweaking of search parameters to balance effi-
ciency against search errors. Performing this tweaking well is often incredibly difficult.

1.4 Learning in Search

The canonical way of looking at structured prediction problems is as follows. First, one
constructs a model. This model effectively tells us: for a given input, what are all the
possible outputs. For instance, in machine translation, a phrase-based model tells us that
the set of possible translations for a given Arabic input sentence is the set of all English
sentences that can be derived through a sequence of phrase translation and reordering
steps. In sequence labeling, the model tells us all the possible output sequences for a
given input string (typically this is just the set of all sequences over an alphabet of tags
of equal length to the input sentence).

Once one has a model, one attaches features to that model. The goal of the features
is to identify characteristics of input/output pairs that are indicative of whether the
output is “good” or not. For translation, these features might look like phrase translation
probabilities. For sequence labeling, the features are often lexicaled pairs, such as “assign
label ‘determiner’ to the word ‘the’.” The features come with corresponding parameters,
and the goal of learning is to adjust the parameters so that, for a given input, out of
all possible outputs considered by the model, the “correct one” has a high score. The
corresponding search problem is to find the output with the highest score.

The approach advocated in this thesis falls under the heading of learning in search.
The key premise of this paradigm is that given that one will be applying search to find
the best output, one should adjust the learning algorithm to account for this. This idea
has been previously explored by Boyan and Moore (1996), Collins and Roark (2004) and
me (Daumé III and Marcu, 2005¢c). However, the algorithm described in this thesis takes
this idea one step further. Instead of accounting for search in the process of learning, 1
treat the structured prediction problem as being defined by a search process. The result

4



is that the role played originally by the model is now played by the specification of a
search algorithm, and the learning involved is only to learn how to search.

The specific algorithm I describe, SEARN, works on the following basic principle. Each
decision made during search is treated as a (large) classification problem. The goal is to
learn a classifier that will make each search decision optimally. The primary difficulty is
that in order to define “optimally” we must take into account what this same classifier did
in the past search steps and what it will do in future search steps. I propose a relatively
straightforward iterative algorithm for optimizing in this chicken-and-egg situation.

1.5 Contributions

The primary contribution in this thesis is the development of an algorithm called SEARN
(for “search-learn”) for solving structured prediction problems under any model, any
feature functions and any loss. Unlike previous approaches to the structured prediction
problem (see Section 2.2), SEARN makes no assumptions of conditional independence and
is computationally efficient in a superset of those problems to which competing generic
algorithms may be applied.

I formally show that SEARN possesses many desirable properties (see Chapter 3).
Most importantly, I show that the difference in performance between the model that
SEARN learns and the best possible model is small (under certain conditions). This result
holds independent of the model structure or the feature functions and is a significant
improvement over techniques whose performance depends strongly on the locality of fea-
tures in the output. More generally, I show that any problem that can be solved efficiently
by competing techniques can also be solved efficiently by SEARN. Finally, I show that
SEARN is easily extended to hidden wvariable problems, both in the unsupervised and
semi-supervised settings, as well as learning under weak feedback (see Chapter 7).

In addition to having attractive theoretical properties, I show that SEARN performs
very well in a set of diverse real-world problems. These problems include the standard
sequence labeling tasks considered by most other structured prediction techniques as well
as the more complex joint sequence labeling task (see Chapter 4). However, the true
test of SEARN is in problems with more complex structure. I apply SEARN to a complex
information extraction problem—entity detection and tracking—and obtain a state-of-
the-art model (see Chapter 5). Finally, I apply SEARN in the development of a novel
model for automatic summarization (see Chapter 6) that easily surpasses the limitations
of any other current structured prediction technique.

In addition to the main contributions described above, the development of SEARN
has led to several other results. The most significant secondary result is that, to my
knowledge, SEARN is the first algorithm to show a strong connection between structured
prediction and reinforcement learning. This connection alone opens up the possibility for
many avenues of future research (some of which are discussed in Chapter 7). Additionally,
this thesis opens up the possibility to ask new interesting questions about the connection
between computational complexity, search and learning (also discussed in Chapter 7).
Finally, I will make available many of the applications developed in this thesis to the
general public to allow others to benefit from this work.



1.6 An Overview of This Thesis

This thesis is presented in three parts. The first part, comprising the next two chapters,
focuses on structured prediction as a machine learning problem. This part concludes
with a description of my structured prediction algorithm, SEARN. The second part of
the thesis, comprising Chapter 4 though Chapter 6, discusses the application of SEARN
to three problems in NLP (one problem per chapter). The third and final part of the
thesis concludes and presents preliminary results on extensions to the SEARN algorithm
in more complex settings.

The breakdown of this thesis makes it inappropriate to discuss “prior work” in a single
chapter. Instead, I have adopted the following strategy. Chapter 2 will discuss background
information on machine learning and structured prediction. It will not discuss any prior
work on any of the applications I consider. Subsequent chapters will include their own
prior work sections at the end. This organization allows easy referencing between my
work and that of others. It also enables more discussion of the pros and cons of my
approach in comparison to prior work.

The chapters in this thesis are organized as follows:

Part I: Machine Learning

Chapter 2 introduces relevant background from machine learning. The chapter intro-
duces the relevant statistical learning theory necessary to understand the remainder
of the thesis as well as the notion of loss-driven learning. This chapter also formally
defines the notion of a learning reduction that I make heavy use of in the develop-
ment of my own algorithm, SEARN. It concludes with a discussion of prior work on
the structured prediction task.

Chapter 3 introduces my algorithm, SEARN, for solving structured prediction prob-
lems. This chapter also contains the bulk of the theoretical results pertaining to
SEARN and describes the connections between structured prediction and reinforce-
ment learning. Chapter 3 concludes with a comparison of SEARN to prior work in
structured prediction.

Part II: Applications

Chapter 4 begins a sequence of three chapters on experimental results with SEARN.
This chapter focuses on the simplest problem: sequence labeling. I describe how
to apply SEARN to this problem and present results on three data sets: syntactic
chunking, named entity recognition in Spanish and handwriting recognition. I then
present the results of applying SEARN to a joint sequence labeling task: simultane-
ous part of speech tagging and syntactic chunking.

Chapter 5 describes the application of SEARN to the entity detection and tracking prob-
lem introduced in Section 1.2. In this chapter, I discuss both the algorithmic and
search issues involved in the EDT task as well as the task of developing useful
features for this problem. I report the effects of various knowledge sources on
the EDT problem: lexical, syntactic, semantic and knowledge-based, and find that
knowledge-based features prove incredibly useful for this problem.



Chapter 6 applies SEARN to a set of summarization models. These models truly stretch
the applicability of generic structured prediction techniques and show that it is
possible to optimize a structured prediction model against a weaker variety of loss
function than I consider in the other experimental setups.

Part III: Future Work

Chapter 7 describes two extensions to SEARN. The first is a methodology for apply-
ing SEARN to hidden variable models, such as those commonly used in machine
translation. The second is a technique for improving SEARN-learned models on the
basis of weak user feedback. I present proof-of-concept experimental results in word
alignment and summarization. I then conclude the thesis by summarizing the im-
portant contributions and looking forward to future research, both theoretical and
practical.



Chapter 2

Machine Learning

One goal of this thesis is to develop a learning framework that is able to learn to predict
complex, structured outputs with highly interdependent features, as typified by the entity
detection and tracking problem. This chapter presents the background material necessary
to understand my contributions in this area.

There are three primary sections in this chapter. In Section 2.1, I introduce back-
ground information in non-structured statistical learning. This second focuses on three
popular algorithms for binary classification: the perceptron, logistic regression and the
support vector machine. In Section 2.2, I introduce the current state-of-the-art structured
prediction techniques. These techniques can be seen as extensions of the previously de-
scribed binary classification algorithms to the structured prediction domain. Finally, in
Section 2.3, I describe the technique of learning reductions. Reductions are a technique
for transforming a hard learning problem into an easier learning problem and form the
theoretical basis of my algorithm for solving structured prediction problems.

2.1 Binary Classification

Supervised learning aims to learn a function f that maps an input x € X to an output
y € Y. The standard supervised learning setting typically focuses on binary classification
(Y = {—1,+1}), multiclass classification (Y = {1,..., K} for a small K), or regression
(Y = R). For an example of binary classification, we might want to predict whether
or not it will be sunny tomorrow on the basis of past weather data. Such a decision
will be made on the basis of a feature function, denoted ® : X — F, where F is the
“feature space.” In our example, ®(z) might encode information such as temperature,
atmospheric pressure and time of year. Typically, F = R”, the D-dimension real vector
space.

The general hypothesis class we consider is that of linear classifiers (i.e., biased hyper-
planes)!. That is, we parameterize our binary classification function by a weight vector
w € RP and a scalar b € R. The classification function is given in Eq (2.1).

!The restriction to linear classifiers may seem overly restrictive (for instance, linear classifiers cannot
correctly solve the “XOR problem”). However, by employing kernels, one can convert most of the algo-
rithms I describe in this chapter into non-linear classifiers. The use of kernels is a bit outside the scope
of this thesis, so I do not discuss them further. See (Burges, 1998; Daumé III, 2004a; Christianini and
Shawe-Taylor, 2000) for further discussion.
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The classification decision is according to the sign of f. That is, if f(x) > 0 then we
decide the class is +1 and if f(z) < 0 then we decide the class is —1.

Once we have restricted ourselves to the linear hypothesis class, the learning problem
becomes that of finding “good” values of w and b. These values are learned on the basis
of a finite data sample (z,,,y,)1.n of training examples. Exactly how we define “good”
determines the algorithm we choose to use. Nevertheless, all three algorithms we discuss
have the same basic flavor for how they define “good.” Each involves two components:

1. Fitting the data. The algorithms attempt to find parameters that correctly classify
the training data, or at least make few mistakes. Moreover, the algorithms disprefer
weight vectors that over-classify the negative examples: yf(z) = —2 is worse than
yf(x) = —1 for an incorrectly classified example.

2. Not owver-fitting the training data. Often by having some very large components in
the weight vector, our learned function is able to trivially predict the training data,
but does not generalize to new data. By requiring that the weight vector is small
(or sparse), we aid generalization ability.

2.1.1 Perceptron

The perceptron algorithm (Rosenblatt, 1958) learns a weight vector w and bias b in an
online fashion. That is, it processes the training set one example at a time. At each step,
it ensures that the current parameters correctly classify the training example. If so, it
proceeds to the next example. If not, it moves the weight vector and bias closer to the
current example. The algorithm repeatedly loops over the training data until either no
further updates are made or a maximum iteration count has been reached.

It can be shown that, if possible, the perceptron algorithm will eventually converge to
a setting of parameter values that correctly classifies the entire data set. Unfortunately,
this often leads to poor generalization. Improved generalization ability is available by
using weight averaging. Weight averaging is accomplished by modifying the standard
perceptron algorithm so that the final weights returned are the average of all weight
vectors encountered during the algorithm. In can be shown that weight averaging leads
to a more stable solution with better expected generalization (Freund and Shapire, 1999;
Gentile, 2001).

Averaging can be naively accomplished by maintaining two sets of parameters: the
current parameters and the averaged parameters. At each step of the algorithm (after
processing a single example), the current parameters are added to the averaged parame-
ters. Once the algorithm completes, the averaged parameters are divided by the number
of steps and returned as the final parameters.

Unfortunately, this naive algorithm is terribly inefficient. First, we would like to avoid
adding the entire weight vector to the averaged vector in each iteration. We would only
like to make the addition when an update is made. Moreover, the vectors ®(z) are often
sparse. This makes the update to the true weight vector efficient, but the sum of the
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Algorithm AVERAGEDPERCEPTRON(Z1.n,Y1:N, 1)
wqo < (0,...,0), bp < 0
wgy — (0,...,0), by <0
c—1
fori=1...1do
forn=1...N do
if y, [w0T<I>(xn) + bo] < 0 then
wo — Wo + Y ®(zn), bo < bo + Yn
Wq — Wo + cyYn®(zy), by < by + cyn
end if
c—c+1
end for
. end for
return (wy — wg/c,by — by /c)

— =
o2

—
@

Figure 2.1: The averaged perceptron learning algorithm.

weights and the averaged weights inefficient. It turns out we can get around both of these
problems very straightforwardly.

An efficient implementation of the averaged perceptron training algorithm is shown in
Figure 2.1. In step (1), the running weight vector and bias are initialized to zero. In step
(2), the averaged weight vector and bias are initialized to zero. In step (3), the averaging
count is initialized to 1. The algorithm then runs for [ iterations. In each iteration,
the algorithm processes each example. Step (6) checks to see if the algorithm currently
classifies example (x,, y,) incorrectly. The example is classified incorrectly exactly when
yn and the current prediction wOTCI)(wn) + by have a different sign: when their product
is negative.

If the current example (z,,y,) is misclassified by the current parameters (wo,bp),
then in step (7), the algorithm moves wy closer to y,®(z,) and by closer to y,. In step
(8), the averaged weights are updated in the same way, but where the averaging count
c is used as a multiplicative factor. Finally, in step (10), regardless of whether an error
was made or not, ¢ is incremented.

After the algorithm has finished, the final parameters are returned. The non-averaged
version would simply return wg and by. To accomplish averaging, the algorithm instead
returns (wog — wg/c) and (bg — by /c). It is straightforward to show that this accomplishes
weight averaging as desired.

2.1.2 Logistic Regression

Logistic regression is a second popular binary classification method. It is identical to
binary mazimum entropy classification in practice, though the derivation of the two for-
mulations differs. Logistic regression assumes that the conditional probability of the class
y is proportional to exp f(z). This is given in Eq (2.2).

10



p(y| z;w,b) = exp [y(wTi)(x) + b)] (2.2)

1
Cl+exp[—2y(wT®(z) +b)]

z;w,b

Like the perceptron, the classification decision is based on the sign of f(z).

To train a logistic regression classifier, one attempts to find parameters w and b that
mazximize the likelihood (probability) of the training data. Thus, logistic regression is
a maximum likelihood classifier. This accomplishes our goal of performing well on the
training data, but does not explicitly seek small weights. To accomplish the latter, a
prior is placed over the weights. This is typically taken to be a zero-mean, spherical
Gaussian with variance 02 (Chen and Rosenfeld, 1999), though alternative priors have
been employed (Goodman, 2004). This transforms logistic regression from a maximum
likelihood method to a maximum a posteriori method, where the posterior distribution
over weights given the training data is given in Eq (2.3).

=

p(w,b | (zn, yn)1vio?) occp (w | o) [[ 2 (yn | 2nsw, b) (2.3)

n=1

N 1
X exp [ — [[wl| } 1;[ 1+ exp — 2yn (qu)(xn) + b)]

Originally, this maximization problem was solved using iterative scaling methods
(Berger, 1997). Unfortunately, these techniques are quite inefficient in practice. Re-
cently, gradient-based techniques such as conjugate gradient (Press et al., 2002) and
limited-memory BFGS (Nash and Nocedal, 1991; Averick and Moré, 1994) have enjoyed
great success (Minka, 2001; Malouf, 2002; Minka, 2003; Daumé III, 2004b). Both of these
techniques rely on the ability to compute the gradient of Eq (2.3) with respect to w and
b. This is easier if, instead of maximizing the posterior, we instead maximize the log
posterior. The log posterior is given in Eq (2.4) and its gradient in given in Eq (2.5),
where C' is independent of w and b.

N
log p (w, b) = —% lw|* — Z log [1 +exp [ — 2yn (w' @(z,) + b)H +C  (24)
n=1
0 1 1
w logp (w,b) = ~5,2 % + 2; Yn P () [1 g [—2yn'wT(I>(:L‘n)]] (2.5)

In the binary classification case, one can explicitly compute the second order informa-
tion required to directly apply a conjugate gradient method. For multiclass classification,
this is not possible, and an approximate Hessian method such as limited memory BFGS
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must be employed. See (Minka, 2003) for more information about the derivation of these
results and (Daumé III, 2004b) for a description of an efficient implementation.

2.1.3 Support Vector Machines

Support vector machines provide an alternative formulation of the learning problem in
terms of a formal optimization problem (Boser, Guyon, and Vapnik, 1992). SVMs are
based on the large margin framework. This framework states that if we have to choose
between two settings of parameters, we should choose the one that maximizes the distance
between the corresponding hyperplane and the nearest data point on either side. Such
large margin solutions are intuitively appealing because they are robust against small
changes in the data. Theoretically, it can be shown that maintaining a large margin will
lead to good generalization (Vapnik, 1979; Vapnik, 1995). Furthermore, it is straight-
forward to show that the parameters have a large margin if and only if ||w]|| is small
(independent of b).

For a moment we restrict ourselves to the simplified problem of separable training
data (with a margin of 1)2. That is, there exists setting of the parameters so that we
can perfectly classify the training data with a large margin. This leads to the simplest
formulation of the SVM, given in Eq (2.6).

1
minimize,, p 3 ||w]||? (2.6)
subject to  yn, [wT<I>(3:n) + b] >1 Vn

The SVM optimization problem states that we wish to find a weight vector w and
bias b with minimum norm. The constraints state that, for each data point (x,,y,) the
given parameters over-classify this example. That is, the example would be correctly
classified if the product in the constraints were always greater than zero, but here we
require the stronger condition that it be greater than one.

