
http://pub.hal3.name#daume04intents-long

Web Search Intent Induction via Search Results Partitioning

Hal Daumé III
University of Southern California
Department of Computer Science

Information Sciences Institute
4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292
hdaume@isi.edu

Eric Brill
Microsoft Research
One Microsoft Way
Seattle, WA 98052

brill@microsoft.com

Abstract

We present a computationally efficient method
for automatic clustering of web search results
based on partitioning the return set according
to queries the user may have intended. The
method requires no data other than query logs
and the standard inverted indices used by most
search engines. Our method outperforms stan-
dard web search in the task of enabling users
to quickly find relevant documents for informa-
tional queries.

1 Introduction and Motivation

In a study of web search query logs, Broder (2002) ob-
served that most queries fall into one of three basic cate-
gories: navigational, informational and transactional. A
navigational query is one where the user has a particu-
lar URL they are attempting to find. An informational
query is one where the user has a particular information
need to satisfy. A transactional query is one in which the
user seeks to perform some sort of web-mediated activity
(such as purchasing a product). Arguably, a fourth cate-
gory exists, browsing queries, where a user is simply us-
ing a search engine to direct their web browsing, though
Broder does not distinguish these types of searches.

In that paper, Broder (2002) also confirms that most
queries are very short: on the order of two words. For
navigational queries, this does not prevent search engines
from performing well: experience tells us that attempt-
ing to find Eugene Charniak’s web page by searching for
“Eugene Charniak” or even just “Charniak” will be suc-
cessful. This is likely largely due to the fact that when a
user has a particular URL they wish to find, they know
a lot about it and can easily invent queries which are
sufficiently discriminative. Unfortunately, according to
Broder, only 20 to 24.5 percent of all web queries are
navigational.

On the other hand, for informational (and browsing)
queries, it is often the case that the user does not know
exactly what sort of information he is looking for. This
makes it difficult for him to formulate enough, or even
correct, keywords to represent his need. These types of
queries make up anywhere between 39 and 48 percent
of all web queries, according to Broder, making them a
prime target for research.

2 Prior Work

Our interest is in informational and browsing queries.
The general approach we are exploring to assist users in
finding what they want for these sorts of queries is to
present structured results. Dumais et. al. (2001) have
shown that presenting results in a structured fashion im-
proves a user’s ability to find relevant documents quickly.

There are three general techniques for presenting web
search results in a structured manner, ranging from totally
supervised methods to totally unsupervised methods.

The first approach, manual classification, is typified by
a system like Yahoo!. In these systems, humans have cre-
ated a hierarchical structure describing the web and man-
ually classify web pages into this hierarchy. One advan-
tage of manual classification systems is accuracy. An-
other is that they have meaningful structure and thus the
labellings on different nodes in the hierarchy are mean-
ingful. Unfortunately, they are also expensive and time
consuming to build, they never achieve full coverage, and
they cannot adapt to different user needs.

The second approach, automatic classification (see, for
instance, the classification system reported by Dumais
(2000)) builds on the hierarchies constructed for man-
ual classification systems, but web pages are categorized
by a (machine-learned) text classification system. These
achieve full coverage, but are less accurate than manual
classification systems. They are less expensive (humans
need not constantly insert new web pages into the hier-
archy), but still costly as the original hierarchy needs to

be built. They are necessarily static and cannot readily
morph to fit the needs of different users; neither can they
adapt with time, without considerable expense.

The third approach, typified by systems such as
Vivisimo and Lighthouse (Leuski and Allan, 2000), as
well as the system of Zamir et al. (1999), look at the text
of the returned documents and perform document cluster-
ing. These approaches trade off economic cost for com-
putational cost: there is no hierarchy to be built by hand,
but clustering based on document text is a computation-
ally expensive operation. Moreover, once documents are
clustered, appropriate names must be assigned to these
clusters, which is an on-going research challenge.

Another approach to this problem is from Beeferman
and Berger (2000). Their system leverages click-through
data to cluster related queries. The intuition behind their
method is that if two different queries lead to users click-
ing on the same URL, then these queries are related.
They use the click-through data to define a bipartite graph
and then use agglomerative clustering to group similar
queries.

