
From Zero to Reproducing Kernel Hilbert Spaces

in Twelve Pages or Less

Hal Daumé III

11 February 2004

1 Introduction

Reproducing Kernel Hilbert Spaces (RKHS) have been found incredibly useful in
the machine learning community. Their theory has been around for quite some
time and has been used in the statistics literature for at least twenty years. More
recently, their application to perceptron-style algorithms, as well as new classes
of learning algorithms (specially large-margin or other regularization machines)
has lead to the proliferation of algorithms and software that depend on their
nature.

Despite this burgeoning of practical uses, the theory and structure behind
the use of the “kernel trick” is often glossed over. This tutorial attempts to take
the reader from a very basic understanding of fields through Banach spaces and
Hilbert spaces, into Reproducing Kernel Hilbert Spaces. This is very much a
“RKHSs without the magic (with the math)” style paper, but every effort has
been put in to making the math as clear as possible.

For more information on the use of kernels in machine learning, the reader is
referred to the well-known tutorials on support vector machines [3] and gaussian
processes [9, 12]. Both SVMs and GPs belong to the class regularization learning
machines that take advantage of the “kernel trick” to perform linear learning in
non-linear spaces.

2 Fields

The beginning of our voyage will be the field. A field is perhaps the most com-
plex (in terms of operations) basic algebraic structure. A field F is a structure
〈F,+, ·, 0, 1〉; it consists of a universe F , an addition operation (+), a multiplica-
tion operation (·), an identity for addition 0, and an identity for multiplication
1. Furthermore, an inverse operation − must exist for addition and an inverse
operation (·)−1 must exist for multiplication (for non-zero elements). In addi-
tion, these operations must satisfy the following axioms (the Field Axioms), for
all elements a, b, c ∈ F :

• Associative Laws:
a+ (b+ c) = (a+ b) + c

a · (b · c) = (a · b) · c

• Commutative Laws:
a+ b = b+ a

1

a · b = b · a

• Distributive Laws:
a · (b+ c) = a · b+ a · c

(a+ b) · c = a · c+ b · c

• Identity Laws:
a+ 0 = 0 + a = a

a · 1 = 1 · a = a

• Inverse Laws:
a+ (−a) = (−a) + a = 0

a · a−1 = a−1 · a = 1 when a 6= 0

Typically the (·) will be omitted for multiplication, as is standard. Further-
more, we will write a− b for a+ (−b) and a/b or a

b for a · (b−1).

2.1 Examples of Fields

The “smallest” well-known field is the rational field, Q. The reals R form a larger
field than Q and the complex numbers also form a field. Most of our examples
here will have to do with the reals, since they have other nice properties that
we will find useful. Note that the integers are not a field, as they do not have a
multiplicative inverse.

2.2 Ordered Fields

An ordered field F is a field with a binary relation (≤) that is a linear order. In
particular, for any a, b, c ∈ F , (<) must obey:

• Reflexive: a ≤ a

• Antisymetric: a ≤ b ∧ b ≤ a⇒ a = b

• Transitive: a ≤ b ∧ b ≤ c⇒ a ≤ c

• Interaction of operations and ordering:

– For all a, b, c ∈ F, if a ≤ b then a+ c ≤ b+ c

– For all a, b ∈ F, if 0 ≤ a and 0 ≤ b then 0 ≤ a · b

As is standard, when a ≤ b ∧ a 6= b we will write a < b.
All of the fields mentioned above (Q, R and C) are ordered fields with the

usual ordering.

2

2.3 Complete Ordered Fields

A complete ordered field is the first not completely straightforward structure we
will encounter. Completeness is important to us because it enables us to define
the notion of a limit. Informally, a space is complete if every (infinite) sequence
of its elements that approaches a particular value has this value as it’s “limit”
and this limit is in the space itself.

The formal definition is that X is a complete space if every Cauchy sequence
in X is convergent.

In order to get this, we need a notion of convergence, which means we need a
notion of distance. Let d : X ×X → R be a function that takes two elements of
the field X and produces a “distance” between them; here R is the underlying
universe of X (think: real numbers). This function must be a metric:

• Non-negativity: d(x, y) ≥ 0 for all x, y ∈ X

• Coincidence: d(x, y) = 0 if and only if x = y for all x, y ∈ X

• Symmetry: d(x, y) = d(y, x) for all x, y ∈ X

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X

A Cauchy sequence is a sequence 〈xi〉∞i=0 such that for every real number
ε > 0 we can find a natural number N such that d(xn, xm) < e whenever
n,m > N . Here, d is a distance metric on X; for instance, when X is R,
d(x, y) = |x− y|. This basically says that we can take an arbitrarily small value
for ε and are guarnteed that after some point (N), all later values of x are no
further apart than ε.