In many cases this optimization problem will be infeasible: there will not exist a
parameter setting that obeys the constraints. Moreover, even for separable data, we often
do not wish to force the algorithm to actually achieve perfect classification performance
on the training data (for instance, if there are any errors on the data). This leads to
the soft-margin formulation of the SVM. The idea in the soft-margin SVM is that we no
longer require all examples to be over-classified with a margin of one. However, for every
example that does not obey this constraint, we measure how far we would have to “push”
that example in order to achieve the desired hard-margin constraint. This measurement
is known as the “slack” of the corresponding example. This leads to the formulation
shown in Eq (2.7).

N
1
minimizey,; o |[wl P+C> (2.7)

n=1

2The margin is simply the smallest value of y, f(z,) across the entire data set.
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subject to Y, [wTé(xn) + b] >1-¢&, Vn
§n >0

In the soft-margin formulation, our objective function includes two components. The
first (small norm) forces the SVM to find a solution that is likely to generalize well. The
second (small sum of slack variables £) forces the SVM to classify most of the training data
correctly. The hyper-parameter C' > 0 controls the trade-off between fitting the training
data and finding a small weight vector. As C tends toward infinity, the soft-margin SVM
approaches the hard-margin SVM and all the training data must be correctly classified.
As C tends toward zero, the SVM cares less and less about correctly classifying the
training data and simply seeks a small weight vector.

In the constraints of the soft-margin SVM formulation, we now require that each
example be over-classified by 1 — £, rather than 1. If parameters can be found that
classifies each example with a margin of 1, then the £,s can be made to all be zero.
However, for inseparable data, these slack variables account for the training error. While
there are as many constraints as data points, it can be shown by the Karush-Kuhn-Tucker
conditions (Bertsekas, Nedic, and Daglar, 2003) that at the optimal weight vector, only
very few of these are “active.” That is, at the optimal values of w and b, y,, [wTCD(xn) —|—b]
is strictly greater than one and are hence inactive for many n. The examples n that are
active are called the support vectors because those are the only examples that have any
affect on the classification decision. In particular, w can be written as a linear combination
of the support vectors, ignoring the rest of the training data.

There are many algorithms for solving the SVM problem. The most straightforward
is to treat it directly as a quadratic programming problem (Bertsekas, Nedic, and Daglar,
2003) and apply a generic optimization package, such as CPLEX (CPLEX Optimization,
1994). However, the very special form of the optimization problem (namely the sparsity of
the constraints) has lead to the development of specialized algorithms, such as sequential
minimal optimization (Platt, 1999). More recently, however, it has been recognized that
simple gradient-based techniques can lead to highly efficient solutions to the SVM problem
(Wen, Edelman, and Gorsich, 2003; Ratliff, Bagnell, and Zinkevich, 2006).

2.1.4 Generalization Bounds

One of the most fundamental theoretical questions about classification problems is the
question of generalization: how well will we do on “test data.” This question is usually
answered in the form “with high probability, the error we observe on unseen test data
will be at most the error we incur on the training data plus a regularization term.”
The regularization term typically makes use of quantities such as the number of training
examples, the number of features, and the “size” (or complexity) of the weight vector.
In order to prove statements of this form, one needs to make assumptions about the
relationship between the training data and the test data. In particular, we have to assume
that the training data is representative of the test data. This is formalized as saying that
there is a fixed, but unknown, probability distribution D and the training data and test
data are both sampled from D. This is the identicality assumption. The second assump-
tion is to assure us that our training data is representative of the entire distribution D.
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We assume that the training data is drawn independently from D. Formally, if we knew
D, then, conditional on D, the points in the training data would be independent. When
the training data obeys these properties, we say that it is independently and identically
distributed from D (or, “i.i.d.” from D). The i.i.d. assumption underlies the majority of
the theoretical work on generalization bounds.

For concreteness, consider the support vector machine. Denote by L£"P(D, f) the
average empirical loss (Eq (2.8)) over the training data D for the classifier f. Denote by
L¥P(D, f) the expected loss (Eq (2.9)) of the classifier f over data drawn i.i.d. from a
distribution D.

1 N

LD, f) = 5 > U # f(an) (2.8)
n:l

LOP(D, f) = Eyon[1y # f(2))] (2.9)

A (comparatively) simple generalization bound for the SVM takes the form of The-
orem 2.1. Note that, depending on stronger assumptions, stronger bounds are available
(Bartlett and Shawe-Taylor, 1999; Zhang, 2002; McAllester, 2003; McAllester, 2004;
Langford, 2005). This one was chosen because it is comparatively easier to state.

Theorem 2.1 (SVM Generalization; (Langford and Shawe-Taylor, 2002)). For
all averaging classifiers ¢ with normalized weights w, for all error rates € > 0 and all
margins v > 0, Eq (2.10) holds with probability greater than 1 — ¢ over training sets S of
stze m drawn i.i.d. from a distribution D.

d v

where F(x) is the tail probability of a zero-mean, unit variance Gaussian, e~(c) is the
expected margin-error rate for the classifier ¢ with respect to a margin v and e(c) is the
error of the classifier ¢ (i.e., e(c) = egp(c)).

KL(&5(c) +¢ |l ee) — ) < — [2m ™71 in F(F_l(e)>] (2.10)

This theorem works as follows. We are comparing the empirical error (on the lhs of
the KL) of the classifier to the true error (on the rhs of the KL), modulo a fixed error
rate €. We desire the divergence between these error distributions to be small because
this would imply that our estimated empirical error is close to what we expect to see
on test data. The theorem states that this divergence is bounded by a term that scales
roughly as 1/m, where m is the number of training points, and roughly as In F(1/7),
where ~ is the margin. In particular, as m increases, the bound becomes tighter. Also, as
~ increases, the bound becomes tighter. Thus, to achieve good generalization, one wants
a lot of data and a large margin.

The important things to note about Theorem 2.1 are the following. First, it assumes
that the training data is i.i.d. (this is the standard assumption). Second, the bound
improves as the weight vector shrinks (i.e., as the margin increases). Third, the bound
improves as the number of training examples grows. This provides some theoretical
justification for the SVM formulation.

14



T
— 0/1Loss

— Hinge Loss
—— Squared Loss

70 —— Log Loss
\ — Exp Loss

Figure 2.2: Plot of several convex approximations to the zero-one loss function.

2.1.5 Summary of Learners

The learners described in this section—the Perceptron, maximum entropy models and
support vector machines—are effective solutions to the binary classification problem.
In general, support vector machines tend to outperform the perceptron and maximum
entropy models empirically. However, they do so at a non-trivial computational cost.
The perceptron is highly efficient and often reaches a reasonable solution even after only
one pass through the training data. Maximum entropy models, while slightly slower, still
operate at a speed of roughly O(N). SVMs, contrastively, often scale at least as O(N?)
if not O(N3). For large data sets this can render them intractable.

Despite these differences, these three models are not so dissimilar. In fact, when
optimized using sub-gradient methods (Zinkevich, 2003; Ratliff, Bagnell, and Zinkevich,
2006), SVMs are ezactly the result of adding regularization and margins to the percep-
tron (Collobert and Bengio, 2004). In particular, the “update” term in the perceptron
happens not only when a mistake is made, but when an example is not over-classified.
Furthermore, weights are shrunk at every iteration toward zero according to the regular-
ization parameter C. On the other hand, the perceptron can also be seen as a stochastic
approximation to the gradient for maximum entropy models when the log normalizing
constant is approximated with a max rather than a sum (Collins, 2002).

These similarities can be seen more clearly by examining the exact loss function
optimized by the three learners. In Figure 2.2, I have plotted these (and other) loss
functions. In this graph, I plot the prediction yf(z) along the z-axis and the loss along
the y-axis. The most basic loss, 0/1 loss, is the desired loss. It is a step-function that
is zero when yf(z) > 0 and one otherwise. This is the loss function that the perceptron
optimizes. In general, however, it is a difficult function to optimize: neither is it convex
nor differentiable. The other functions we consider are convex upper bounds on the 0/1
loss. For instance, the log loss, which is optimized by maximum entropy models, touches
the 0/1 loss at the corner and slowly falls to asymptote at the axis as yf(x) — oc.

15



The hinge loss (also called the margin loss), which is optimized by the SVM, is a ramp
function that has slope —1 when yf(x) < 1 and is zero otherwise. Two other loss
functions—squared loss and exponential loss—are also shown; these are used in other
learning algorithms such as neural networks (Bishop, 1995) and boosting (Schapire, 2003;
Lebanon and Lafferty, 2002). Each of these loss functions has different advantages and
disadvantages; these are too deep and off-topic to attempt to discuss in the context of
this thesis. The interested reader is directed to (Bartlett, Jordan, and McAuliffe, 2005)
for more in-depth discussions.

2.2 Structured Prediction

The vast majority of prediction algorithms, such as those described in the previous sec-
tion, are built to solve prediction problems whose outputs are “simple.” Here, “simple”
is intended to include binary classification, multiclass classification and regression. (I
note in passing that some of the aforementioned algorithms are more easily adapted to
multiclass classification and/or regression than others.) In contrast, the problems I am
interested in solving are “complex.” The family of generic techniques for solving such
“complex” problems are generally known as structured prediction algorithms or structured
learning algorithms. To date, there are essentially four state-of-the-art structured predic-
tion algorithms (with minor variations), each of which I briefly describe in this section.
However, before describing these algorithms in detail, it is worthwhile to attempt to for-
malize what is meant by “simple,” “complex” and “structure.” It turns out that defining
these concepts is remarkably difficult.

2.2.1 Defining Structured Prediction

Structured prediction is a very slippery concept. In fact, of all the primary prior work that
proposes solutions to the structured prediction problem, none explicitly defines the prob-
lem (McCallum, Freitag, and Pereira, 2000; Lafferty, McCallum, and Pereira, 2001; Pun-
yakanok and Roth, 2001; Collins, 2002; Taskar, Guestrin, and Koller, 2003; McAllester,
Collins, and Pereira, 2004; Tsochantaridis et al., 2005). In all cases, the problem is ex-
plained and motivated purely by means of examples. These examples include the following
problems:

e Sequence labeling: given an input sequence, produce a label sequence of equal
length. Each label is drawn from a small finite set. This problem is typified in NLP
by part-of-speech tagging.

e Parsing: given an input sequence, build a tree whose yield (leaves) are the elements
in the sequence and whose structure obeys some grammar. This problem is typified
in NLP by syntactic parsing.

e Collective classification: given a graph defined by a set of vertices and edges, pro-
duce a labeling of the vertices. This problem is typified by relation learning prob-
lems, such as labeling web pages given link information.
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e Bipartite matching: given a bipartite graph, find the best possible matching. This
problem is typified by (a simplified version of) word alignment in NLP and protein
structure prediction in computational biology.

There are many other problems in NLP that do not receive as much attention from
the machine learning community, but seem to also fall under the heading of structured
prediction. These include entity detection and tracking, automatic document summariza-
tion, machine translation and question answering (among others). Generalizing over these
examples leads us to a partial definition of structured prediction, which I call Condition
1, below.

Condition 1. In a structured prediction problem, output elements y € Y decompose into
variable length vectors over a finite set. That is, there is a finite M € N such that each
y € Y can be identified with at least one vector vy € M7Ty | where Ty is the length of the
vector.

This condition is likely to be deemed acceptable by most researchers who are active
in the structured prediction community. However, there is a question as to whether it
is a sufficient condition. In particular, it includes many problems that would not really
be considered structured prediction (binary classification, multitask learning (Caruana,
1997), etc.). This leads to a second condition that hinges on the form of the loss function.
It is natural to desire that the loss function does not decompose over the vector represen-
tations. After all, if it does decompose over the representation, then one can simply solve
the problem by predicting each vector component independently. However, it is always
possible to construct some vector encoding over which the loss function decomposes® This
means that we must therefore make this conditions stronger, and require that there is no
polynomially sized encoding of the vector over which the loss function decomposes.

Condition 2. In a structured prediction problem, the loss function does not decompose
over the vectors vy for y € Y. In particular, l(z,y,9) is not invariant under identical
permutations of y and y. Formally, we must make this stronger: there is no wvector
mapping y — vy such that the loss function decomposes, for which |vy| is polynomial in

|yl

Condition 2 successfully excludes problems like binary classification and multitask
learning from consideration as structured prediction problems. Importantly, it excludes
standard classification problems and multitask learning. Interestingly, it also excludes
problems such as sequence labeling under Hamming loss (discussed further in Chap-
ter 4). Hamming loss (per-node loss) on sequence labeling problems is invariant over
permutations. This condition also excludes collective classification under zero/one loss
on the nodes. In fact, it excludes virtually any problem that one could reasonably hope
to solve by using a collection of independent classifiers (Punyakanok and Roth, 2001).

3To do so, we encode the true vector in a very long vector by specifying the exact location of each
label using products of prime numbers. Specifically, for each label k, one considers the positions i1,...,iz
in which k appears in the vector. The encoded vector will contain pilp? ..-p'Z copies of element F,
where p1,... is an enumeration of the primes. Given this encoding it is always possible to reconstruct
the original vector, yet the loss function will decompose.
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The important aspect of Condition 2 is that it hinges on the notion of the loss function
rather than the features. For instance, one can argue that even when sequence labeling is
performed under Hamming loss, there is still important structural information. That is,
we “know” that by including structural features (such as Markov features), we can solve
most sequence labeling tasks better.* The difference between these two perspectives is
that under Condition 2 the loss dictates the structure, while otherwise the features dictate
the structure. Since when the world hands us a problem to solve, it hands us the loss but
not the features (the features are part of the solution), it is most appropriate to define
the structured prediction problem only in terms of the loss.

Current generic structured prediction algorithms are not built to solve problems under
which Condition 2 holds. In order to facilitate discussion, I will refer to problems for
which both conditions hold as “structured prediction problem” and those for which only
Condition 1 holds as “decomposable structured prediction problems.” I note in passing
that this terminology is nonstandard.

2.2.2 Feature Spaces for Structured Prediction

Structured prediction algorithms make use of an extended notion of feature function. For
structured prediction, the feature function takes as input both the original input x € X
and a hypothesized output y € Y. The value ®(z,y) will again be a vector in Euclidean
space, but which now depends on the output. In particular, in part of speech tagging, an
element in ®(x,y) might be the number of times the word “the” appears and is labeled
as a determiner and the next word is labeled as a noun.

All structured prediction algorithms described in this Chapter are only applicable
when ® admits efficient search. In particular, after learning a weight vector w, one will
need to find the best output for a given input. This is the “argmax problem” defined in
Eq (2.11).

§j = argmaxw ' ®(z,y) (2.11)
yeY

This problem will not be tractable in the general case. However, for very specific ) and
very specific @, one can employ dynamic programming algorithms or integer programming
algorithms to find efficient solutions. In particular, if ® decomposes over the vector
representation of ) such that no feature depends on elements of y that are more than
k positions away, then the Viterbi algorithm can be used to solve the argmax problem
in time O(M*) (where M is the number of possible labels, formally from Condition 1).
This case includes standard sequence labeling problems under the Markov assumption as

well as parsing problems under the context-free assumption.

2.2.3 Structured Perceptron

The structured perceptron is an extension of the standard perceptron (Section 2.1.1) to
structured prediction (Collins, 2002). Importantly, it is only applicable to the problem

“This is actually not necessarily the case; see Section 4.2 for an extended discussion.
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Algorithm AVERAGEDSTRUCTUREDPERCEPTRON(Z1.n, Y1, I)
wop < <O,...,0>
w, — (0,...,0)
c+—1
fori=1...1do
forn=1...N do
Un < argmaxyey 'wOT(I)(l'na Yn)
if y, # 9y, then
wo — wo + (I)($na yn) - (I)(l‘n, :’Qn)
Wq — Wo + P (Tp, yn) — c@(zp, In)
end if
c—c+1
12:  end for
13: end for
14: return wy — w,/c

— =
=

Figure 2.3: The averaged structured perceptron learning algorithm.

of 0/1 loss over Y: that is, I(x,y,9) = 1(y # g). As such, it only solves decomposable
structured prediction problems (0/1 loss is trivially invariant under permutations). Like
all the algorithms we consider, the structured perceptron will be parameterized by a
weight vector w. The structured perceptron makes one significant assumption: that
Eq (2.11) can be solved efficiently.

Based on the argmax assumption, the structured perceptron constructs the perceptron
in nearly an identical manner as for the binary case. While looping through the training
data, whenever the predicted g, for z,, differs from y,,, we update the weights according
to Eq (2.12).

w — w+ P(zp, yn) — P(zn, Un) (2.12)

This weight update serves to bring the vector closer to the true output and further
from the incorrect output. As in the standard perceptron, this often leads to a learned
model that generalizes poorly. As before, one solution to this problem is weight averaging.
This behaves identically to the averaged binary perceptron and the full training algorithm
is depicted in Figure 2.3.