Our approach is most closely related to the approach of
Beeferman and Berger (2000), but does not require click-
through data. Moreover, the use of click-through data can
result in query clusters with low user utility.1 Further-
more, our approach does not suffer from the computation
cost of document clustering by text and produces struc-
tured results with meaningful names like Yahoo! without
the economic cost of building hierarchies by hand.

3 Problem Specification

Underspecified queries are a prevalent and challenging
problem for web search. When a user enters an under-
specified informational or browsing query, we wish to
predict the true information need and present these re-
sults to the user. Unfortunately, by definition, there are
many possible information needs for a single underspec-
ified query. Therefore, we attempt to provide a range of
possible needs to the user.

Our general strategy is the following: when a user,
John, issues an underspecified query to a standard search
engine, he will likely be presented with a long list of very
similar, only marginally relevant documents. Perhaps, at
some time in the past, a more knowledgeable user, Mary,
has had the same search need. However, since Mary knew
more about this shared search need than John, Mary was
better able to formulate a query. This, we may reason-
ably assume, resulted in her search being more success-
ful. Our goal is to use Mary’s expertise to help John.

For instance, John may be a beginning fly fishing en-
thusiast. Perhaps he is going fly fishing for trout soon and
needs to find information about what sort of flies to pur-

1See Section 4.3

fly fishing

fishing
reports

fly patterns

Saltwater Fly
fishing magazing

trout flies

how to fly fish

Figure 1: Related queries to “fly fishing”.

chase. To this end, he queries his favorite search engine
for “fly fishing.” Due to the fact that this is a grossly un-
derspecified query, John will likely have to read through
pages of results before actually finding information on
what he really wants.

However, it might be the case that Mary is also a fly
fishing enthusiast and knows that you are supposed to use
a different sort of fly to catch trout. She needed informa-
tion on these flies and so she searched for “trout flies.”
Since this query is more specific, she was able to obtain
good results. If we were able to realize that these two
queries are related, we might be able to help John per-
form a more informed search.

4 Methodology

Suppose John enters his query for “fly fishing.” This will
retrieve a large set of documents, depicted by the cloud
in Figure 1. We assume that John’s search need (infor-
mation about flies for catching trout) is somewhere in or
near that cloud, but we do not know exactly where. How-
ever, we can attempt to divide up this space in a mean-
ingful way. In particular, we can look for other queries,
made by other people, which return an overlapping set
of documents. The return sets for these other queries are
represented in Figure 1 by shaded circles. We refer to this
process as Query Driven Search Expansion and hence-
forth refer to our system as the QDSE system.

4.1 Formal Specification

Formally, if Q is the set of queries to our search engine
and D is the set of indexed documents, let R be a binary
relation on Q × D where qRd if and only if d is in the
return set for the query q. Then, given a query q, we
are looking for all queries q′ such that (∃d ∈ D)(qRd ∧

q′Rd). More briefly, we are interested in the set (R−1 ◦
R)[q].

It is likely that the set of (R−1 ◦ R)[q] is quite large
for a given q (in practice the size is on the order of ten
thousand; for our dataset, “fly fishing” has 29, 698 re-
lated queries). It is infeasible to present this entire set to
the user. However, some of these queries will be only
tangentially related to q. Moreover, some of them will be
very similar to each other. In order to measure these simi-
larities, we define a distance metric2 between two queries
q and q′ based on their returned document sets:

‖q, q′‖ = 1 −
|R[q] ∩ R[q′]|

|R[q] ∪ R[q′]|
(1)

One could then sort the set of related queries accord-
ing to ‖q, q′‖ and present the top few to the user. Un-
fortunately, this is insufficient: the top few are often too
similar to each other to provide any new useful informa-
tion. To get around this problem, we use the maximal
marginal relevance (MMR) scheme originally introduced
by Carbonell et. al. (1998).