The definition of a convergent sequence is very similar. A sequence 〈xi〉∞i=0

is convergent in X if there is a point x ∈ X such that for every real number
ε > 0 we can find a natural number N such that d(x, xn) < ε for all n > N .
This says that for any convergent sequence, we can find some value x that is in
the original space that is arbitrarily close to xn for all n after a certain point.

By way of example, Q is not a complete ordered field. For instance, the
sequence represnting the decimal expansion of

√
2 is a Cauchy sequence in Q

which does not converge in Q. On the other hand, R is a complete ordered field.

2.4 Isomorphisms

The concept of an isomorphism is prevalent in all areas of math. It is essentially
a mapping between two objects that preserves all the relevant properties of those
objects.

In the case of fields F and G, we say that φ is an isomorphism between F
and G if φ is a function from F → G and φ obeys certain properties:

• Injective (one-to-one): for all f, f ′ ∈ F , φ(f) = φ(f ′) implies that f = f ′

(i.e., there is at most one element in F which maps to a single element in
G).

• Surjective (onto): for all g ∈ G there exists f ∈ F such that φ(f) = g (i.e.,
there is at least one element in F which maps to a single element in G).
The combination of these first two properties states that φ is a bijection.

3

• Preservation: basically, φ preserves operations. That is, for example,
φ(a+ b) = φ(a) +φ(b) and φ(ab) = φ(a)φ(b). The image of the indentities
of F must be the identities of G.

Extending the notion of isomorphism to ordered fields simply involves adding
a clause to the preservation statement that φ preserves relative ordering. It is
worth noting that R is the unique (up to isomorphism) complete ordered field
(i.e., for any complete ordered field F, we can find an isomorphism φ between F
and R).

2.5 Further Reading

Almost any book on algebra will describe the above topics in much more detail,
together with various theorems and proofs about them. I am rather partial to
[5] as a reference, but [7] (and others) will also contain this information.

For the more foundationally-inclined, several books on set theory and logic
will describe the construction of R as a complete field, beginning from axiomatic
set theory (typically the Zermelo-Frankel axioms). My personal favorite is [6],
but [10] also describes this process in the first few sections.

3 Vector Spaces

A vector space is, in short, a space that contains elements called “vectors” and
supports two kinds of operations: addition of vectors and multiplication by
scalars. The scalars are drawn from some field and the vector space is a vector
space over that field.

More formally, let F be a field. V is a vector space over F if V is a structure
of the form 〈V,F,⊕,⊗,	, 0V〉 consisting of a universe V , a vector addition oper-
ation ⊕, a scalar multiplication operation ⊗, a unary additive inverse operation
	 and an identity element 0V. This structure must obey the following axioms
for any u, v, w ∈ V and a, b ∈ F :

• Associative Law: (u⊕ v)⊕ w = u⊕ (v ⊕ w)

• Commutative Law: u⊕ v = v ⊕ u

• Inverse Law: u⊕ (u) = 0V

• Identity Laws:
0V ⊕ u = u

1⊗ u = u

• Distributive Laws:
a⊗ (b⊗ u) = (ab)⊗ u

(a+ b)⊗ u = a⊗ u⊕ b⊗ u

As is standard, we will omit ⊗ and write a⊗ u as au and will write ⊕ as +
and 	 as −. We will write 0 for 0V (context should be sufficient to distinguish
this from 0 ∈ F) and u⊕ (v) as u− v.

4

3.1 Examples

The simplest example of a vector space is just R itself, which is a vector space
of R. Vector addition and scalar multiplication are just addition and multipli-
cation on R. A slightly more complex, but still very familiar example is Rn,
n-dimensional vectors of real numbers. Addition is defined point-wise and scalar
multiplication is defined by multiplying each element in the vector by the scalar
(using standard multiplication in R).

Another example is RR, the set of functions from R → R. We can define
addition and multiplication point-wise, by (fg)(x) = f(x)g(x) and (af)(x) =
af(x) for f, g ∈ RR and a ∈ R. This is therefore a vector space over R. In fact,
for any reasonable space, X (i.e., one which has a distance metric d defined
– a so-called metric space), the set RX of functions from X → R is a vector
space over R with addition and multiplication defined as above. In particular,
X could be Rn.