The behavior of the structured perceptron and the standard perceptron are virtually
identically. The major changes are as follow. First, there is no bias b. For structured
problems, a bias is irrelevant: it will increase the score of all hypothetical outputs by the
same amount. The next major difference is in step (6): the best scoring output g, for
the input z,, is computed using the arg max. After checking for an error, the weights are
updated, according to Eq (2.12), in steps (8) and (9).
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2.2.4 Incremental Perceptron

The incremental perceptron (Collins and Roark, 2004) is a variant on the structured per-
ceptron that deals with the issue that the argmax in step 6 may not be analytically
available. The idea of the incremental perceptron (which I build on significantly in Chap-
ter 3) is to replace the argmax with a beam search algorithm. Thus, step 6 becomes
“0n, < BeamSearch(x,,wp)”. The key observation is that it is often possible to detect
in the process of executing search whether it is possible for the resulting output to ever
be correct. For instance, in sequence labeling, as soon as the beam search algorithm has
made an error, we can detect it without completing the search (for standard loss function
and search algorithms). The incremental perceptron aborts the search algorithm as soon
as it has detected that an error has been made. Empirical results in the parsing domain
have shown that this simple modification leads to much faster convergence and superior
results.

2.2.5 Maximum Entropy Markov Models

The maximum entropy Markov model (MEMM) framework, pioneered by McCallum,
Freitag, and Pereira (2000) is a straightforward application of maximum entropy models
(aka logistic regression models, see Section 2.1.2) to sequence labeling problems. For
those familiar with the hidden Markov model framework, MEMMSs can be seen as HMMs
where the conditional “observation given state” probabilities are replaced with direct
“state given observation” probabilities (this leads to the ability to include large numbers
of overlapping, non-independent features). In particular, a first-order MEMM places the
conditional distribution shown in Eq (2.13) on the nth label, y,, given the full input z,
the previous label, y,,_1, a feature function ® and a weight vector w.

1

PYn | 2 yn-15w) = - exp [w' ®(z, Yn, Yn—1)] (2.13)
Z,Yn—1;W
L gyn—ryw = Z exp [wT@(as,y',yn_l)]
yleyn

The MEMM is trained by tracing along the true output sequences for the training
data and using the true y,—1 to generate training examples. This process simply produces
multiclass classification examples, equal in number to the number of labels in all of the
training data. Based on this data, the weight vector w is learned exactly as in standard
maximum entropy models.

At prediction time, one applies the Viterbi algorithm, as in the case of the structured
perceptron, to solve the “arg max” problem. Importantly, since the true values for y,_1
are not known, one uses the predicted values of y,_1 for making the prediction about
the nth value (albeit, in the context of Viterbi search). As I will discuss in depth in
Section 3.4.5, this fact can lead to severely suboptimal results.
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2.2.6 Conditional Random Fields

While successful in many practical examples, maximum entropy Markov models suf-
fer from two severe problems: the “label-bias problem” (both Lafferty, McCallum, and
Pereira (2001) and Bottou (1991) discuss the label-bias problem in depth) and a lim-
itation to sequence labeling. Conditional random fields are an alternative extension of
logistic regression (maximum entropy models) to structured outputs (Lafferty, McCallum,
and Pereira, 2001). Similar to the structured perceptron, a conditional random field does
not employ a loss function. It optimizes a log-loss approximation to the 0/1 loss over
the entire output. In this sense, it is also a solution only to a decomposable structured
prediction problems.

The actual formulation of conditional random fields is identical to that for multi-
class maximum entropy models. The CRF assumes a feature function ®(x,y) that maps
input/output pairs to vectors in Euclidean space, and uses a Gibbs distribution parame-
terized by w to model the probability, Eq (2.14).

ply | wiw) = - exp [0 (z,y) (214
Zpow = Z exp [wTé(x,y/)] (2.15)

y'ey

Here, Z; 4 (known as the “partition function”) is the sum of responses of all incorrect
outputs. Typically, this set will be too large to sum over explicitly. However, if ® is
chosen properly and if ) is a simple linear-chain structure, this sum can be computed
using dynamic programming techniques (Lafferty, McCallum, and Pereira, 2001; Sha and
Pereira, 2002). In particular, ® must be chosen to obey the Markov property: for a
Markov length of [, no feature can depend on elements of y that are more than [ positions
apart. The algorithm associated with the sum is nearly identical to the forward-backward
algorithm for hidden Markov models (Baum and Petrie, 1966) and scales as O(NK!),
where N is the length of the sequence, K is the number of labels and [ is the “Markov
order” used by ®.

Just as in maximum entropy models, the weights w are regularized by a Gaussian
prior and the log posterior distribution over weights is as in Eq (2.16).

N
1
logp (w | D;0?) = = Hw|]2+z w! ®(z,,yn) — log Z exp [wab(xn,y’)] (2.16)
n=1 y'ey

Finding optimal weights can be solved either using iterative scaling methods (Lafferty,
McCallum, and Pereira, 2001) or more complex optimization strategies such as BFGS
(Sha and Pereira, 2002; Daumé III, 2004b) or stochastic meta-descent (Schraudolph and
Graepel, 2003; Vishwanathan et al., 2006). In practice, the latter two are much more
efficient. In practice, in order for full CRF training to be practical, we must be able to
efficiently compute both the arg max from Eq (2.11) and the log normalization constant
from Eq (2.17).
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log Z . = log Z exp [wT@(x,y')] (2.17)
y'ey
So long as we can compute these two quantities, CRFs are a reasonable choice for
solving the decomposable structured prediction problem under the log-loss approximation
to 0/1 loss over ). See (Sutton and McCallum, 2006) and (Wallach, 2004) for in-depth
introductions to conditional random fields.

2.2.7 Maximum Margin Markov Networks

The Maximum Margin Markov Network (M?N) formalism considers the structured pre-
diction problem as a quadratic programming problem (Taskar, Guestrin, and Koller, 2003;
Taskar et al., 2005), following the formalism for the support vector machine for binary
classification. Recall from Section 2.1.3 that the SVM formulation sought a weight vector
with small norm (for good generalization) and which achieved a margin of at least one on
all training examples (modulo the slack variables). The M3N formalism extends this to
structured outputs under a given loss function [ by requiring that the difference in score
between the true output y and any incorrect output 3 is at least the loss I(x, y, y) (modulo
slack variables). That is: the M3N framework scales the margin to be proportional to
the loss. This is given formally in Eq (2.18).

N
. 1 2
minimizew 3 ||lw||* +C Z anyg (2.18)
n=1 g
subject to wTCIJ(xn,yn) — wT@(wn,gj) > UTn, Yn, ) — Enyg Vn,Vy € Y
§ny =0 vn,Vy' €Y

One immediate observation about the M3N formulation is that there are too many
constraints. That is, the first set of constraints is instantiated for every training instance
n and for every incorrect output g. Fortunately, under restrictions on ) and @, it is
possible to replace this exponential number of constraints with a polynomial number. In
particular, for the special case of sequence labeling under Hamming loss (a decomposable
structured prediction problem), one needs only one constraint per element in an example.

In the original development of the M3N formalism (Taskar, Guestrin, and Koller,
2003), this optimization problem was solved using an active set formulation similar to
the SMO algorithm (Platt, 1999). Subsequently, more efficient optimization techniques
have been proposed, including ones based on the exponentiated gradient method (Bartlett
et al., 2004), the dual extra-gradient method (Taskar et al., 2005) and the sub-gradient
method (Bagnell, Ratliff, and Zinkevich, 2006). Of these, the last two appear to be the
most efficient. In order to employ these methods in practice, one must be able to compute
both the arg max from Eq (2.11) as well as a so-called “loss-augmented search” problem
given in Eq (2.19).

S(w,y) = arg max w' ®(z, ) +(z,y,7) (2.19)
HIS
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In order for this to be efficiently computable, the loss function is forced to decompose
over the structure. This implies that M>?Ns are only (efficiently) applicable to decompos-
able structured prediction problems. Nevertheless, they are applicable to a strictly wider
set of problems than CRF's for two reasons. First, M®Ns do not have a requirement that
the log normalization constant (Eq (2.17)) be efficiently computable. This alone allows
optimization in M3Ns for problems that would be F#P-complete for CRFs (Taskar et
al., 2005). Second, M3Ns can be applied to loss functions other than 0/1 loss over the
entire sequence. However, in practice, they are essentially only applicable to a hinge-loss
approximation to Hamming loss over ).

2.2.8 SVDMs for Interdependent and Structured Outputs

The Support Vector Machines for Interdependent and Structured Outputs (SVMBtruct)
formalism (Tsochantaridis et al., 2005) is strikingly similar to the M3N formalism. The
difference lies in the fact that the M?N framework scales the margin by the loss, while the
SVMBSTUCt formalism scales the slack variables by the loss. The quadratic programming
problem for the SVMS'Ut is given as:

1
minimize,, lwl+C> Y &y (2.20)
nog
subject to W' ®(xy, yn) —w ' By, y’) > 1 — l(acénTy,y’) vn,Vy €Y
ny JINy
gn,y’ Z 0 Vn7vy/ E y

The objective function is the same in both cases; the only difference is found in the first
constraint. Dividing the slack variable by the corresponding loss is akin to multiplying the
slack variables in the objective function by the loss (in the division, we assume 0/0 = 0).
Though, to date, the SVMS"* framework has generated less interest than the M3N
framework, the formalism seems more appropriate. It is much more intuitive to scale the
training error (slack variables) by the loss, rather than to scale the margin by the loss.
This advantage is also claimed by the original creators of the SVMS™U framework, in
which they suggest that their formalism is superior to the M3N formalism because the
latter will cause the system to work very hard to separate very lossful hypotheses, even
if they are not at all confusable for the truth.

In addition to the difference in loss-scaling, the optimization techniques employed
by the two techniques differ significantly. In particular, the decomposition of the loss
function that enabled us to remove the exponentially many constraints does not work
in the SVM3™Ut framework. Instead, Tsochantaridis et al. (2005) advocate an iterative
optimization procedure, in which constraints are added in an “as needed” basis. It can
be shown that this will converge to a solution within € of the optimal in a polynomial
number of steps.

The primary disadvantage to the SVM®"* framework is that it is often difficult to op-
timize. However, unlike the other three frameworks described thus far, the SVM5%u¢t does
not assume that the loss function decomposes over the structure. However, in exchange
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for this generality, the loss-augmented search problem for them SVM®"ut framework be-
comes more difficult. In particular, while the M®N loss-augmented search (Eq (2.19)) as-
sumes decomposition in order to remain tractable, the loss-augmented search (Eq (2.21))
for the SVM®Ut framework is often never tractable.

S(a,y) = argmax [ ©(z, §)]1(z,,) (221)
e
The difference between the two requirements is that in the M?N case, the loss appears
as an additive term, while in the SVMS"U case, the loss appears as a multiplicative term.
In practice, for many problems, this renders the search problem intractable.

2.2.9 Reranking

Reranking is an increasingly popular technique for solving complex natural language
processing problems. The motivation behind reranking is the following. We have access
to a method for solving a problem, but it is difficult or impossible to modify this method
to include features we want or to optimize the loss function we want. Assuming that
this method can produce a “n-best” list of outputs (instead of just outputting what it
thinks is the single best output, it produces many best outputs), we can attempt to
build a second model for picking an output from this n-best list. Since we are only ever
considering a constant-sized list, we can incorporate features that would otherwise render
the argmax problem intractable. Moreover, we can often optimize a reranker to a loss
function closer to the one we care about (in fact, we can do so using techniques described
in Section 2.3). Based on these advantages, reranking has been applied in a variety of
NLP problems including parsing (Collins, 2000; Charniak and Johnson, 2005), machine
translation (Och, 2003; Shen, Sarkar, and Och, 2004), question answering (Ravichandran,
Hovy, and Och, 2003), semantic role labeling (Toutanova, Haghighi, and Manning, 2005),
and other tasks. In fact, according to the ACL anthology®, in 2005 there were 33 papers
that include the term “reranking,” compared to ten in 2003 and virtually none before
2000.

Reranking is an attractive technique because it enables one to quickly experiment
with new features and new loss functions. There are, however, several drawbacks to the
approach. Some of these are enumerated below:

1. Close ties to original model. In order to rerank, one must have a model whose
output can be reranked. The best the reranking model can do is limited by the
original model: if it cannot find the best output in an n-best list, then neither will
the reranker. This is especially concerning for problems with enormous ), such as
machine translation.

2. Segmentation of training data. One should typically not train a reranker over data
that the original model was trained on. This means that one must set aside a held-
out data set for training the reranker, leading to less data on which one can train
the original model.

Shttp://acl.ldc.upenn.edu
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Table 2.1: Summary of structured prediction algorithms.

3. Inefficiency. At runtime, one must run two separate systems. Moreover, producing
n-best lists is often significantly more complex than producing a single output (for
example, in parsing (Huang and Chiang, 2005)).

4. Multiple approximations. It is, in general, advisable to avoid multiple approxima-
tions to a single learning problem. Reranking, by definition, solves what should be
one problem in two separate steps.

Despite these drawbacks, reranking is a very powerful technique for exploring novel
features.

2.2.10 Summary of Learners

All of the structured prediction algorithms I have described share a common property:
they are extensions of standard binary classification techniques to (decomposable) struc-
tured prediction problems. Each also requires that the arg max problem (Eq (2.11)) be
efficiently solvable. Each has various advantages and disadvantages, summarized below.

Structured perceptron. Advantages: Efficient, minimal requirements on ) and &,
easy to implement. Disadvantages: only optimizes 0/1 loss over ), somewhat poor
generalization.

Conditional random fields. Advantages: Provides probabilistic outputs, strong con-
nections to graphical models (Pearl, 2000; Smyth, Heckerman, and Jordan, 2001),
good generalization. Disadvantages: only optimizes log-0/1-loss over Y, slow, par-
tition function (Eq (2.17)) is often intractable.

Max-margin Markov Nets. Advantages: Can optimize both 0/1 loss over ) and
hinge-Hamming loss, implements large-margin principle, can be tractable when
CRFs are not. Disadvantages: very slow, limited to Hamming loss.
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SVMs for Structured Outputs. Advantages: more loss functions applicable, imple-
ments large-margin principle, produces sparse solutions. Disadvantages: slow,
often-intractable loss-augmented search procedure (Eq (2.21).

The important aspects of each technique are summarized in Table 2.1. This table
evaluates each technique on four dimensions. First, and perhaps most importantly, is the
type of loss function the algorithm can handle. This is broken down into 0/1 loss, Ham-
ming loss and arbitrary (non-decomposable) loss. Next, the techniques are distinguished
by their ability to handle complex features. In particular, all four structured prediction
algorithms require that one be able to solve the argmax problem; the CRF requires that
the corresponding sum also be tractable. Lastly, the algorithms are compared based on
whether they are efficient and easy to implement.

As we can see from this table, none of the structured prediction techniques can handle
arbitrary losses, and all require that the argmax be efficiently computable. The CRF
additional requires that the sum be efficiently computable. (Though it is not shown on
the table, both the M3N and the SVMS"* also require that a loss-augmented argmax
be efficiently solvable.) Of the algorithms, only the structured perceptron is efficient (the
others require expensive belief propagation/forward-backward computations) and easy to
implement.

Also shown on this table, though not explicitly a structured prediction technique, is
a row for a reranking algorithm. Reranking is popular precisely because it does enable
one to (approximately) handle any loss function and use arbitrary features. However, as
discussed in Section 2.2.9, there are several disadvantages to the reranking approach for
solving general problems.

The four models described in this section do not form an exhaustive list of all ap-
proaches to the structured prediction problem (nor even the sequence labeling problem),
though they do form a largely representative list; see also (Punyakanok and Roth, 2001;
Weston et al., 2002; McAllester, Collins, and Pereira, 2004; Altun, Hofmann, and Smola,
2004; McDonald, Crammer, and Pereira, 2004) for a variety of other approaches.

2.3 Learning Reductions

Binary classification under 0/1 loss (Section 2.1) is an attractive area of study for many
reasons, including simplicity and generality. However, there are many prediction problems
that are not 0/1 loss binary problems. For instance, the structured prediction problems
discussed in Section 2.2 are not binary classification problems. The techniques described
in that section were extensions of standard binary classification techniques to the harder
setting of structured prediction. The framework of machine learning reductions (Beygelz-
imer et al., 2005) gives us an alternative methodology for relating one prediction problem
to another. (Reductions have also been called “plug in classification techniques” (PICTSs);
see (James and Hastie, 1998) for an example.) The idea of a reduction is to map a hard
problem to a simple problem, solve the simple problem, then map the solution to the
simple problem into a solution to the hard problem.
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2.3.1 Reduction Theory

A reduction has three components: the sample mapping, the hypothesis mapping and
a bound. The sample mapping tells us how to create data sets for the simple problem
based on data sets for the hard problem. The hypothesis mapping tells us how to convert
a solution to the simple problem into a solution to the hard problem. The bound tells us
that if we do well on the simple problem, we are guaranteed to also do well on the hard
problem.