MMR was originally introduced to rerank documents
in a pure information retrieval setting. Its goal was to
return documents which are simultaneous relevant and
original. In their setup, they defined a similarity metric
between documents and queries (sq), as well as a similar-
ity metric between documents and other documents (sd).
They then iteratively selected documents according to the
following weighting:

argmax
d∈D

[

λsq(q, d) − (1 − λ) max
d′∈D′

sd(d, d′)

]

(2)

In this equation, D is the set of documents not yet re-
turned and D′ is the set of documents already returned.
λ is an interpolation factor to be set ahead of time. This
equation then selects the document d which is maximally
similar to the query q and simultaneously maximally dif-
ferent from other documents already returned, d′. For
instance, when λ = 1, the ranking is simply according to
the similarity between the document and the query. When
λ = 0, the algorithm attempts to produce maximally dif-
ferent results, independent of what the query was.

Our situation is very similar. We wish to present the
user with queries q′ which are related to their original
query q, but different from other queries already returned.
Converting Equation 2 to use with distances instead of
similarities and to use queries instead of documents, we
order according to:

argmin
q′

[

λ ‖q, q′‖ − (1 − λ) min
q′′

‖q′, q′′‖

]

(3)

2It is easy to verify that this satisfies the three required prop-
erties of a distance metric, but we do not do this here.

where the q′s are drawn from the unreturned query ex-
pansions and the q′′s are drawn from the previously re-
turned set.

4.2 Data Cleanup

As is typical in applications dealing with natural lan-
guage, there are a few preprocessing steps which need to
be applied to the set of related queries in order for them
to be presentable for human consumption.

First, queries q′ which are lexically too similar to the
original query q are thrown out. This step removes
queries whose words are simply a permutation of the
words of the original query (after removing stop words).
Since these will have nearly identical return sets, they will
be chosen first according to Equation 3, but will provide
no new information.

Secondly, queries which look like URLs (that contain
any of the strings “http”, “www”, “.com”, “.net”, “.edu”,
or “.org”) are thrown out. These queries are usually mis-
takes where people meant to type the URL into the ad-
dress bar, but focus was stolen unknown to them and
placed in the query box. The return sets are typically un-
meaningful and suggesting a URL as an alternative query
to a user can be confusing.

Thirdly, we throw out queries which are not at least as
long (in number of words) as the original query. This is
not strictly necessary, but allows us to give some sort of
refinement process.

Finally, we throw out all queries which contain char-
acters which are not printable ASCII. Since a non-trivial
fraction of the queries in our log are in non-Latin scripts
(predominant are Chinese and Japanese), it is worth-
while removing these when evaluating with an English-
speaking audience.

4.3 Alternative Distance Metrics

One particular thing to note in Equation 1 is that we do
not take relative rankings into account in calculating dis-
tance. That is, if a document d was the first result re-
turned for two queries q and q′, this does not allow it to
influence the distance measurement any more than if it
were the 100th result.

One could define a distance metric weighted by each
document’s position in the return list. The typical way to
define such a metric is:

‖q, q′‖2 = 1 −

∑

d∈R[q]∩R[q′] w(d)
∑

d∈R[q]∪R[q′] w(d)
(4)

where w is a query-independent weighting function for
a document (for instance, this might be the document’s
PageRank (Brin and Page, 1998)). Equation 1 is a special
case of this where w(d) = 1 for all documents d. So long
as the range of w is strictly positive, the function defined
in Equation 4 is a distance metric.

Figure 2: Screenshot of system output for the query “fly fishing”.

We ran experiments using this distance metric where
w was PageRank. The results of this distance metric
were inferior to the standard (Equation 1) ranking. We
attribute this degradation to the fact that if two queries
agree only on their top documents, they are too similar to
be worth presenting to the user as alternatives. This is di-
rectly related to a weakness of the Beeferman and Berger
(2000) approach: by using click-through data, their ap-
proach is nearly equivalent to using the PageRank metric
in Equation 4 (if one assumes PageRank is a reasonable
approximation for relevance). Thus, their system essen-
tially only learns synonymy between queries, rather than
relatedness. While synonymy is interesting for the search
back-end to understand, it makes little sense to present to
the user a list of synonymous queries to select from, be-
cause synonymous queries will likely return too similar
results. We would much rather present them with a list of
specifications.

5 System

The system described above functions in a completely
automatic fashion and responds in real-time to users
queries. A screen shot of the interface for the query “fly
fishing” – errors and all – is shown in Figure 2.