Taking all functions from X to R is often admitting too many “weird” things,
so we will typically limit ourselves to continuous functions. Recall that a func-
tion f : X → R is continuous at a point x0 ∈ X if for every ε > 0 we can
find a δ > 0 such that d(x, x0) < δ implies |f(x) − f(x0)| < ε. A function is
continuous if it is continuous everywhere. The set of continuous functions from
X to R is commonly denoted C(X) and forms a vector space over R using the
usual definitions of addition and scalar multiplication.

3.2 Further Reading

Most books on algebra or analysis will cover the definition of vector spaces
(sometimes called modules). From an algebraic perspective, [5] is a good start,
though vector spaces are introduced very late. From an analytical perspective,
I am rather fond of [8], though there are of course many other great texts.

4 Banach Spaces

A Banach space is a complete vector space V endowed with a method of calcu-
lating the “size” of vectors in V . This is called the norm and the norm of v ∈ V
is written ||v||. Often a single vector space will have multiple norms, in which
case we will write ||v||(·) with (·) replaced with a reasonable identifier to specify
which norm we are talking about. If V is finite, there is at most one norm, but
for infinite V there are often many.

4.1 Complete Vector Spaces

Just as we have defined a field to be complete if every Cauchy sequence is
convergent, so we also define a complete vector space. The definition is the
same, with the exception that the distance metric d(x, y) is replaced by ||x−y||,
where || · || is a suitable norm.

4.2 Norms

A norm is a function on a vector space V over R from V to R satisfying the
following properties for all u, v ∈ V and all a ∈ R:

• Non-negative: ||u|| ≥ 0

5

• Strictly positive: ||u|| = 0 implies u = 0

• Homogenous: ||au|| = |a|||u||

• Triangle inequality: ||u+ v|| ≤ ||u||+ ||v||

4.3 Examples

As we have seen, R is a complete vector space over R, which makes it a suitable
candidate for being a Banach space. The most common norm for R is the
absolute norm: ||x|| = |x|.

It is easy to see that Rn is a complete vector space over R for any n > 0.
There are several (actually an infinite number) of norms we can define on Rn.
The Euclidean-norm (also called the 2-norm) is defined as:

||〈xi〉ni=1||2 =

√√√√ n∑
i=1

x2i

In general, we define the p-norm (for p ≥ 1) in Rn by:

||〈xi〉ni=1||p =

(
n∑

i=1

|xi|p
) 1

p

The 1 norm is also called the sum norm. The maximum norm, or the ∞
norm, is defined by:

||〈xi〉ni=1||∞ = max{|x1|, |x2|, . . . , |xn|}

4.3.1 Infinite Sequences

Certain sequences of infinite length, often denoted R<ω or R∞ also form a
Banach space. Norms here are defined similarly to the case of sequences of
finite length; however, in order to ensure completeness, we need to make sure
that these sequences don’t diverge under summing. For a positive integer p, we
define the lp space as:

lp =

{
〈xi〉∞i=0 :

∞∑
i=0

|xi|p <∞

}
Given this definition, we define a norm on lp (“little ell p”) by:

||〈xi〉∞i=0||lp =

(∞∑
i=0

|xi|p
) 1

p

4.3.2 Norms on Function Spaces

For continuous functions from X to R (i.e., C(x)), the natural norm (called the
uniform norm or the sup norm) is defined by:

||f ||sup = sup
x∈X
|f(x)|

6

I.e., this is the highest (supremum) value that f takes on all of X. This is
analogous to the∞ norm defined above for sequences and is also denoted || · ||∞.

We will define the notion of an Lp (“ell p”) over functions from Rn to R.
A more general notion is possible, but needs too much in the way of back-
ground knowledge, which we elect not to go in to. Using the standard notion of
integration of Rn, we define:

Lp = {(f : Rn → R) :

∫ ∞
−∞
|fp(x)|dx <∞}

We define a norm on Lp by:

||f ||Lp
=

(∫ ∞
−∞
|fp(x)|dx

) 1
p

It is relatively easy to see that this satisfies the needed requirements.

4.4 Further Reading

The definition and properties of lp and Lp spaces can be found in most texts on
analysis; I favor [8], but [1] also contains the relevant information. These books
will all define the norm general notion of Lp, based on the theory of measures,
which essentially extends integration to metric spaces other than R. A good
general reference for measure theory is [4].