There are two varieties of bounds that are worth consideration: error-limiting bounds
and regret-limiting bounds. In the case of an error-limiting reduction, the theoretical
guarantee states that a low error on the simple problem implies a low error on the
hard problem. For a regret-limiting reduction, the bound states that low regretS on the
simple problem implies low regret on the hard problem. One particularly nice thing about
reductions is that the bounds compose (Beygelzimer et al., 2005). In particular, if one
can reduce problem A to problem B (with bound ¢) and problem B to problem C' (with
bound h), then the composed reduction A o B has bound g o h.

In this section, I survey several prediction problems and corresponding reductions.

2.3.2 Importance Weighted Binary Classification

The importance weighted binary classification (IWBC) problem is a simple extension to
the 0/1 binary classification problem. The difference is that in IWBC, each example has
a corresponding weight. These weights reflect the importance of a correct classification.
Formally, an IWBC is a distribution D over X x 2 x RT. Each sample is a triple (z,y,1),
where 7 is the importance weight. A solution is still a binary classifier h : X — 2, but the
goal is to minimize the expected weight loss, given in Eq (2.22).

L(D,h) = E(yi~pli 1(y # h(z))] (2.22)

The “Costing” algorithm (Zadrozny, Langford, and Abe, 2003) is designed to reduce
IWBC to binary classification. Costing functions by creating C' parallel binary classifi-
cation data sets based on a single IWBC data set. Each of these binary data sets are
generated by sampling from the IWBC data set with probability proportional to the
weights. Thus, examples with high weights are likely to be in most of the binary classifi-
cation sets, and examples with low weights are likely to be in few (if any). After learning
C different binary classifiers, one makes an importance weighted prediction by majority
vote over the binary classifiers. Costing obeys the error bound given in Theorem 2.2.

Theorem 2.2 (Costing error efficiency; (Zadrozny, Langford, and Abe, 2003)).
For all importance weighted problems D, if the base classifiers have error rate €, then
Costing has loss rate at most € E(, , iy~pli]-

The proof of Theorem 2.2 is a straightforward application of the definitions. Intu-
itively, Costing works because examples with high weights are placed in most of the

5The regret of a hypothesis h on a problem D is the difference in error between using h and using the
best possible classifier. Formally, R(D, h) = L(D, h) — minp=L(D,h").
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buckets and examples with low weights are placed in few buckets. This means that, on
average, the classifiers will perform better on the high weight examples. The expectation
in the statement of Theorem 2.2 simply shows that the performance of the Costing re-
duction scales with the weights. In particular, if we multiply all weights by 100, then the
weighted loss (Eq (2.22)) must also increase by a factor of 100.

2.3.3 Cost-sensitive Classification

Cost-sensitive classification is the natural extension of importance weighted binary clas-
sification to a multiclass setting. For a K-class task, our problem is a distribution D over
X x (RT)X. A sample (z,c) from D is an input 2 and a cost vector ¢ of length K. ¢
encodes the costs of predictions. We learn a hypothesis A : X — K and the cost incurred
for a prediction is cj(,). In 0/1 multiclass classification, with a single “correct” class y
and K — 1 incorrect classes, ¢ is structured so that ¢, = 0 and ¢,y = 1 for all other y'.
The goal is to find a classifier A that minimizes the expected cost-sensitive loss, given in
Eq (2.23).

L(D,h) = E(z.)~D [Ch(x))] (2.23)

There are several reductions for solving this problem. The easiest is the “Weighted
All Pairs” (WAP) reduction (Beygelzimer et al., 2005). WAP reduces cost-sensitive clas-
sification to importance weighted binary classification. Given a cost-sensitive example
(z,c), WAP generates (12() binary classification problems, one for each pair of classes
0 <1 < j < K. The binary class is the class with lower cost and the importance weight
is given by [v; — v;|, with v; = [*dt 1/L(t), where L(t) is the number of classes with
cost at most t. WAP obeys the error bound given in Theorem 2.3.

Theorem 2.3 (WAP error efficiency; (Beygelzimer et al., 2005)). For all cost-
sensitive problems D, if the base importance weighted classifier has loss rate ¢, then WAP
has loss rate at most 2c.

Beygelzimer et al. (2005) provide a proof of Theorem 2.3. Intuitively, the WAP reduc-
tion works for the same reason that any all-pairs algorithm works: the binary classifiers
learn to separate the good classes from the bad classes. The actual weights used by WAP
are somewhat unusual, but obey two properties. First, if ¢ is the class with zero cost,
then the weight of the problem when ¢ is paired with j is simply the cost of j. This
makes intuitive sense. When ¢ has greater than zero cost, then the weight associated
with separating ¢ from j is reduced from the difference to something smaller. This means
the classifiers work harder to separate the best class from all the incorrect classes than
to separate the incorrect classes from each other.

2.4 Discussion and Conclusions

This chapter has focused on three areas of machine learning: binary classification, struc-
tured prediction and learning reductions. The purpose of this thesis is to present a novel
algorithm for structured prediction that improves on the state of the art. In particu-
lar, in the next chapter, I describe a novel algorithm, SEARN, for solving the structured
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prediction problem. In particular, SEARN is designed to be “optimal” in the sense of
the summary from Table 2.1. That is, it is be amenable to any loss function, does not
require an efficient solution to the argmax problem, is efficient and is easy to implement.
However, unlike reranking, it also comes with theoretical guarantees and none of the
disadvantages of reranking described in Section 2.2.9. SEARN is developed by casting
structured prediction in the language of reductions (Section 2.3); in particular, it reduces
structured prediction to cost-sensitive classification (Section 2.3.3). At that point, one can
apply algorithms like weighted-all-pairs and costing to turn it into a binary classification
problem. Then, any binary classifier (Section 2.1) may be applied.
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Chapter 3

Search-based Structured Prediction

As discussed in Section 2.2, structured prediction tasks involve the production of com-
plex outputs, such as label sequences, parse trees, translations, etc. I described four
popular algorithms for solving the structured prediction problem: the structured percep-
tron (Collins, 2002), conditional random fields (Lafferty, McCallum, and Pereira, 2001),
max-margin Markov networks (Taskar et al., 2005) and SVMs for structured outputs
(Tsochantaridis et al., 2005). As discussed previously, these methods all make assump-
tions of conditional independence which are known to not hold. Moreover, they all enforce
unnatural limitations on the loss: namely, that it decomposes over the structure.

In this chapter, I describe SEARN (for “search + learn”). SEARN is an algorithm for
solving general structured prediction problems: that is, ones under which the features and
loss do not necessarily decompose. While SEARN is applicable to this restricted setting
(and achieves impressive empirical performance; see Chapter 4), the true contribution
of this algorithm is that it is the first generic structured prediction technique that is
applicable to problems with non-decomposable losses. This is particularly important in
real-world natural language processing problems because nearly all relevant loss functions
do not decompose over any reasonable definition of structure. For example, the following
metrics do not decompose naturally: the BLEU and NIST metrics for machine translation
(Papineni et al., 2002; Doddington, 2004b); the ROUGE metrics for summarization (Lin
and Hovy, 2003); the ACE metric for information extraction (Doddington, 2004a); and
many others. That is not to say techniques do not exist for solving these problems:
simply, there is no generic, well-founded technique for solving them.

One way of thinking about SEARN that may be most natural to researchers with a
background in NLP is to first think about what problem-specific algorithms do. For
example, consider machine translation (a problem not tackled in this thesis, though see
Section 7.4 for a discussion). After a significant amount of training of various probability
models and weighting factors, the algorithm used to perform the actual translation at
test time is comparatively straightforward: it is a left-to-right beam search over English
outputs.! An English translation is produced in an incremental fashion by adding words

! At least, this is the case for standard phrase-based (Koehn, Och, and Marcu, 2003) and alignment-
template models (Och, 1999). More recent research into syntactic machine translation typically uses
extensions of parsing algorithms for producing the output (Yamada and Knight, 2002; Melamed, 2004;
Chiang, 2005). For simplicity, I will focus on the phrase-based framework.
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or phrases on to the end of a given translation. This search process is performed to
optimize some score: a function of the learned probability models and weights.

In fact, this approach is not limited to machine translation. Many complex problem
in NLP are solved in a similar fashion: summarization, information extraction, parsing,
etc. The problem that plagues all of these techniques is that the arg max problem from
Eq (2.11)—finding the structured output that maximizes some score over features—is
either formally intractable or simply too computationally demanding (for instance, pars-
ing is technically polynomial, but O(N?) is too expensive in practice, so complex beam
and pruning methods are employed (Bikel, 2004)). The theoretical difficulty here is that
although one might have employed machine learning techniques for which some perfor-
mance guarantees are available (see Section 2.1.4), once one throws an ad hoc search
algorithm on top, these guarantees disappear.?

SEARN, viewed from the perspective on NLP algorithms, can be seen as a generaliza-
tion and simplification of this common practice. The key idea, developed initially by the
incremental perceptron (see Section 2.2.4 and Collins and Roark (2004)) and the LASO
framework (Daumé IIT and Marcu, 2005¢), is to attempt to integrate learning with search.
The two previous approaches achieve this integration by modifying a standard learning
procedure to be aware of an underlying search algorithm. SEARN actually removes search
from the prediction process altogether by directly learning a classifier to make incremental
decisions. The prediction phase of a model learned with SEARN does not employ search
but rather runs this classifier. In addition to gained simplicity, SEARN can handle more
general features and loss functions and is theoretically sound.

3.1 Contributions and Methodology

What is a principled method for interleaving learning and search? To answer this, I
analyze the desirable trait: good learning implies good search. This can be analyzed by
casting SEARN as a learning reduction (Beygelzimer et al., 2005) that maps structured
prediction to classification (see Section 2.3). I optimize SEARN so that good performance
in binary classification implies good performance on the original problem.

The precise SEARN algorithm is inspired by research in reinforcement learning. Con-
sidering structured prediction in a reinforcement learning setting, I am able to lever-
age previous reductions for reinforcement learning to simpler problems (Langford and
Zadrozny, 2003; Langford and Zadrozny, 2005). Viewed as a reinforcement learning al-
gorithm, SEARN operates in an environment with oracle access to an optimal policy and
gradually learns its own policy using an iterative technique motivated by Conservative
Policy Iteration (Kakade and Langford, 2002) forming subproblems as defined by Lang-
ford and Zadrozny (2005). Relative to these algorithms, SEARN works from an optimal

2There is some related evidence from research on approximate inference in graphical models that
roughly shows that the same approximate algorithm should be used for both training and prediction
(Wainwright, 2006). In fact, even if possible to perform prediction ezactly, if one trains using the same
approximate algorithm, one should test using an approximate algorithm. This echoes some previous
results I have showing roughly the same thing, but for a simple search-based sequence labeling algorithm
(Daumé IIT and Marcu, 2005c).
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policy rather than a restart distribution (Kakade and Langford, 2002) and can achieve
computational speedups (Langford and Zadrozny, 2005) in practice.

The outcome of this work is an empirically effective algorithm for solving any struc-
tured prediction problem. In fact, I have a powerful set of algorithms because SEARN
works using any classifier (SVM, decision tree, Bayes net, etc...) as a subroutine. This
simple and general algorithm turns out to have excellent state-of-the-art performance and
achieves significant computational speedups over competing techniques. For instance, the
complexity of training SEARN for sequence labeling scales as O(T'Lk) where T is the se-
quence length, L is the number of labels and k is the Markov order on the features. M>Ns
and CRF's for this problem scale exponentially in k: O(TL*) in general. Finally, SEARN
is simple to implement.

3.2 Generalized Problem Definition

In Section 2.2.1, I defined two flavors of the structured prediction problem, specifically
with respect to whether the loss function decomposes or not. In this chapter, I will focus
exclusively on the harder care, where there is no decomposition. It turns out that it is
convenient to actually consider a generalization of the problem defined previously. Recall
that, before, the structured prediction problem was given by a fixed loss function and a
distribution D over inputs « € X and correct outputs y € ). This is akin to the noise-free
(or “oracle”) setting in binary classification (Valiant, 1994; Kearns and Vazirani, 1997).
I generalize this notion to a noisy setting by letting D be a distribution over pairs (z, ¢),
where the input remains the same (z € X'), but where c is a cost vector so that for any
output y € J, ¢, is the loss associated with predicting y. It is clear that any problem
definable in the previous setting is definable in this generalization. This notion is stated
formally in Definition 3.1.

Definition 3.1 (Structured Prediction). A structured prediction problem D is a cost-
sensitive classification problem where Y has structure: elements y € ) decompose into
variable-length vectors (yi,ye,...,yr).> D is a distribution over inputs x € X and cost
vectors ¢, where |c| is a variable in 2T .

As a simple example, consider a parsing problem under F; loss. In this case, D is a
distribution over (z,c) where z is an input sequence and for all trees y with |z|-many
leaves, ¢, is the F'; loss of y when compared to the “true” output.

The goal of structured prediction is to find a function h : X — ) that minimizes the
loss given in Eq (3.1).

L(D,h) = B {Chw) } (3.1)

The technique I describe is based on the view that a vector y € ) can be produced by
predicting each component (y1,...yy) in turn, allowing for dependent predictions. This
is important for coping with general loss functions. For a data set (z1,c¢1),...,(zN,cN)

3 Treating y as a vector is simply a useful encoding; we are not interested only in sequence labeling
problems. See Condition 1 in Section 2.2.1.
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of structured prediction examples, I write T}, for the length of the longest search path on
example n, and T.x = maxy, Tj,.

3.3 Search-based Structured Prediction

I analyze the structured prediction problem by considering what happens at test time.
Here, a search algorithm produces a full structured output by making a sequence of
decisions at each time step. In standard structured techniques, this process of search
aims to find a structure that maximizes a scoring function. I ignore this aspect of search
and simply treat it as an iterative process that produces an output. In this view, the
goal of search-based structured prediction is to find a function h that guides us through
search. More formally, given an input z € X and a state s in a search space S, we want
a function h(x, s) that tells us the next state to go to (or, more generally, what action to
take). This forms the basis of a policy.

Definition 3.2 (Policy). A policy h is a distribution over actions conditioned on an
mput x and state s.

Under this view of structured prediction, we have transformed the structured predic-
tion problem into a classification problem. The classifier’s job is to learn to predict best
actions. The remaining question is how to train such a classifier, given the fact that the
search spaces are typically too large to explore exhaustively.

3.4 Training

SEARN operates in an iterative fashion. At each iteration it uses a known policy to
create new cost-sensitive classification examples®. These examples are essentially the
classification decisions that a policy would need to get right in order to perform search
well. These are used to learn a new classifier which gives rise to a new policy. This new
policy is interpolated with the old policy and the process repeats.

3.4.1 Cost-sensitive Examples

In the training phase, SEARN uses a given policy 7 to construct cost-sensitive multiclass
classification examples from which a new classifier is learned. These classification exam-
ples are created by running the given policy m over the training data. This generates
one path per structured training example. SEARN creates a single cost-sensitive example
for each state on each path. The classes associated with each example are the available
actions (the set of all possible next states). The only difficulty lies in specifying the costs.

Formally, we want the cost associated with taking an action that leads to state s to be
the regret associated with this action, given our current policy. That is, we search under
the input z, using m and beginning at state s to find a complete output y. Under the

4A k-class cost-sensitive example is given by an input X and a vector of costs ¢ € (R*)k. Each class
i has an associated cost ¢; and the goal is a function h : X — ¢ that minimizes the expected value of c¢;.
See Section 2.3.3.
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overall structured prediction loss function, this gives us a loss of ¢,. Of all the possible
actions, one, a’, will have the minimum expected loss. The cost (7 for an action a is the
difference in loss between taking action a and taking the optimal action a’; see Eq (3.2).

g;r = Eywsea’r’ch(xn,ﬂ,a) Cy — H(lli,n azr’ (32>

The complexity of the computation associated with Eq (3.2) is problem dependent.
There are (at least) three possible ways to compute it.

1. Monte-Carlo sampling: one draws many paths according to h beginning at s’ and
average over the costs.

2. Single Monte-Carlo sampling: draw a single path and use the corresponding cost,
with tied randomization as per Pegasus (Ng and Jordan, 2000).

3. Optimal approximation: it is often possible to efficiently compute the loss associated
with following an optimal policy from a given state; when h is sufficiently good, this
may serve as a useful and fast approximation. (This is also the approach described
by Langford and Zadrozny (2005).)

The quality of the learned solution depends on the quality of the approximation of
the loss. Obtaining Monte-Carlo samples is likely the best solution, but in many cases
the optimal approximation is sufficient. An empirical comparison of these options is
performed in Section 4.5.

3.4.2 Optimal Policy

Efficient implementation of SEARN requires an efficient optimal policy 7* for the train-
ing data (it would make no sense on the test data: our problem would be solved). The
implications of this assumption are discussed in detail in Section 3.6.1, but note in pass-
ing that it is strictly weaker than the assumptions made by other structured prediction
techniques. The optimal policy is a policy that, for a given state, input and output
(structured prediction cost vector) always predicts the best action to take:

Definition 3.3 (Optimal Policy). For x,c as in Def 3.1, and a node s = (y1,...,y; in
the search space, the optimal policy 7*(z, ¢, y) is argminy, , ming, , . Cyy,. ). That
is, ™ chooses the action (i.e., value for yi11) that minimizes the corresponding cost,
assuming that all future decisions are also made optimally.