Across the top of the return results, the query is listed,
as are the top ranked q′ in (R−1 ◦ R)[q]. Each of these
query suggestions is a link to a heading, which are shown
below. Below this list are the top five search result links
from MSN Search under the original query. These are
included because there is a chance the user knew what he
was doing and actually entered a good query.

After the top five results from MSN Search, we display
each header with a +/- toggle to expand or collapse it. In
Figure 2, the suggested query “fly fishing equipment” is
expanded. Under each expanded query we list the top 4
results from that query.

6 Evaluation Setup

Evaluating the results of search engine algorithms with-
out embedding these algorithms in an on-line system is
a challenge. We evaluate our system against a standard
web search algorithm (in our case, MSN Search). Ideally,
since our system is focused on informational queries, we
would like a corpus of 〈query, intent〉 pairs, where the
query is underspecified.

One approach would be to create this corpus ourselves.
However, doing so would bias the results. An alternative
would be to use query logs; unfortunately, these do not
include intents. In the next section, we explain how we
create such pairs.

6.1 Deriving Query/Intent Pairs

The solution we arrived at is the following: we have a
small collection of click-through data, based on experi-
ments run at Microsoft Research over the past year. This
data was collected by tracking search usage of volunteer
Microsoft employees over several months. Each query
made by one of these volunteers to MSN search was
recorded together with a list of the URLs of all the re-
sult links followed and the amount of time spent on that
page.

Given this data, for a particular user and query, we look
for the last URL they clicked on and viewed for at least
two minutes, so long as this URL is not in the top five
results. We consider all of these documents to be satis-
factory solutions for the user’s search need. We discard
results that were in the top five because we intend to use
these pairs to evaluate our system against vanilla MSN
Search. Since the first five results our system returns are
identical to the first five results MSN Search returns, it is
not worthwhile annotating these data-points.

These 〈query, URL〉 pairs give us a hint at how to get to
the desired 〈query, intent〉 pairs. For each 〈query, URL〉
pair, we looked at the query itself and the web page at the
URL. We also knew that none of the top five MSN Search
results satisfied the user, so we also look at those.3

Given the query, the relevant URL and the top five
MSN Search results, we attempted to create a reasonable
search intent that was (a) consistent with the query and
the URL, but (b) not satisfied by any of the top five re-
sults. There were a handful of cases where we could not
think of a reasonable intent for which (b) held – in these
cases, we discarded that pair.

In all, we created 52 such pairs; ten arbitrarily chosen
〈query, URL, intent〉 triples are shown in Table 1.

3It may be the case that the users found an earlier URL also
to be relevant. This does not concern us, as we do not actually
use these URLs for evaluation purposes – we simply use them
to gain insight into intents.

6.2 Relevance Annotation

Our evaluation now consists of giving human annotators
〈query, intent〉 pairs and having them mark the first rele-
vant URL in the return set (if there is one). However, in
order to draw an unbiased comparison between our sys-
tem and vanilla MSN Search, we need to present the out-
put from both as a simple ordered list. This requires first
converting our system’s output to a list.

6.2.1 Linearization of QDSE Output

We wish to linearize our results in such a way that
the position of the first relevant URL enables us to draw
meaningful inferences. In vanilla MSN search, we can
ascribe a cost of 1 to reading each URL in the list; then,
having a relevant URL as the 8th position results in a cost
of 8.

Similarly, we wish to ascribe a cost to each item in our
results. We do this by making the assumption that the
user is able to guess (with 100% accuracy) which sub-
category a relevant URL will be in (we will evaluate this
assumption later). Given this assumption, we say that the
cost of a link in the top 5 vanilla MSN links is simply its
position on the page. Further down, we assume there is a
cost for reading each of the MSN links, as well as a cost
for reading each header until you get to the one you want.
Finally, there is a cost for reading down the list of links
under that header.

For example, referring back to Figure 2, if the relevant
link were “Fly Angler’s OnLine”, the cost would be 5
(because you would have had to have read five lines to
get that far). On the other hand, if the relevant link were
“Flyfishing - Fishing Tackle Guide”, the cost would have
been 5 + 4 + 3 = 12 (the five from reading the vanilla
MSN links, the four for reading the first four headers, and
the three for reading three links in that list).