5 Hilbert Spaces

A Hilbert space is a Banach space further endowed with a dot-product operation.
We will typically denote Hilbert spaces by H. For elements u, v ∈ H, we will
write the dot product of u and v either as 〈u, v〉H or, when it is clear by context
that the dot product is taking place in H, either 〈u, v〉 or simply u ·v. For when
H is a vector space over F, then the result of the dot product will be an element
in F . Since we will typically deal with F = R, the result of dot products will be
real numbers. The dot product operation must satisfy a few properties, for all
u, v, w ∈ H and all a ∈ F:

• Associative: (au) · v = a(u · v)

• Commutative: u · v = v · u

• Distributive: u · (v + w) = u · v + u · w

Given a complete vector space V with a dot product 〈·, ·〉V, we can easily

define a norm on V by ||u||V =
√
〈u, u〉, thus making this space into a Banach

space and therefore into a full Hilbert space. It is not the case (as we shall
shortly see) that all Banach spaces can be made into Hilbert spaces.

5.1 Examples

As usual, R and Rn are both Hilbert spaces. In the latter case, the dot product
is defined by:

〈x, y〉Rn =

n∑
i=1

xiyi

7

A similar definition is given for infinite sequences. We can similarly define
a dot product of functions from Rn to R:

〈f, g〉 =

∫ ∞
−∞

f(x)g(x)dx

As you can see, both of these dot product definitions induce the 2 norm on
their respective spaces. However, it can be seen (though we won’t show it) that
there is no dot product corresponding to lp or Lp spaces for p 6= 2.

5.2 Further Reading

Any text which discusses Banach spaces will also discuss Hilbert spaces; as
before, see [8].

6 Reproducing Kernel Hilbert Spaces

This section is the goal of this tutorial and will thus be the most in-depth of
all. In case you skipped directly here, or if you need a quick refresher, let’s first
recall what we’ve done up until now.

6.1 Refresher

We first defined a field, which is a space that supports the usual operations
of addition, subtraction, multiplication and division. We imposed an ordering
on the field and described what it means for a field to be complete (this will
become important soon – if you missed this section, reread it). We then defined
vector spaces over fields, which are spaces that interact in a friendly way with
their associated fields. We defined complete vector spaces and extended them to
Banach spaces by adding a norm. Banach spaces were then extended to Hilbert
spaces with the addition of a dot product.

6.2 Reproducing Kernels

A Reproducing Kernel Hilbert Space (RKHS) again builds on a Hilbert space
H and requires that all Dirac evaluation functionals in H are bounded and
continuous (though one implies the other). We will define these concepts in
order.

For now, we will assume that H is the L2(X) space of functions from X to
R for some measurable X (typically X will be Rn for some n). For an element
x ∈ X, a Dirac evaluation functional at x is an functional δx ∈ H such that
δx(f) = f(x). In our case, x will be some vector a real numbers and f will be
a function from this vector space into R. Then δx is simply a function which
maps f to the value f has at x. Thus, δx is a function from (Rn → R) into R.

To say that δx is bounded means that there is a constant M > 0 ∈ R such
that for all f ∈ H, ||δxf || ≤ M ||f ||. Note that the first norm is the norm in
R and thus is just the absolute value. The second norm is the norm in L2 and
is thus the integral equation from before. Expanding this by the definition of
δx, we get that we require that there is an M such that for all x ∈ Rn, for all
f ∈ H, |f(x)| ≤M

∫
f(x)dx.

This is a somewhat technical definition, but it is easy to verify for the spaces
we care about. The importance of it is due to the Riesz representation theorem,

8

which states that if φ is a bounded linear functional (conditions satisfied by the
Dirac evaluation functionals) on a Hilbert space H, then there is a unique vector
u in H such that φf = 〈f, u〉H for all f ∈ H.

Translating this theorem back into Dirac evaluation functionals, we get that
for each δx, there is a unique vector (which we will denote kx) in H such that
δxf = f(x) = 〈f, kx〉H. Using this, we can define the Reproducing Kernel K
for H by: K(x, x′) = 〈kx, kx′〉H, where kx and kx′ are respectively the unique
representatives of δx and δx′ .

The property of reproducing kernels that we need is that 〈f,K(x, x′)〉H =
f(x′). Furthermore, kx is defined to be the function y 7→ K(x, y) and thus
〈K(x, ·),K(y, ·)〉H = K(x, y). This is why they are called reproducing kernels.