SEARN uses the optimal policy to initialize the iterative process, and attempts to
migrate toward a completely learned policy that will generalize well.
3.4.3 Algorithm

The SEARN algorithm is shown in Figure 3.1. As input, the algorithm takes a data set,
an optimal policy 7* and a multiclass learner L. SEARN operates iteratively, maintaining
a current policy hypothesis h{!) at each iteration I. This hypothesis is initialized to the
optimal policy (step 1).
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Algorithm SEARN(SST, 7%, Learn)

*

1: Initialize policy h(®) — 7
2. forI=1... do

3:  Initialize the set of cost-sensitive examples Sy « ()

4 forn=1...N do

5: Compute path under the current policy (si,...,s7,) « pth(z,, hI=D 0)
6 fort=1...T, do

7 Compute features ® = ®(x,, s;) for input z,, and state s;

8 Initialize a cost vector ¢ = ()

9 for each possible action a do

10: Compute the cost of a: £, = E?t(é;l) (Eq (3.2))
11: Append £ to c: c+—cD ¥,

12: end for

13: Add cost-sensitive example (®,¢) to Sy

14: end for

15:  end for

16:  Learn a classifier on Sy: h' «+ Learn(Sy)
17:  Interpolate: h(D) — ghn/ + (1 — g)hU=1
18: end for
19: return h

(last) without 7*

Figure 3.1: Complete SEARN Algorithm

The algorithm then loops for a number of iterations. In each iteration, it creates
a (multi-)set of cost-sensitive examples, S;. These are created by looping over each
structured example (step 4). For each example (step 5), the current policy U= s used
to produce an full output, represented as a sequence of state s;.;;,. Each state in the
sequence is used to create a single cost-sensitive example (steps 6-14).

The first task in creating a cost-sensitive example is to compute the associated feature
vector, performed in step 7. This feature vector is based on the structured input x,, and
the current state s; (the creation of the feature vectors is discussed in more detail in
Section 3.4.6). We are now faced with the task of creating the cost vector ¢ for the cost-
sensitive classification examples. This vector will contain one entry for every possible
action a that can be executed from state s;. For each action a, we compute the expected
loss associated with the state s; @ a: the state arrived at assuming we take action a (step
10). This loss is then appended to the cost vector (step 11).

Once all example have been processed, SEARN has created a large set of cost-sensitive
examples S7. These are fed into any cost-sensitive classification algorithm, Learn, to pro-
duce a new classifier b’ (step 16). In step 17, SEARN combines the newly learned classifier
k' with the current classifier h/=1) to produce a new classifier A(!). This combination is
performed through linear interpolation with interpolation parameter (3. (The choice of
B is discussed in Section 3.5.) Finally, after all iterations have been completed, SEARN
returns the final policy after removing 7* (step 19).
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Figure 3.2: Example structured prediction problem for motivating the SEARN algorithm.

3.4.4 Simple Example

As an example to demonstrate how SEARN functions, consider the very simple search
problem displayed in Figure 3.2. This can be thought of as a simple sequence labeling
problem, where the sequence length is two (the “A” is given) and the correct output,
shown in bold, is “A B E.” This sequence achieves a loss of zero. Two other outputs (“A
C F” and “A B D”) achieve a loss of one, while the sequence “A C G” incurs a loss of one
hundred. Along each edge is shown a feature vector corresponding to this edge. These
vectors have no intuitive meaning, but serve to elucidate some benefits of SEARN. In this
problem, there are three features, each of which is binary, and only one of which is active
for any given edge.

Before considering what SEARN does on this problem, consider what a maximum
entropy Markov model (Section 2.2.5) would do. The MEMM would use this example
to construct two binary classification problems. For the “B/C” choice, this would lead
to a positive example (corresponding to taking the “upper path”) with feature vectors
as shown in the figure. Then, a second example would be generated for the “D/E”
choice. This would be a negative example with corresponding feature vectors.” After
training a vanilla maximum entropy model on this data, one would obtain a weight
vector w = (0,0, —1).

Now, consider what happens when we execute search using this policy. In the first
step, we must decide between “B” and “C”. Given the learned weight vector, both have
value 0, so the algorithm must randomly choose between them. Suppose it chooses the
upper path. Then, at the choice between “D” and “E”, it will choose “E”, yielding a loss

°In the MEGAM (http://hal3.name/megam/) “explicit, fval” notation, these examples would be writ-
ten:
OF11#F11
1F21#F31

36



of zero. However, suppose it chooses the lower path on the first step. Then, at the choice
between “F” and “G” it will choose “G”, yielding a loss of 100. This leaves us with an
expected loss of 50.5. This is far from optimal. Consider, for instance, the weight vector
(0,1,0). With this weight vector, the first choice is again random, but the “D/E” choice
will lead to “D” and the “F/G” choice will lead to “F”. This yields an expected loss of
1, significantly better than the learned weight vector.

The reason that this example fails is because we have only trained our weight vector
on parts of the search space (“A” and “B”) that the optimal path covers. This means
that if we fall off this path at any point, we can do (almost) arbitrarily badly (this is
formalized shortly in Theorem 3.4).

Now, consider executing SEARN on this example. In the first step, SEARN will generate
an identical data set to the MEMM, on which the same weight vector will be learned.
SEARN will then iterate, with a current policy equal to an interpolation of the optimal
policy and the learned policy given by the weight vector. In the second iteration of
SEARN, two things can happen: (1) the learned policy is called at the first step and it
chooses “C” randomly, or (2) either the optimal policy or the learned policy is called
at the first step and it chooses “B”. In case (2), we will regenerate the same examples,
relearn a new weight vector and re-interpolate (note that the more times this happens,
the less likely it is that in the first step we call the optimal policy).

The interesting case is case (1). Here, just as before, we generate the first “B/C”
choice example. However, when we follow the current policy, it chooses to go to node “C”
instead of node “B”. This means that instead of generating the second binary example as
a choice between “D” and “E”, instead we generate a second binary example as a choice
between “F” and “G”. Moreover, the second example is weighted much more strongly®.
Now, when we learn a classifier off this data, we obtain a weight vector (0.01,1,0), quite
close to the hypothetical weight vector considered previously.

Consider the behavior of the algorithm with the newly learned weight vector. At the
first step, the algorithm will select between “B” and “C” randomly. If it chooses “B”,
then it will choose “D” at the next step (score of 1 versus 0) and incur a loss of 1. If it
chose “C” at the first step, it will choose “F” in the second step (score of 1 versus 0) and
incur a loss of 1. This leads to an expected loss of 1, which is, in fact, the best one can
do on this simple example.

3.4.5 Comparison to Local Classifier Techniques

There are essentially two varieties of local classification techniques applied to structured
prediction problems. The first variety is typified by the work of Punyakanok and Roth
(2001) and Punyakanok et al. (2005). In this variety, the structure in the problem
is ignored all together, and a single classifier is trained to predict each element in the
output vector independently. In some cases, a post-hoc search or optimization algorithm
is applied on top to ensure some consistency in the output (Punyakanok, Roth, and
Yih, 2005). The second variety is typified by maximum entropy Markov models (see

50ne can simulate this in MEGAM format as:
OF11#F11
0 $$SWEIGHT 100 F2 1 # F3 1
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Section 2.2.5), though the basic idea has also been applied more generally to SVMs (Kudo
and Matsumoto, 2001; Kudo and Matsumoto, 2003; Giménez and Marquez, 2004). In
this variety, the elements in the prediction vector are made sequentially, with the nth
element conditional on outputs n — k...n — 1 for a kth order model.

One way of contrasting SEARN-based learning to more typical algorithms such as
CRFs and M?3Ns is based on considering how they share information across a structure.
The standard approach to sharing information is based on using the Viterbi algorithm (or,
more generally, any exact dynamic programming algorithm) at test time. By applying
such an search algorithm, one allows information to be shared across the entire structure,
effectively “trading off” one decision for another. SEARN takes an alternative approach.
Instead of using a complex search algorithm at test time, it attempts to share information
at training time. In particular, by training the classifier using a loss based on both past
experience and future expectations, the training attempts to integrate this information
during learning. One approach is not necessarily better than the other; they are simply
different ways to accomplish the same goal.

In the purely independent classifier setting, both training and testing proceed in the
obvious way. Since the classifiers make one decision completely independently of any
other decision, training makes us only of the input. This makes training the classifiers
incredibly straightforward, and also makes prediction easy. In fact, running SEARN with
®(z,y) independent of all but y,, for the n prediction would yield exactly this framework
(note that there would be no reason to iterate SEARN in this case). While this renders the
independent classifiers approach attractive, it is also significantly weaker, in the sense that
one cannot define complex features over the output space. This has not thus far hindered
its applicability to problems like sequence labeling (Punyakanok and Roth, 2001), parsing
and semantic role labeling (Punyakanok, Roth, and Yih, 2005), but does seem to be an
overly strict condition. This also limits the approach to Hamming loss.

SEARN is more similar to the MEMM-esque prediction setting. The key difference
is that in the MEMM, the nth prediction is being made on the basis of the k previous
predictions. However, these predictions are noisy, which potentially leads to the subop-
timal performance described in the previous section. The essential problem is that the
models have been trained assuming that they make all previous predictions correctly, but
when applied in practice, they only have predictions about previous labels. It turns out
that this can cause them to perform nearly arbitrarily badly. This is formalized in the
following theorem, due to Matti Kéaaridinen.

Theorem 3.4 (Kéaaridinen (2006)). There exists a distribution D over first order
binary Markov problems such that training a binary classifier based on true previous
predictions to an error rate of € leads to a Hamming loss given in Eq (3.3), where T is
the length of the sequence.

T 1-(1-29" 1
2 de 2"
Where the approximation is true for small € or large T .

T
5 (3.3)

The proof of this theorem is not provided, but I will give a brief intuition for the
construction. Before that, notice that a Hamming loss of 7/2 for a binary Markov
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problem is the same error rate as random guessing. The construction that leads to this
error rate can be thought of as an XOR plus image recognition problem. The inputs are
images of zeros and ones. The correct label for the nth label is the XOR, of the number
drawn in the nth image and the label at position n — 1. A bit of thought can convince
one that even a low error rate ¢ can lead to a high Hamming loss, essentially because
once the algorithm errs, it cannot recover.”

One can construct similarly difficult problems for structured prediction distributions
with different structure, such as larger order Markov models, models whose features can
look at larger windows of the input, and multiclass cases. One might be led to believe
that the result above is due to the fact that the classifier is trained on the true output,
rather than its own predictions. In a sense, this is correct (and, in the same sense, this is
exactly the problem SEARN is attempting to solve). However, even if the model is trained
in a single pass, using its previous outputs as input, one can obtain essentially the same
error bound as shown in Theorem 3.4, where the algorithm will perform arbitrarily badly.

3.4.6 Feature Computations

In step 7 of the SEARN algorithm (Figure 3.1), one is required to compute a feature vector
® on the basis of the structured input z,, and a given state s;. In theory, this step is
arbitrary. However, the performance of the underlying classification algorithm (and hence
the induced structured prediction algorithm) hinges on a good choice for these features.

In general, I adhere to the following recipe for creating the feature vectors. At state
s¢, there will be K possible actions, aq,...,ax. I treat ® as the concatenation of K
subvectors, one for each choice of the next action. Then, I compute features as one
normally would for the position in z, represented by s; and “pair” each of these with
each action ajp to produce the final feature vector.

This is perhaps best understood with an example. Consider the part-of-speech tagging
problem under a left-to-right greedy search (see also Chapter 4). Suppose our input is
the sentence “The man ate a big sandwich with pickles .” and suppose that our current
state correspond to a tagging of the first five words as “Det Noun Verb Det Adj”. We
wish to produce the part-of-speech tag for the word “sandwich.” Suppose there are five
possibilities: Det, Noun, Verb, Adj and Prep.

The first step will be to compute a standard feature vector associated with the current
position in the sentence (the 6th word). This will typically include features such as the
current word (“sandwich”) its prefix and suffix (“san” and “ich”), and similar features
computed within a window (eg., that “a” is two positions to the left and “with” is one
position to the right). Additionally, we often wish to consider some structured features,
such as “the previous word is tagged Adj” and “the second previous word is tagged Det.”
This will lead to a canonical “base” feature vector ¢.

To compute the full feature vector @, I take the cross product between (1, ¢) and the
set of possible actions (the “1” is a bias term). In this case, suppose that |¢| = S; then,

"While this construction may seem somewhat artificial, it is not unlike the common case of coreference
resolution in the literature domain, where an conversation exchange occurs between two parties, with the
speaker alternating and not explicitly given. Discerning who is speaking at the nth line requires that one
has not erred previously.

39



with K actions, the length of ® will be K x (S + 1). In particular, we will take every
feature f in ¢ and create K action/feature pairs “the feature f is active and the current
action is a.” Taking all of these features together gives us the full feature vector ®.

Assuming one uses the weighted-all-pairs algorithm (Section 2.3.3) to reduce the mul-
ticlass problem to a binary classification problem, it is often possible (and beneficial) to
only give the underlying classifier a subset of the features when making binary decisions.
For instance, after applying weighted-all-pairs, one will be solving classification problems
that look like “does action Det look better than action Verb?” For answering such ques-
tions, it is reasonable to only feed the algorithm the features associated with the Det and
Verb options. Doing so both increases computation efficiency and significantly reduces
the burden on the underlying classifier.

3.5 Theoretical Analysis

SEARN functions by slowly moving away from the optimal policy toward a fully learned
policy. As such, each iteration of SEARN will degrade the current policy. The main
convergence theorem states that the learned policy is never much worse than the starting
(optimal) policy. To simplify notation, I write T" for Tiax.

It is important in the analysis to refer explicitly to the error of the classifiers learned
during the process of SEARN. I write SEARN(D, h) to denote the distribution over clas-
sification problems generated by running SEARN with policy A on distribution D. For a
learned classifier A, T write Egs(h' ) to denote the loss of this classifier on the distribution
SEARN(D, h).

The following lemma (proof in appendix) is useful:

Lemma 3.5 (Policy Degradation). Given a policy h with loss L(D,h), apply a single
iteration of SEARN to learn a classifier h' with cost-sensitive loss £99(h'). Create a
new policy h™™ by interpolation with parameter 3 € (0,7/2). Then, for all D, with
Cmaz = Bz c)op max; ¢; (with (z,c) as in Def (3.1)):

L(D, h™") < L(D,h) + T (W) + %ﬁZTQCm(M (3.4)

This lemma states that applying a single iteration of SEARN does not cause the structured
prediction loss of the learned hypothesis to degrade too much (recall that, beginning with
the optimal policy, by moving away from this policy, our loss will increase at each step).
In particular, up to a first order approximation, the loss increases proportional to the loss
of the learned classifier.

Given this lemma one can prove the following theorem (proof in appendix):

Theorem 3.6 (Convergence). For all D, after C/( iterations of SEARN beginning
with a policy hy with loss L(D, hy), and average learned losses as Eq (3.5).

o/ |
bavg = o/ﬁzf“& o (R (3.5)
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(Each loss is with respect to the learned policy at that iteration), the loss of the final
learned policy h (without the optimal policy component) is bounded by Eq (3.6).

L(D,h) < L(D, ho) + CTV qug + Cmaz <%CT25 + Texp[—C’]) (3.6)

This theorem states that after C'//( iterations of the SEARN algorithm, the learned
policy is not much worse than the quality of the optimal policy hg. Finally, I state the
following corollary that suggests a choice of the constants 3 and C from Theorem 3.6.
The proof is by algebra.

Corollary 3.7. For all D, with C = 2InT and 3 = 1/T? the loss of the learned policy
s bounded by:

L(D, h) < L(D, ho) + 2T n Tl gy + (1 + In T)cpaa/T

Although using 8 = 1/T? and iterating 273 InT times is guaranteed to leave us
with a provably good policy, such choices might be too conservative in practice. In the
experimental results described in future chapters, I use a development set to perform a
line search minimization to find per-iteration values for § and to decide when to stop
iterating. This is an acceptable approach for the following reason. The analytical choice
of 3 is made to ensure that the probability that the newly created policy only makes one
different choice from the previous policy for any given example is sufficiently low. The
choice of 8 assumes the worst: the newly learned classifier will always disagree with the
previous policy. In practice, this rarely happens. After the first iteration, the learned
policy is typically quite good and only rarely differs from the optimal policy. So choosing
such a small value for [ is unneccesary: even with a higher value, the current classifier
will not often disagree with the previous policy.

3.6 Policies

SEARN functions in terms of policies, a notion borrowed from the field of reinforcement
learning. This section discusses the nature of the optimal policy assumption and the
connections to reinforcement learning.