6.3 Positive Definiteness

We will take a short break from reproducing kernels and define what it means
for a function to be positive definite. This is a simple extension of the definition
with the same name for matrices. A symmetric function K is positive definite
if for any L2 function f (other than the zero function), we have that:∫ ∫

f(x)K(x, x′)f(x′)dxdx′ > 0

This generalizes the definition for matrices since it implies that for any finite
subset of X, we get that the matrix K defined by (K)i,j = K(xi, xj) is positive
definite. It turns out that all reproducing kernels are positive definite.

6.4 Creating RKHSs

We have seen that all reproducing kernels are positive definite; in fact, any
positive definite function is a reproducing kernel for some RKHS, a concept we
will make more formal now.

Essentially, we will assume we have a p.d. kernel K and will show how to
fashion a RKHS HK such that K is the reproducing kernel on H. It turns out
that for a given K, HK is unique up to isomorphism. The construction is fairly
straightforward. First we define the universe V of H and then define a dot
product on it. This will induce a norm and thus give us an RKHS. It will be
easy to show that K is the reproducing kernel of this RKHS. We assume that
K is a kernel over X.

We define the universe V of HK first by taking S = {kx : x ∈ X}, where kx
is the function such that kx(y) = K(x, y) and then defining V to be the set of
all linear combinations of elements from S. Therefore, each element of V , the
universe of HK , can be written as

∑
i αikx. We define the dot product on HK

by:

〈kx, ky〉HK
=

〈∑
i

αikxi
,
∑
i

βikyi

〉
X

for some vectors α and β. Due to the reproducing property of K, we can
write this dot product in X by:∑

i

∑
j

αiβjK(xi, yj)

9

We should note that V is not necessarily complete. However, we can force it
to be complete by simply taking all Cauchy sequences over V and adding their
limits. Importantly, we can write the differences of functions from V pointwise,
as can be seen:

|fn(x)− fm(x)| = |K(x, ·), fn − fm| ≤ K(x, x)||fn − fm||2
Because of this, we can just take pointwise limits and add them to V .
We now need to define the dot product operation on HK . In order to do

this, we need to ensure that K is continuous and doesn’t diverge, namely:∫ ∫
K2(x, x′)dxdx′ <∞

This property is known as finite trace. It is worth noting, though beyond
the scope here, that if K does not have a finite trace, we can restrict ourselves
to a specific subset of the space X and ensure that K has finite trace on that
subspace.

In order to define the dot product, we need to introduce the concept of
eigenfunctions.

6.4.1 Eigenfunctions

An eigenfunction is the functions-space equivalent of an eigenvector. Recall
from linear algebra that an eigenvector of a matrix M is a vector v such that
vA = λv for some scalar λ. λ is then called the corresponding eigenvector.

A similar statement can be made about functions. Suppose K is a kernel;
then, φ is an eigenfunction of K if:∫

K(x, x′)φ(x′)dx′ = λφ(x′)

for all x. In dot product notation, this corresponds to the notion that
〈K(x, ·), φ〉X = λφ, which is nearly an identical statement to the one for matri-
ces.

The Mercer-Hilbert-Schmit theorems state that if K is a positive definite
kernel (that is continuous with finite trace), then there exists an infinite sequence
of eigenfunctions 〈φi〉∞i=0 and eigenvalues λi with λ1 ≥ λ2 ≥ . . . of K, and that
we can write K as:

K(x, x′) =

∞∑
i=0

λiφi(x)φi(x
′)

This is analogous to the expression of a matrix in terms of of its eigenvectors
and eigenvalues, except in this case we have functions and an infinity of them.

6.4.2 Defining the Dot Product

We now will assume that for our kernel K, we have out set of eigenfunctions φi
and eigenvalues λi. For y ∈ L2, we will denote y in terms of its coefficients in
the eigenfunctions:

yi = 〈y, φi〉L2
=

∫
y(x)φi(x)dx

10

It is a basic result of Fourier analysis that such a representation exists and
is unique. Given all this, we are ready to define our inner product:

〈y, y′〉HK
=

∞∑
i=0

yiy
′
i

λi

Though it may seem very round-about, this is very similar to the definition
of a dot product in Rn. In Rn we will choose n-many basis vectors, ei, such that
all entries in ei are zero, except for the ith component, which is 1. This is the
standard orthonormal basis for Rn. In this case, the corresponding eigenvalues
are all λi = 1. Just as above, we can identify any vector y in Rn as a linear com-
bination of the eis, with coefficients yi as we did above for eigenfunctions. The
dot product expression in Rn is the identical to the above, with the exception
that the sum is now finite, from 1 to n.