3.6.1 Optimal Policy Assumption

The only assumption SEARN makes is the existence of an optimal policy 7*, defined
formally in Definition 3.3. For many simple problems under standard loss functions, it
is straightforward to compute 7* in constant time. For instance, consider the sequence
labeling problem (discussed further in Chapter 4). A standard loss function used in
this task is Hamming loss: of all possible positions, how many does our model predict
incorrectly. If one performs search left-to-right, labeling one element at a time (i.e., each
element of the y vector corresponds exactly to one label), then 7* is trivial to compute.
Given the correct label sequence, 7* simply chooses at position ¢ the correct label at
position i. However, SEARN is not limited to simple Hamming loss. A more complex loss
function often considered for the sequence segmentation task is F-score over (correctly
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labeled) segments. As discussed in Section 4.1.3, it is just as easy to compute the optimal
policy for this loss function. This is not possible in many other frameworks, due to the
non-additivity of F-score. This is independent of the features.

This result—that SEARN can learn under strictly more complex structures and loss
functions than other techniques—is not limited to sequence labeling, as demonstrated
in Theorem 3.8. In order to prove this, I need to formalize what I consider as “other
techniques.” T use the max-margin Markov network (M3N) formalism (Section 2.2.7) for
comparison, since this currently appears to be the most powerful generic framework. In
particular, learning in M3Ns is often tractable for problems that would be #P-hard in
conditional random fields. The M3N has several components, one of which is the ability
to compute a loss-augmented minimization (Taskar et al., 2005). This requirement states
that Eq (3.7) is computable for any input x, output set ), true output y and weight
vector w.

opt(Vs, y, w) = arg min w' ®(z,9) +1(y,9) (3.7)

In Eq (3.7), ®(-) produces a vector of features, w is a weight vector and I(y, y) is the
loss for prediction § when the correct output is y.

Theorem 3.8. Suppose Eq (3.7) is computable in time T(x); then the optimal policy is
computable in time O(T(x)). Further, there exist problems for which the optimal policy is
computable in constant time and for which Eq (3.7) may require exponential computation.

See the appendix for a proof.

3.6.2 Search-based Optimal Policies

One advantage of the SEARN algorithm and the theory presented in Section 3.5 is that
they do not actually hinge on having an optimal policy to train against. One can use
SEARN to train against any policy. By Corollary 3.7, the loss of the learned policy simply
contains a linear factor L(D, hg) for the loss of the policy against which we train. If one
trains against an optimal policy L(D, hg) = 0, but for non-optimal policies, the result
still holds. Importantly one does not need to know the value of L(D, hg) to use SEARN.

One artifact of this observation is that one can use search as a surrogate optimal
policy for SEARN. That is, it may be the case that it is impossible to construct a search
space in such a way that both computing the optimal policy and computing appropriate
features are easy. For example, in the machine translation case, the left-to-right decoding
style is natural and integrates nicely with an n-gram language model feature, but renders
the computation of a BLEU-optimal policy intractable.

The solution is the following. Recall that when applying SEARN, we have an input x
and a cost vector ¢ (alternatively, we have a “true output” y and a loss function). At any
step of SEARN, we need to be able to compute the best next action (note that this is the
only requirement that needs to be fulfilled to apply SEARN). That is, given a node in the
search space, and the cost vector ¢, we need to compute the best step to take. This is
exactly the standard search problem: given a node in a search space, we find the shortest
path to a goal. By taking the first step along this shortest path, we obtain an optimal
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policy (assuming this shortest path is, indeed, shortest). This means that when SEARN
asks for the best next step, one can execute any standard search algorithm to compute
this, for cases where the optimal policy is not available analytically.

The interesting thing to notice here is that under this perspective, we can see SEARN
as learning how to search. That is, there is some underlying search algorithm that is near
optimal (because it knows the true output), and SEARN is attempting to learn a policy
to mimic this algorithm as closely as possible. From the perspective of the theory, all the
bounds apply in this case as well, and the policy degradation by training on a search-
based policy rather than a truly optimal policy is at most the difference in performance
between the two policies.

Given this observation, we have reduced the requirement of SEARN: instead of re-
quiring an optimal policy, we simply require that one can perform efficient approximate
search. This leads to the question: is this always possible. Though this is not a theorem,
there is some intuition that this should be the case. For contradiction, suppose that we
can not construct a search algorithm that does well (against which we could train). This
means that knowing the cost vector (equivalently, knowing the correct output), we cannot
construct a search algorithm that can find a low-loss output. If, knowing the correct out-
put, we cannot find a good one, the learning problem seems hopeless. However, as always,
it is up to the practitioner to structure the search space so that search and learning can
be successful.

3.6.3 Beyond Greedy Search

The foregoing analysis assumes that the search runs in a purely greedy fashion. In
practice, employing a more complex search technique, such as beam search, is useful.
Fortunately, there is a straightforward mapping from beam search to greedy search by
modifying the search space. Instead of moving a single robot in a search space, we can
consider moving a beam of k robots in that space. This corresponds to a larger space
whose elements are configurations of k robots. The only difference between the two is
that the expected length of a search path, T, may increase.

Formally, there is a small issue with how to choose which robot’s output to select to
make the final prediction. The method I employ is as follows. Once a robot has created a
full output, it must make one final “I'm done” decision. Once a single robot chooses the
“I’'m done” action, the search process ends with this robot’s output. There are several
advantages to doing the final step in this manner. It does not add bias by having an
arbitrary selection procedure. Moreover, it enables the algorithm to learn to make the
final decision quickly, if possible. In a sense, it also subsumes the reranking approach (see
Section 2.2.9). This is because, in the worst case, all robots will find completed hypotheses
and then the final decision is just a classification task between all possible “I’'m done”
action. This is very similar to a reranking problem. The advantage to running SEARN in
this manner is that it no longer makes sense to apply reranking as a postprocessing step
to SEARN: it should never be beneficial.

In general, SEARN makes no assumptions about how the search process is structured.
A different search process will lead to a different bias in the learning algorithm. It is
up to the designer to construct a search process so that (a) a good bias is exhibited and
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(b) computing the optimal policy is easy. For instance, for some combinatorial problems
such as matchings or tours, it is known that left-to-right beam search tends to perform
poorly. For these problems, a local hill-climbing search is likely to be more effective in
the sense that it will render the underlying classification problems simpler.

From a theoretical perspective, so long as computational complexity issues are ignored,
there is no reason to consider anything more than greedy search. This is because any
search algorithm can feign as a greedy algorithm. When asked for a greedy step, the
algorithm runs the complex search algorithm to completion and then returns the first
step taken by this algorithm. While this obviates the intention behind greedy search, our
theoretical results are complexity-agnostic and hence cannot be improved by moving to
more complex search techniques.

One interesting corollary of this analysis has to do with the notion of NP-completeness.
One might look at the foregoing as giving a method for solving arbitrarily complex prob-
lems in a purely greedy fashion, thus showing that FP=FNP. A closer inspection will
reveal where this argument breaks down: we have only shown FP=FNP if the underly-
ing binary classifier can achieve an error rate of 0. This means that (assuming FP#FNP)
one of the following must happen for computationally hard structured prediction prob-
lems. (1) The sample complexity of the underlying binary classification problems must
become unwieldy. (2) The computational complexity of learning an optimal binary clas-
sifier must grow exponentially. There is a trade-off between the complexity of the search
algorithm (and hence the expected length of the search path) and the underlying sample
complexity. We could predict the entire structure in one step with low 7" but high sample
complexity, or we could predict the structure in many steps with (hopefully) lower sample
complexity. Balancing this trade-off is an open question.

3.6.4 Relation to Reinforcement Learning

Viewing the structured prediction problem as a search problem enables us to see parallels
to reinforcement learning; see (Singh, 1993; Sutton and Barto, 1998) for introductions.

Definition 3.9 (Reinforcement Learning). A reinforcement learning problem R is
a conditional probability table R(o',r | (0,a,7)*) on an observation set O and rewards
r € [0,00) given any (possibly empty) history (o,a,r)* of past observations, actions (from
an action set A), and rewards.

The goal of the (finite horizon) reinforcement learning problem is as follows. Given
some horizon T, find a policy 7 : (0,a,7)* — a, optimizing the expected sum of rewards:
n(R,m) = E(O’G7T)TNR’7T{Z$:1 ri}. Here, r; is the tth observed reward, and the expectation
is over the process which generates a history using R and choosing actions from 7.

It is possible to map a structured prediction problem D to a (degenerate) reinforce-
ment learning problem R(D) as follows. The reinforcement learning action set A is the
space of indexed predictions, so A¥ = Y, and A = ));. The observation o is z initially,
and the empty set otherwise. The reward r is zero, except at the final iteration when it is
the negative loss for the corresponding structured output. Putting this together, one can
define a reinforcement learning problem R(D) according to the following rules: When
the history is empty, o’ = z and r = 0, where x is drawn from the marginal D(z). For

44



all non-empty histories, o’ = (). The reward r is zero, except when ¢t = k, in which case
7 = —Cq, Where ¢ is drawn from the conditional D(c | x), and ¢4 is the ath value of ¢,
thinking of a as an index.

Solving the search-based structured prediction problem is equivalent to solving the
induced reinforcement learning problem. For a policy 7, we define search(r) to be the
structured prediction algorithm that behaves by searching according to 7. The following
theorem states that these are, in fact, equivalent problems (the proof is a straightforward
application of the definitions):

Theorem 3.10. Let D be an structured prediction problem and let R(D) be the in-
duced reinforcement learning problem. Let 7 be a policy for R(D). Then n(R(D), ) =
L(D, search(m)) (where L is from Eq (3.1)), where n denotes regret (the difference in loss
between the optimal policy and the learned policy).

It is important to notice that SEARN does not solve the reinforcement learning prob-
lem. SEARN is limited to cases where one has access to an optimal policy: this is rarely
(if ever!) the case in reinforcement learning, since having an optimal policy would be
all one would need. However, for the limited case of reinforcement learning where all
observations are made initially and an optimal policy is available (which is essentially
exactly the structured prediction problem), SEARN is an appropriate algorithm.

One can think of SEARN as an approach motivated by “training wheels.” By starting
with the optimal policy, it is like having someone show you how to ride a bike. After one
“iteration,” you forget a bit of the optimal policy (you “weaken” the training wheels) and
are forced to use your own learned experience to compensate. Eventually, you use none
of the optimal policy (you completely remove the training wheels) and ride the bike on
your own.

One can imagine solving structured prediction by following the normal reinforcement
learning practice of starting from a random (or uniform) policy and trying to get better,
rather than following the SEARN approach of starting from optimal and trying to not
get much worse. My concern with doing things in the standard way is local maxima.
That is, by starting from the optimal policy, we hope that any maximum we learn will
be close to the global maximum. On the other hand, if one begins with a uniform policy
and applies a standard reinforcement learning algorithm like conservative policy iteration
(Kakade and Langford, 2002) to structured prediction setting, one obtains a loss bound
that depends on T2 (Daumé III, Langford, and Marcu, 2005). This is worse than the
T'InT bound achieved by SEARN (Theorem 3.6), but the comparison is somewhat void,
since both are upper bounds.

3.7 Discussion and Conclusions

I have presented an algorithm, SEARN, for solving structured prediction problems. Most
previous work on structured prediction has assumed that the loss function and the features
decompose identically over the output structure (Punyakanok and Roth, 2001; Taskar
et al., 2005). When the features do not decompose, the argmax problem becomes in-
tractable; this has been dealt with previously by augmenting the structured perceptron
to acknowledge a beam-search strategy (Collins and Roark, 2004). To my knowledge, no
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previous work has dealt with the problem of loss functions that do not decompose (such
as those commonly used in problems like machine translation, summarization and entity
detection and tracking). As SEARN makes no assumptions about decomposition (either
on the features or the loss), it is applicable to a strictly greater number of problems
than previous techniques (such as the summarization problem described in Chapter 6).
Moreover, by treating predictions sequentially rather than independently (Punyakanok
and Roth, 2001), SEARN can incorporate useful features that encompass large spans of
the output.

In addition to greater generality, SEARN is computationally faster on standard prob-
lems. This means that in addition to yielding comparable performance to previous al-
gorithms on small data sets, SEARN is able to easily scale to handle all available data
(see Chapter 4). SEARN satisfies a strong fundamental performance guarantee: given a
good classification algorithm, SEARN yields a good structured prediction algorithm. In
fact, SEARN represents a family of structured prediction algorithms depending on the
classifier and search space used. One general concern with algorithms that train on their
own outputs is that the classifiers may overfit, leading to overly optimistic performance
on the training data. This could lead to poor generalization. This concern is real, but
does not appear to occur in practice (see Chapter 4, 5 and 6).

The efficacy of SEARN hinges on the ability to compute an optimal (or near-optimal)
policy. For many problems including sequence labeling and segmentation (Chapter 4)
and some versions of parsing (see, for example, the parser of Sagae and Lavie (2005),
which is amenable to a SEARN-like analysis), the optimal policy is available in closed
form. For other problems, such as the summarization problem described in the Chap-
ter 6 and machine translation, the optimal policy may not be available. In such cases,
the suggested approximation is to perform explicit search. There is a strong intuition
that it should always be possible to perform such search under the assumption that the
underlying problem should be learnable. This implies that SEARN is applicable to nearly
any structured prediction problem for which we have sufficient prior knowledge to design
a good search space and feature function.
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Chapter 4

Sequence Labeling

Sequence labeling is the task of assigning a label to each element in an input sequence.
Sequence labeling is an attractive test bed for structured prediction algorithms because
it is likely the simplest non-trivial structure. The canonical example sequence labeling
problem from natural language processing is part of speech tagging. In part of speech
(POS) tagging, one receives a sentence as input and is require to assign a POS to each
word in the sequence. The set of possible parts of speech varies by data set, but is
typically on the order of 20-40. For reasonable sentences of length 30, the number of
possible outputs is is in excess of 1e48. Despite the comparative simplicity of this task,
this set is far too large to exhaustively explore without further assumptions.

Modern state-of-the-art structured prediction techniques fare very well on sequence
labeling problems. However, in order to maintain tractability in search and learning,
one is required to make a Markov assumption in the features. This is essentially a
locality assumption on the outputs. Specifically, a k-th order Markov assumption means
that no feature can reference the value of output labels whose position differs by more
than k positions. It is well known that language does not obey the Markov assumption.
For instance, whether “monitor” is a noun or verb at the beginning of a document is
strongly correlated with how the same word would be tagged at the end of a document.
Nevertheless, for many applications, it appears to be a reasonable approximation.

In this chapter, I present a wide range of results investigating the performance of
SEARN on four separate sequence labeling tasks: handwriting recognition, named en-
tity recognition (in Spanish), syntactic chunking and joint chunking and part-of-speech
tagging. These results are presented for two reasons. The first reason is that previous
structured prediction algorithms have reported excellent results on these problems. This
allows us to compare SEARN directly to these other algorithms under identical experi-
mental conditions. The second reason is that the simplicity of these problems allow us
to compare both the various tunable parameters of SEARN and the affect of the Markov
assumption in these domains.

This chapter is structured as follows. In Section 4.1 I describe the four sequence
labeling tasks on which I evaluate: specifically, the data sets and the features used. In
Section 4.2 T discuss the loss functions considered for the sequence labeling tasks. In
Section 4.3 I describe how SEARN may be applied to these loss functions. In Section 4.4
I present experimental results comparing the performance of SEARN under different base
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Figure 4.1: Eight example words from the handwriting recognition data set.

classifiers against the alternative structured prediction algorithms from Section 2.2. Fi-
nally, in Section 4.5 I compare the performance of SEARN under different choices of the
tunable parameters.

4.1 Sequence Labeling Problems

In this section, I describe the four tasks to which I apply SEARN: handwriting recognition,
Spanish named entity recognition, syntactic chunking and joint chunking and part-of-
speech tagging.

4.1.1 Handwriting Recognition

The handwriting recognition task I consider was introduced by Kassel (1995). Later,
Taskar, Guestrin, and Koller (2003) presented state-of-the-art results on this task using
max-margin Markov networks. The task is an image recognition task: the input is a
sequence of pre-segmented hand-drawn letters and the output is the character sequence
(“a”-“z"”) in these images. The data set I consider is identical to that considered by
Taskar, Guestrin, and Koller (2003) and includes 6600 sequences (words) collected from
150 subjects. The average word contains 8 characters. The images are 8 x 16 pixels
in size, and rasterized into a binary representation. Two example image sequences are
shown in Figure 4.1 (the first characters are removed because they are capitalized).

The standard features used in this task are as follows. For each possible output
letter, there is a unique feature that counts how many times that letter appears in the
output. Furthermore, for each pair of letters, there is an “edge” feature counting how
many times this pair appears adjacent in the output. These edge features are the only
“structural features” used for this task (i.e., features that span multiple output labels).
Finally, for every output letter and for every pixel position, there is a feature that counts
how many times that pixel position is “on” for the given output letter. In all, there are
26 + 262 + 26 x (8 x 16) = 4030 features for this problem. This is the identical feature set
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El presidente de la [Junta de Extremaduralorg , [Juan Carlos Rodriguez Ibarralpggr ,
recibird en la sede de la [Presidencia del Gobierno|org extremeno a familiares de varios
de los condenados por el proceso “ [Lasa-Zabalalyisc ” , entre ellos a [Lourdes Diez
Urraca|pgr , esposa del ex gobernador civil de [Guiptzcoa] oc [Julen Elgorriagalper ; v &
[Antonio Rodriguez Galindo|pgg , hermano del general [Enrique Rodriguez Galindo|pgg -

Figure 4.2: Example labeled sentence from the Spanish Named Entity Recognition task.

to that used by Taskar, Guestrin, and Koller (2003). In the results shown later in this
chapter, all comparison algorithms use identical feature sets.

In the experiments, I consider two variants of the data set. The first, “small,” is the
problem considered by Taskar, Guestrin, and Koller (2003). In the small problem, ten
fold cross-validation is performed over the data set; in each fold, roughly 600 words are
used as training data and the remaining 6000 are used as test data. In addition to this
setting, I also consider the “large” reverse experiment: in each fold, 6000 words are used
as training data and 600 are used as test data.

4.1.2 Spanish Named Entity Recognition

The named entity recognition (NER) task is a subtask of the EDT task discussed in
Chapters 1 and 5. Unlike EDT, NER is concerned only with spotting mentions of entities
with no coreference issue. Moreover, in NER we only aim to spot names and neither
pronouns (“he”) nor nominal references (“the President”). NER was the shared task for
the 2002 Conference on Natural Language Learning (CoNLL). The data set consists of
8324 training sentences and 1517 test sentences; examples are shown in Figure 4.2. A
300-sentence subset of the training data set was previously used by Tsochantaridis et al.
(2005) for evaluating the SVMS"™* framework in the context of sequence labeling. The
small training set was likely used for computational considerations. The best reported
results to date using the full data set are due to Ando and Zhang (2005). I report results
on both the “small” and “large” data sets.

Named entity recognition is not naturally a sequence labeling problem: it is a segmen-
tation and labeling problem: first, we must segment the input into phrases and second
we must label these phrases. There are two ways to approach such problems. The first
method is to map the segmentation and labeling problem down to a pure sequence label-
ing problem. The preferred method for performing such a mapping is through the “BIO
encoding” (Ramshaw and Marcus, 1995a). In the BIO encoding, non-names are tagged as
“O” (for “out”), the first word in names of type X are tagged as “B-X” (“begin X”) and
all subsequent name words are tagged as “I-X” (“in X”). While such an encoded enables
us to apply generic sequence labeling techniques, there are advantages to performing the
segmentation and labeling simultaneously (Sarawagi and Cohen, 2004). I discuss these
advantages in the context of SEARN in Section 4.3.

The structural features used for this task are roughly the same as in the handwriting
recognition case. For each label, each label pair and each label triple, a feature counts the
number of times this element is observed in the output. Furthermore, the standard set
of input features includes the words and simple functions of the words (case markings,
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[Great American]|yp [said]yp [it]np [increased)yp [its loan-loss reserves|np [bylpp [$ 93
million|np [after]pp [reviewing]yp [its loan portfolio]np , [raising]yp [its total loan and real
estate reserves|np [tolpp [$ 217 million]yp .

Figure 4.3: Example labeled sentence from the syntactic chunking task.

prefix and suffix up to three characters) within a window of +2 around the current
position. These input features are paired with the current label. This feature set is fairly
standard in the literature, though Ando and Zhang (2005) report significantly improved
results using a much larger set of features. In the results shown later in this chapter, all
comparison algorithms use identical feature sets.

4.1.3 Syntactic Chunking

The final pure sequence labeling task I consider is syntactic chunking (for English). This
was the shared task of the CoNLL conference in 2000. As before, the input to the syntactic
chunking task is a sentence. The desired output is a segmentation and labeling of the base
syntactic units (noun phrases, verb phrases, etc.). This data set includes 8936 sentences
of training data and 2012 sentences of test data. An example is shown in Figure 4.3. As
in the named entity recognition task, there are two ways to approach the chunking task:
via the BIO encoding and directly. (Several authors have considered the noun-phrase
chunking task instead of the full syntactic chunking task. It is important to notice the
difference, though results on these two tasks are typically very similar, indicating that
the majority of the difficulty is with noun phrases. I report scores on both problems.)

I use the same set of features across all models, separated into “base features” and
“meta features.” The base features apply to words individually, while meta features
apply to entire chunks. The standard base features used are: the chunk length, the word
(original, lower cased, stemmed, and original-stem), the case pattern of the word, the first
and last 1, 2 and 3 characters, and the part of speech and its first character. I additionally
consider membership features for lists of names, locations, abbreviations, stop words, etc.
The meta features I use are, for any base feature b, b at position i (for any sub-position
of the chunk), b before/after the chunk, the entire b-sequence in the chunk, and any 2-
or 3-gram tuple of bs in the chunk. I use a first order Markov assumption (chunk label
only depends on the most recent previous label) and all features are placed on labels, not
on transitions. In the results shown later in this chapter, some of the algorithms use a
slightly different feature set. In particular, the CRF-based model uses similar, but not
identical features; see (Sutton, Sindelar, and McCallum, 2005) for details.

4.1.4 Joint Chunking and Tagging

In the preceding sections, I considered the single sequence labeling task: to each element
in a sequence, a single label is assigned. In this section, I consider the joint sequence
labeling task. In this task, each element in a sequence is labeled with multiple tags.
A canonical example of this task is joint POS tagging and syntactic chunking (Sutton,
Rohanimanesh, and McCallum, 2004). An example sentence jointly labeled for these two
outputs is shown in Figure 4.4 (under the BIO encoding).
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Figure 4.4: Example sentence for the joint POS tagging and syntactic chunking task.

Under a naive implementation of joint sequence labeling, where the J label types
(each with L; classes) are collapsed to a single tag, the complexity of exact dynamic
programming search with Markov order k scales as O(([ L;)**1). For even moderately
large L; or k, this search quickly becomes intractable. In order to apply models like
conditional random fields, one has to resort to complex and slow approximate inference
methods, such as message passing algorithms (Sutton, Rohanimanesh, and McCallum,
2004).

Fundamentally, there is little difference between standard sequence labeling and joint
sequence labeling. I use the same data set as for the standard syntactic chunking task
(Section 4.1.3) and essentially the same features. The only difference in features has to do
the structural features. The structural features I use include the obvious Markov features
on the individual sequences: counts of singleton, doubleton and tripleton POS and chunk
tags. I also use “crossing sequence” features. In particular, I use counts of pairs of POS
and chunk tags at the same time period as well as pairs of POS tags at time ¢ and chunk
tags at t — 1 and vice versa.

4.2 Loss Functions

For pure sequence labeling tasks (i.e., when segmentation is not also done), there are
two standard loss functions: whole-sequence loss and Hamming loss. Whole-sequence
loss gives credit only when the entire output sequence is correct: there is no notion of
partially correct solutions. Hamming loss is more forgiving: it gives credit on a per label
basis. For a true output y of length N and hypothesized output y (also of length N),
these loss functions are given in Eq (4.1) and Eq (4.2), respectively.

N
My, 9) 21 [\/ Un # y] (4.1)
; n=1
Ry, 5) 23 1 [y # ) (4.2)
n=1

It is fairly clear that both of these loss functions decompose over the structure of ).
That is, for any permutation m, £H2 (y, 5) = (M2 (7 0 y 7 0 §)), where we treat 7 as a
group action over the sequence. The proof of this statement is trivial.

The most common loss function for joint segmentation and labeling problems (like the
named entity recognition and syntactic chunking problems) is F; measure over chunks.
This is the geometric mean of precision and recall over the (properly-labeled) chunk
identification task, given in Eq (4.3).
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In Eq (4.3), the interpretation of cardinality and intersection is in terms of chunks.
That is, the cardinality of y is simply the number of chunks identified. The cardinality of
the intersection is the number of chunks in common (i.e., the number of correctly identified
chunks). As can be seen in Eq (4.3), one is penalized both for identifying too many chunks
(penalty in the denominator) and for identifying too few (penalty in the numerator).
The advantage of F; measure over Hamming loss seen most easily in problems where the
majority of words are “not chunks”—for instance, in gene name identification (McDonald
and Pereira, 2005)—Hamming loss will often prefer a system that identifies no chunks
to one that identifies some correctly and other incorrectly. Using a weighted Hamming
loss can not completely alleviate this problem, for essentially the same reasons that a
weighted zero-one loss cannot optimize F; measure in binary classification, though one

can often achieve an approximation (Lewis, 2001; Musicant, Kumar, and Ozgur, 2003).

4.3 Search and Optimal Policies

The choice of “search” algorithm in SEARN essentially boils down to the choice of output
vector representation, since, as defined, SEARN always operates in a left-to-right manner
over the output vector. In this section, we describe vector representations for the output
space and corresponding optimal policies for SEARN.

4.3.1 Sequence Labeling

The most natural vector encoding of the sequence labeling problem is simply as itself. In
this case, the search will proceed in a greedy left-to-right manner with one word being
labeled per step. This search order admits some linguistic plausibility for many natu-
ral language problems. It is also attractive because (assuming unit-time classification)
it scales as O(NL), where N is the length of the input and L is the number of labels,
independent of the number of features or the loss function. However, this vector encod-
ing is also highly biased, in the sense that it is perhaps not optimal for some (perhaps
unnatural) problems.

An alternative vector encoding is the following. We begin with a completely unlabeled
sequence and, at each search step, we label a single (arbitrarily positioned) word. After
sufficiently many steps have passed, we end this process. We can overwrite old labels. It
is possible to define this search process as a vector in the following encoding. Let N’ > N
be a “time limit.” Define our vectors as sequences of length N’ over the label set N x L.
The intuition is that choosing the label (n,l) means that the element at position n is now
labeled with label I. After N’ steps, we take the most recent label for each position as
the final label (and an arbitrary label for any unspecified position).

This “unordered” search procedure is attractive because it does not require us to
hard-code a search order. In practice, we might expect the algorithm to learn to first
predict the positions it is sure about and the later move on to the less sure positions
when more global information is available (nearby words have been labeled). We might
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hope that this will lead to a less biased algorithm. In fact, if N is sufficiently large, this
representation would potentially allow the search algorithm to mimic belief propagation
(Yedidia, Freeman, and Weiss, 2003) over the sequence. We do, however, pay a cost for
this added flexibility. The label space has increased by a factor of IV, which means that
(again, assuming unit-time classification) the algorithm now scales as O(N?2L), which
is reasonable only for short sequences. While this is perhaps unattractive for sequence
labeling problems, this seems like an entirely reasonable approach to image segmentation
problems.

4.3.2 Segmentation and Labeling

For joint segmentation and labeling tasks, such as named entity identification and syn-
tactic chunking, there are two natural encodings: word-at-a-time and chunk-at-a-time.
In word-at-a-time, one essentially follows the “BIO encoding” and tags a single word in
each search step. In chunk-at-a-time, one tags single chunks in each search step, which
can consist of multiple words (after fixing a maximum phrase length).

Under the word-at-a-time encoding, an input of length N leads to a vector of length
N over L + 1 labels. Here L of the labels correspond to “begin” a phrase, while the
L + 1st label corresponds to “continue the current phrase.” Any vector that begins with
the L + 1st label attains maximal loss.

Under the chunk-at-a-time encoding, an input of length N leads to a vector of length
N over M x L+ 1 labels, where M is the maximum phrase length. The interpretation of
the first M x L labels, for instance (m,!) means that the next phrase is of length m and
is a phrase of type [. The “41” label corresponds to a “complete” indicator. Any vector
for which the sum of the “m” components is not exactly IV attains maximum loss.

Just as there is a natural “unordered” search procedure for standard sequence labeling,
there is also a natural unordered search procedure both for word-at-a-time chunking and
chunk-at-a-time chunking.

Other search orders (or, more precisely, vector representations) are possible. For
instance, one could perform right-to-left decoding or inside-out decoding or first decode
odd positions then even. All of these will exhibit different biases, which may or may not
be good for the particular problem and data set.

4.3.3 Optimal Policies

For the sequence labeling problem under Hamming loss, the optimal policy is essentially
always to label the next word correctly. In the left-to-right order, this is straightforward.
In the arbitrary ordering cases, after n < N words have been tagged correctly, there
are N — n possible steps the optimal policy could take. It could either tag a currently
untagged word correctly, or repair a previously incorrectly tagged word. In practice,
I deterministically choose to tag the left-most untagged word first, until no words are
tagged, at which point the policy corrects the tag of the left-most incorrectly tagged word
first. One could alternatively randomize over these choices, but this might introduce too
much noise into the system.

For sequence labeling under zero-one loss, the optimal policy is the same as for Ham-
ming loss. Technically, once an error has been made, the optimal policy is agnostic as to
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future choices. This could be encoded in a randomized policy. In practice, I use the same
policy as for Hamming loss.

As far as the segmentation problem, word-at-a-time and chunk-at-a-time behave very
similarly with respect to the loss function and optimal policy. I will discuss word-at-
a-time because its notationally more convenient, but the difference is negligible. The
optimal policy can be computed by analyzing a few options in Eq (4.4)

begin X yr = begin X
™ (x, y11r, Y1:e—1) = in X y =1in X and g4—; € {begin X,in X'} (4.4)
out otherwise

It is fairly straightforward to show that this policy is optimal. There is, actually,
another optimal policy. For instance, if y; is “in X” but g;—; is “in Y (for X # Y'), then
it is equally optimal to select 3; to be “out” or “in Y. In theory, when the optimal policy
does not care about a particular decision, one can randomize over the selection. However,
in practice, I always default to a particular choice to reduce noise in the learning process.

For all of the policies described above, it is also straightforward to compute the optimal
approximation for estimating the expected cost of an action. In the Hamming loss case,
the loss is 0 if the choice is correct and 1 otherwise. For the whole-sequence loss, the
loss is 0 if the choice is correct and all previous choices were correct and 1 otherwise.
Note that under whole-sequence loss, once an error has been made, the cost function
becomes ambivalent between future alternatives. The computation for F; loss is a bit
more complicated: one needs to compute an optimal intersection size for the future and
add it to the past “actual” size. This is also straightforward by analyzing the same cases
as in Eq (4.4).

4.4 Empirical Comparison to Alternative Techniques

In this section, I compare the performance of SEARN to the performance of alternative
structured prediction techniques over the data sets described in Section 4.1. The results
of this evaluation are shown in Table 4.1. In this table, I compare raw classification
algorithms (perceptron, logistic regression and SVMs) to alternative structured prediction
algorithms (structured perceptron, CRFs, SVMs"s and M3Ns) to SEARN with three
baseline classifiers (perceptron, logistic regression and SVMs). For all SVM algorithms
and for M®Ns, I compare both linear and quadratic kernels (cubic kernels were evaluated
but did not lead to improved performance over quadratic kernels).

For all SEARN-based models, I use the the following settings of the tunable parameters
(see Section 4.5 for a comparison of these settings). I use the optimal approximation for
the computation of the per-action costs. I use a left-to-right search order with a beam
of size 10. For the chunking tasks, I use chunk-at-a-time search. I use weighted all pairs
and costing to reduce from cost-sensitive classification to binary classification.

Note that some entries in Table 4.1 are missing. The vast majority of these entries
are missing because the algorithm considered could not reasonably scale to the data set

[t

under consideration. These are indicated with a “~” symbol. Other entries are not
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ALGORITHM Handwriting NER Chunk | C+T
Small Large | Small Large
CLASSIFICATION
Perceptron 65.56  70.05 | 91.11 94.37 | 83.12 | 87.88
Log Reg 68.65 72.10 | 93.62 96.09 | 85.40 | 90.39
SVM-Lin 75.75 8242 | 93.74 97.31 | 86.09 | 93.94
SVM-Quad 82.63 82.52 | 85.49 85.49 ~ ~
STRUCTURED
Str. Perc. 69.74 74.12 | 93.18 95.32 92.44 93.12
CRF - - 94.94 ~ 94.77 | 96.48
SVvstruct - - 94.90 ~ — -
M3N-Lin 81.00 ~ — — — -
M3N-Quad 87.00 ~ — - - —
SEARN
Perceptron 70.17  76.88 | 95.01 97.67 | 94.36 | 96.81
Log Reg 73.81 79.28 | 95.90 98.17 | 94.47 | 96.95
SVM-Lin 82.12  90.58 | 95.91 98.11 94.44 96.98
SVM-Quad 87.55  90.91 | 89.31 90.01 ~ ~

Table 4.1: Empirical comparison of performance of alternative structured prediction algo-
rithms against SEARN on sequence labeling tasks. (Top) Comparison for whole-sequence
0/1 loss; (Bottom) Comparison for individual losses: Hamming for handwriting and
Chunking+Tagging and F for NER and Chunking. SEARN is always optimized for the
appropriate loss.

available simply because the results I report are copied from other publications and these
publications did not report all relevant scores. These are indicated with a “—” symbol.

We observe several patterns in the results from Table 4.1. The first is that structured
techniques consistently outperform their classification counterparts (eg., CRFs outper-
form logistic regression). The single exception is on the small handwriting task: the
quadratic SVM outperforms the quadratic M®N.! Additionally, for all classifiers, adding
SEARN consistently improves performance.