6.5 Feature Spaces

We have seen just now that given a p.d. kernel K over X, we can find a Hilbert
space H with reproducing kernel K. We will now show that in addition to
finding H, we can find a feature function Φ : X → H such that:

K(x, x′) = 〈Φ(x),Φ(x′)〉H
This property is really the one we have been looking for and is the main result

we will use. This says, very simply, that given a symmetric p.d. function
K, there exists a function Φ such that the evaluation of the kernel at
points x and x′ is equivalent to taking the dot product between Φ(x)
and Φ(x′) in some (perhaps unknown) Hilbert space.

We will think of Φ as a mapping from an input space X to a large, possibly
infinite feature space H, where we can compute dot products simply by com-
puting K. This enables us to perform the kernel trick, in which dot products
are replaced by kernel products (i.e., evaluations of kernels). Doing so is well-
motivated by this result, since we can just say that we’re not actually taking a
kernel product; instead, we transforming the inputs into H and then taking the
dot product as before.

We should recall that we have seen how we can explicitly construct H, and
thatH is unique up to isomorphism. This means in turn that Φ is not absolutely
unique, but it is just as unique as H is. In fact, we will show the two most
common constructions of Φ, which are more or less equivalent.

First, we will note that no matter how we choose Φ, it will always be injective
(one-to-one). Otherwise, two different values x and x′ will yield the same value
K(x, ·) and K(x′, ·). This is not possible, since we require the matrix defined
over x, x′ using K to be p.d., which it will not be if Φ is not injective.

The first definition we give of Φ will use the space HK as the feature space.
We then simply define Φ(x) = K(x, ·). By the reproducing property of the
kernel, we get:

〈Φ(x),Φ(x′)〉HK
= 〈K(x, ·),K(x′, ·)〉HK

= K(x, x′)

which satisfies our requirements for Φ.
We can instead ignore our explicitly constructed HK all together and use l2

as the feature space. This construction uses the eigenfunctions φi and eigenval-
ues λi and defines Φ by:

11

Φ(x) =
〈√

λiφi(x)
〉∞
i=0

Now, we can calculate the dot product by:

〈Φ(x),Φ(x′)〉l2 =
〈〈√

λiφi(x)
〉
i
,
〈√

λiφi(x
′)
〉
i

〉
l2

=
∑
i

√
λiφi(x)

√
λiφi(x

′)

=
∑
i

λiφi(x)φi(x
′)

= K(x, x′)

also as desired.

6.6 Further Reading

Good references on RKHSs are hard to find, which is part of the motivation for
this document. The Riesz representation theorem is described in most books on
functional analysis, including [8]. The original reference for reproducing kernels
is [2], but is highly technical and hard to find. Other references include [1] and
[11].

References

[1] N. Akhiezer and I. Glazman. Theory of Linear Operators in Hilbert Space.
Ungar, New York, 1963.

[2] N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematics Society, 68:337 – 404, 1950.

[3] Christopher J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[4] Joseph Doob. Measure Theory. Springer Verlag, 1994.

[5] David S. Dummit and Richard M. Foote. Abstract Algebra. John Wiley
and Sons, second edition edition, 1999.

[6] Karel Hrbacek and Thomas Jech. Introduction to Set Theory. Marcel
Dekker, third edition edition, 1984.

[7] Thomas W. Hungerford. Algebra. Springer Verlag, eighth edition edition,
1997.

[8] John K. Hunter and B. Nachtergaele. Applied Analysis. World Scientific
Publishing Co., 2001.

[9] D.J.C. MacKay. Introduction to Gaussian Processes. In C.M. Bishop,
editor, Neural Networks and Machine Learning, volume F 168, pages 133
– 165. Springer, 1998.

[10] Yiannis N. Moschovakis. Notes on Set Theory. Springer Verlag, 1994.

12

[11] Matthias Seeger. Relationships between gaussian processes, support vector
machines an smoothing splines. Technical report, University of California
at Berkeley, 1999.

[12] Christopher K. I. Williams and Carl Edward Rasmussen. Gaussian pro-
cesses for regression. In David S. Touretzky, Michael C. Mozer, and
Michael E. Hasselmo, editors, Proc. Conf. Advances in Neural Informa-
tion Processing Systems, NIPS, volume 8. MIT Press, 1995.

13