An obvious pattern worth noticing is that moving from the small data set to the large
data set results in improved performance, regardless of learning algorithm. However,
equally interesting is that simple classification techniques when applied to large data sets
outperform complicated learning techniques applied to small data sets. Although this
comparison is not completely fair—both algorithms should get access to the same data—
if the algorithm (like the SVMS™* or the M3N) cannot scale to the large data set, then
something is missing. For instance, a vanilla SVM on the large handwriting data set
outperforms the M3N on the small set. Similarly, a vanilla logistic regression classifier

"However, it should be noted that a different implementation technique was used in this comparison.
The M3N is based on an SMO algorithm, while the quadratic SVM is libsvm (Chang and Lin, 2001).
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trained on the large NER data set outperforms the SVM®'™* and the CRF on the small
data sets.

The important observation is that, on the same data set, SEARN can perform compara-
bly or better than competing structured prediction techniques. On the small handwriting
task, the two best performing systems are M?Ns with quadratic kernels (87.0% accuracy)
and SEARN with quadratic SVMs (87.6% accuracy). On the NER task, SEARN with a
perceptron classifier performs comparably to SVMs"u¢t and CRFs (at around 95.9% ac-
curacy). On the Chunking+Tagging task, all varieties of SEARN perform comparatively
to the CREF. In fact, the only task on which SEARN does not outperform the competition
techniques is on the raw chunking task, for which the CRF obtains an F-score of 94.77
compared to 94.47 for SEARN.

The final result from Table 4.1 worth noticing is that, with the exception of the
handwriting recognition task, SEARN using logistic regression as a base learner performs
at the top of the pack. The SVM-based SEARN models typically perform slightly better,
but not significantly. In fact, the raw averaged perceptron with SEARN performs almost
as well as the logistic regression. This is a nice result because the SVM-based models
tend to be expensive to train, especially in comparison to the perceptron. The fact that
this pattern does not hold for the handwriting task is likely due to the fact that the data
for this task is quite unlike the data for the other tasks. For the handwriting task, there
are a comparatively small number of features, and are individually much less predictive
of the class. It is only in combination that good classifiers can be learned.

4.5 Empirical Comparison of Tunable Parameters

In this section, I compare the performance of SEARN as I adjust the tunable parameters.
Unless otherwise specified, all experiments are on the small data sets. In all experiments,
I use logistic regression as the base learner. This choice was made because, with the
exception of the handwriting recognition task, the SEARN with logistic regression was
never significantly worse than any other base learner. Moreover, it is more efficient than
the SVM, which also performed well. The parameters compared are:

e Computation of expected loss: by single Monte-Carlo sample, by ten samples or by
the optimal approximation.

e Vector encoding: left-to-right or unordered; also, for segmentation problems, word-
at-a-time versus chunk-at-a-time.

e Beam size: compare greedy search to beam search with different sized beams.
e Multiclass reduction: weighted all pairs versus unweighted all pairs.

e Number of iterations of SEARN.

Not all parameters are compared on all data sets. For instance, the unordered vector
encoding is only tested on the handwriting recognition task because the output sequences
tend to be sufficiently short that paying the N? cost is possible. For all comparisons, one of
the options will be taken as the “baseline” and the others will be compared by percentage
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Handwriting Spanish NER Chunking Chunk+Tag
— MC 1 +0.071% +0.032% +0.048% —0.033%
— MC 10 +0.092% +0.052% +0.069% +0.051%

Table 4.2: Evaluation of computation of expected loss: differences between both single
Monte-Carlo (MC 1) and ten Monte-Carlo (MC 10) against the optimal approximation.

Spanish NER Chunking
— Word —4.194% —2.038%

Table 4.3: Evaluation of computation of vector encodings: changes in performance for
using word-at-a-time rather than chunk-at-a-time encodings.

change in performance. Positive values mean improved performance by changing the
baseline setting; negative values indicate decreased performance.

Table 4.2 shows the differences in system quality for models learned using alternative
computations of the expected loss. The computation based on the optimal approximation
is used as a baseline. The “— MC 1”7 rows show the change in performance by using a
single Monte-Carlo sample instead. As we can see, the performance does not change
very much when moving to Monte-Carlo samples. A small degradation in performance
is observed using single samples for the Chunking+Tagging problem. When 10 samples
are used, all improvements are positive, but tiny. Given the computational overhead of
using Monte-Carlo samples instead of the optimal approximation, for these problems, it
is probably worthwhile to stay with the approximation.

Next, I compare left-to-right versus unordered vector encodings for the handwriting
recognition task (small data set). By moving to an unordered vector encoding, the per-
formance on this task rises by 0.48%. This gain comes at a significant computational
cost, and is insufficient to make the logistic regression model competitive with the SVM
models on this task.

In Table 4.3, I compare chunk-at-a-time search to word-at-a-time search for the seg-
mentation problems: Spanish named entity recognition and syntactic chunking. Note
that the feature space naturally expands somewhat when moving to a chunking frame-
work. We can see that in the NER task, moving to word-at-a-time search significantly
hurts performance. The change is smaller, but still negative, for the chunking task. This
echos other recent results (Sarawagi and Cohen, 2004; Ciaramita and Altun, 2005).

In Table 4.4, different beam sizes are compared. The baseline is beam 10 search.
The differences in performance for beam 10 versus greedy search are fairly pronounced,
especially for the handwriting task. However, for the other tasks, the differences are
comparatively small. The differences between beam 5, beam 10 and beam 25 are relatively
negligible for all tasks. This suggests that at least for these problems, the necessity to
propagate large amounts of uncertainty is low.

In Table 4.5, T compare the performance on the chunking problems when using un-
weighted all pairs (as opposed to weighted all pairs). We can see that there is a big
performance drop for not using weighted classification for the NER task, but not so large
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Handwriting Spanish NER Chunking Chunk+Tag
— Greedy —0.813% —0.371% —0.527% —0.594%
— Beam 5 —0.157% —0.081% —0.098% —0.094%
— Beam 25 +0.052% +0.021% +0.016% +0.019%

Table 4.4: Evaluation of beam sizes: differences between beam search and greedy search
(baseline is a beam of 10).

Spanish NER Chunking
— Unweighted —3.195% —0.342%

Table 4.5: Evaluation of multiclass reduction strategies: comparing unweighted all pairs
to weighted all pairs.

a drop for the chunking task. This difference can likely be attributed to the significance
of the F-score for the two tasks. In NER, only very few words in a sentence are part of
a chunk, but in chunking, almost every word is. This means that the weighting is much
more pronounced in the NER task and therefore the results will be significantly more
sensitive to the weighting for the NER problem.

Finally, in Figure 4.5, I plot the performance of the learned policy for the SEARN-
based models for the four tasks as the number of iterations increases. For these graphs,
I use a constant value of 8 = 1 for the interpolation: pure policy-iteration. The curves
are somewhat different for each problem, but in general an optimum is reached in 5-15
iterations and then performance either levels off (eg., for syntactic chunking) or beings
to drop (eg., for handwriting recognition). The drop in performance is likely due to
overfitting. Note that these curves are the performance of the learned policy without the
optimal policy on the test data, so these graphs do not contradict the SEARN theorem of
uniform degradation of performance (Lemma 3.5).

In summary, this analysis has shown then following trends:

e For the computation of the expected loss, using the optimal approximation does
not significantly worsen the results. Moreover, the optimal approximation is signif-
icantly more efficient. For these problems, it is probably the preferable approach.

e For the vector encoding, chunk-based search is significantly better than word-based
search.

e For the beam size, a small beam tends to consistently outperform greedy search,
but there is little bang for the buck when moving to larger and larger beam settings.

e For the multiclass reduction, using weighted-all-pairs is important, especially when
the cost function being optimized is significantly different from raw accuracy.
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Figure 4.5: Number of iterations of SEARN for each of the four sequence labeling problem.
Upper-left: Handwriting recognition; Upper-right: Spanish named entity recognition;
Lower-left: Syntactic chunking; Lower-right: Joint chunking/tagging.

4.6 Discussion and Conclusions

In this chapter, I have presented experimental results on simple sequence labeling tasks
that showcase the efficacy of SEARN (see Section 4.4). These results show that SEARN is
competitive with competing structured prediction techniques and scales better to large
data sets. I have furthermore compared the internal settings of SEARN (Section 4.5).
These results have shown that the optimal approximation is an efficient, effective method
for computing the losses associated with different actions. Small beams are sufficient for
these problems, and chunk-at-a-time decoding leads to significant performance increases.

While these results are useful, they should be taken with a grain of salt. Sequence
labeling is a very easy problem. The structure is simple and the most common loss
functions decompose over the structure. The comparatively good performance of raw
classifiers suggests that the importance of structure is minor. In fact, some results sug-
gest that one need not actually consider the structure at all for some such problems
(Punyakanok and Roth, 2001; Punyakanok et al., 2005).
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An additional caveat is that performance is quite high in all of these problems. While
this is a good phenomenon to observe, it also means that some generalizations might not
extend to harder problems. For instance, it is easy to imagine that for harder problems,
using larger beams would help significantly. Moreover, the optimal approximation is good
largely because the learned classifiers tend to perform near optimally. Even if not, the
dependence of the classifier’s prediction on the n + 10th word is relatively independent of
its prediction on the nth word. For more problems with more complex structure, or for
which performance is not so good, a larger performance improvement might be observed
by using Monte-Carlo samples.
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Chapter 5

Entity Detection and Tracking

This chapter focuses on the application of SEARN to the entity detection and tracking
problem (introduced in Section 1.2). First, I more exactly define the problem from the
perspective of the data set I use for evaluation. Second, I briefly survey prior work on this
problem and discuss why SEARN is an attractive tool to apply to the EDT problem. Next,
I describe the search structure I employ and the features. I then present empirical results
showing state-of-the-art performance on the ACE 2004 EDT data set and conclude with
a comparison of SEARN to standard models for this problem.

5.1 Problem Definition

The entity detection and tracking problem (EDT) focuses on discovering the set of entities
discussed in a document and identifying the textual span of the document (the mentions)
that refer to these entities. As part of the detection phase, a system must also identify,
for each entity, its corresponding entity type (person, place, organization, etc.) and, for
each mention of an entity, its mention type (name, nominal, pronoun, etc.).

In Figure 5.1 (reproduced from Figure 1.2), I show one paragraph from our data set,
wherein entities have been identified, types have been disambiguated and coreference
chains have been marked. In this paragraph, I underline every entity mention, each of
which is followed by a superscript that identifies the mention type and a subscript that
identifies both the entity type and coreference chain of that mention. For instance, the
word “commander” is a nominal reference to a person, identified as entity number 2. At
the beginning of the second sentence, the word “I” is a pronominal mention also referring
to entity 2 (and hence is the same entity). A few of the coreference chains that appear in
this extract are: {JERUSALEM}, {commander, I, Gen, Yitzhak Eitan}, {Israeli, Israeli}
and {troops}.

The full entity detection and tracking task is to take an input document and produce
the annotation of all entities and mentions, like that seen in Figure 1.2. This is typically
broken into two phases: first, a mention detection phase underlines all mentions and
assigns to them a mention type and entity type; second, a coreference phase links together
the already-identified mentions by assigning the numbers to each mention (of course, the
numbering scheme is arbitrary — any numbering that preserves identity would be just as
good as another).
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JERUSALEMYY | — The commandery)y's of Israelifhy 5 troopspon', in  the

West Bank['Y 5 said there was a simple goal to the helicopterie  assassination on Thurs-

LOC—
day of a gun—w1eld1ng local Palestinian{"F - leaderfoY ¢ . “ ITR , hope it will reduce the

violence and bring back reason to this areajoy o 7, Maj Genprr o Yitzhak Eitaniit o told

PER—2 PER—
reportersyont NOM PRI

o at a briefing hours after three missiles{{,x ;; fired from an Apache(;; ¢

helicopterypy ¢ killed Hussein Obaiyatyoy ¢ , along with two middle-aged womenioM o

VEH-6 PER-8
3 3 NAM NAM
standing near hispRo ¢ vanioM |4 in Beit Sahurfat ;, , near BethlehemfaY |- . Instead

, it has touched off one of the bloodiest and most intense weekends of fighting yet

in the six-week-old conflict , with gunfire crackling through the West Bank[3Y - and
Gaza Stripyon 16 - Five Palestiniansip ' |, and an Israelifyy 5 soldierfiy' ;¢ were shot

dead on Friday .

Figure 5.1: An example paragraph extract from a document from our training data with
entities identified; reproduced from Figure 1.2.

Mention Type Description and Examples

Name (NAM) A proper name reference to an entity; for instance “Georg
Cantor,” “Congress,” “Jerusalem,” and “Microsoft” are all
named references.

Nominal (NOM) A common noun reference to an entity; for instance “the
man,” “the president,” “the group,” “the country” and “the
company” are all nominal references.

Pronominal (PRO) | A pronoun reference to an entity; for instance “he,” “they,”
“it,” etc. This also includes words such as “who” in the
construction “Georg Cantor, who died in an asylum, ....”
pre-modifier (PRE) | A reference by a salutation, position or other modifier; for
instance “Palestinian” in the case of “Palestinian leader” or
“President” in the case of “President Nixon.”

Table 5.1: A list of the four possible mention types with descriptions and examples.

In the data set I use, there are four mention types, shown in Table 5.1, including
names, pronouns, nominals and pre-modifiers. Further, there are seven entity types,
shown in Table 5.1, with corresponding subtypes (there are no subtypes for the ‘person’
entity type). Of the entity types, I focus primarily on ‘person,” ‘organization,” ‘loca-
tion,” and ‘GPE,’ since these are the most common and the most general across different
domains.

Like all natural language processing problems, the primary difficulty in the EDT
task is ambiguity and the multiple diverse sources of information required to resolve
this ambiguity. Consider, for instance, the example paragraph shown in Figure 1.2.
Identifying that the “I” in the second sentence is the same person as the “commander”
in the first sentence is an extremely challenging inference to make. In fact, it is possible
that the two mentions actually refer to two different entities who happen to agree in
what they say. Identifying that the “Gen” entity is the same as “Yitzhak Eitan” requires
some knowledge of syntax, as does linking this entity with the pronoun “I.” On the other
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Entity Type Description and Subtypes

Person (PER) Person entities are limited to humans. A person may be a
single individual or a group.

Subtypes: None

Organization (ORG) | Organization entities are limited to those with an established
organizational structure.

Subtypes: government, commercial, educational, non-profit,
other

GPE (GPE) A Geographical-Political Entity. GPE entities are politically
defined geographical regions.

Subtypes: address, boundary, celestial, land-region-natural,
region-local, region-subnational, region-national, region-
international, water-body, other

Location (LOC) Location entities are limited to geographic entities with phys-
ical extent.

Subtypes: continent, nation, state-or-province, county-or-
district, population-center, other

Facility (FAC) Facility entities are human-made artifacts in the domains of
architecture and civil engineering.

Subtypes: building, subarea-building, bounded-area, conduit,
path, barrier, plant, other

Vehicle (VEH) Vehicle entities are human-made artifacts that are used for
transportation purposes.

Subtypes: land, air, water, subarea-vehicle, other

Weapon (WEA) Weapon entities are human-made artifacts whose primary
purpose is to cause damage.

Subtypes: blunt, exploding, sharp, chemical, biological,
shooting, projectile, nuclear, other

Table 5.2: A list of the seven entity types, with descriptions and subtypes.

hand, identifying that the “Apache” referred to in the second sentence is coreferent with
“helicopter” form the first sentence requires external knowledge that an Apache is a type
of helicopter. Identifying that “his” in the second sentence is coreferent with “Hussein
Obaiyat” and not “Yitzhak Eitan” requires further syntactic knowledge.

In terms of the set of mention types (name, nominal, pronoun and pre-modifier), there
are essentially three distinct sorts of coreference links that must be made: name-to-name,
name-to-nominal and name-to-pronoun (pre-modifiers can typically be identified as either
names or nominals and so they fall into one of the other three classes). Of these, name-
to-name is by far the simplest and can be fairly easily solved with a set of features that
look for string similarity. Name-to-pronoun is the case of pronoun resolution or anaphora
resolution, which has been studied extensively by linguists, both pure and computational.
It is still a difficult problem, but most of the information necessary for making this sort
of decision can be found within the document (except for gender resolution issues). The
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name-to-nominal problem is hard and typically requires external knowledge to solve. The
example from Figure 1.2 of the “Apache” /”helicopter” link is a prime example of this
problem. In this case, there is a hint within the document that “Apache” is a type of
“helicopter” (due to the pre-modifier position), but this cannot be counted on in general.
A significant contribution of this thesis is in developing techniques for handling the name-
to-nominal case.

5.2 Prior Work

The majority of prior work on the entity detection and tracking task splits it into two
separate subproblems: first, one performs mention detection (finding the text spans that
correspond to mentions of entities and identifying their entity types and mention types);
then one performs coreference resolution, which groups the previously-identified mentions
into coreference chains. (There are two notable exceptions. First, (Wellner et al., 2004)
performs integrated extraction and coreference in the context of citation matching using
conditional random field techniques. This is similar to the model discussed below in
Section 5.2.2.3. Very recently, a second approach based entirely on reranking, has shown
improved tagging performance when coreference is included (Ji and Grishman, 2004; Ji,
Rudin, an