Given this cost model, we can linearize our results by
simply sorting them by cost (in this model, several links
will have the same cost – in this case, we fall back to the
original ordering). We can then compare the average cost
for finding documents in our system against the average
cost for finding documents in the vanilla MSN system
(again, under the assumption that a user will be able to
guess the appropriate category).

6.2.2 Annotation

We divided the 52 〈query, intent〉 pairs into two sets of
32 (there were 12 pairs common to both sets). Each set
of 32 was then scrambled and half were assigned to class
System 1 and half were assigned to class System 2. It was
ensured that the 12 overlapping pairs were half assigned
to System 1 and half assigned to System 2 in both cases.

Four annotators were selected. The first two were pre-
sented with the first 32 pairs and the second two were
presented with the second 32 pairs. The first and second

Query: Soldering iron URL: www.siliconsolar.com/accessories.htm

Intent: looking for accessories for soldering irons (but not soldering irons themselves)
Query: Whole Foods URL: www.wholefoodsmarket.com/company/communitygiving.html

Intent: looking for the Whole Foods Market’s community giving policy
Query: final fantasy URL: www.playonline.com/ff11/home/

Intent: looking for a webforum for final fantasy games
Query: online computer course URL: www.microsoft.com/traincert/

Intent: looking for information on Microsoft Certified Technical Education centers
Query: sailing pictures URL: www.waterways.com/wboats.html

Intent: looking for a site which has pictures of many makes and models of sailboats
Query: Plesiosaurs URL: www.ucmp.berkeley.edu/history/plesio.html

Intent: looking for a site with hoaxes about the connection between the Loch Ness monster and Plesiosaurs
Query: baseball diamond URL: www.oski.org/html/dir_baseball.htm

Intent: looking for directions to Evans Baseball Diamond
Query: smart tags URL: msdn.microsoft.com/library/en-us/dnofftalk/html/office01022003.asp

Intent: looking for a smart tags document describing their use in Office XP
Query: stone veneer URL: www.products-furniture-decor.com/stone_products/stone_siding.html

Intent: looking for literature on stone veneer products
Query: ATI graphics URL: www.atitech.ca/products/pc/ragefury/

Intent: looking for support information for the Rage Fury graphics card by ATI

Table 1: 10 random 〈query, URL, intent〉 triples

annotator, therefore, were annotating exactly the same
〈query, intent〉s, but the systems were swapped in each
case. So for annotator 1, System 1 was vanilla MSN and
System 2 was QDSE; while for annotator 2, System 1 was
our system and System 2 was vanilla MSN.4 The same
was done with the second pair of annotators. Annotators
were given a query, the intent, and the top 100 documents
returned from the search according to the corresponding
system. They selected the first link which answered the
intent. If there were unable to find a relevant link, they
recorded that information as well.

The result of this annotation is that we have 52
〈query, intent〉 pairs with the associated cost of the first
relevant document for each system. Furthermore, we
have 12 overlapping pairs on which we can calculate
inter-annotator agreement.

6.3 Predictivity Annotation

Our cost function for the linearization of the hierarchical
results (see Section 6.2.1) assumes that users are able to
predict which category will contain a relevant link. In or-
der to evaluate this assumption, we took our 52 queries
and the automatically generated category names for each
using the QDSE system. We then presented four new an-
notators with the queries, intents and categories. They se-
lected the first category which they thought would contain

4The interface used for evaluation converted the QDSE re-
sults into a linear list using our linearization technique so that
the interface would be indistinguishable between the two sys-
tems.

a relevant link. They also were able to select a “None”
category if they did not think any would contain relevant
links. Each of the four annotators performed exactly the
same annotation – it was done four times so agreement
could be calculated.

7 Results and Analysis

Our results are calculated on two metrics: relevance and
predictivity, as described in the previous section.

7.1 Relevance Results

The results of the evaluation are summarized in Table 2.
The table reports four statistics for each of the systems
compared. In the table, MSN is vanilla MSN search and
QDSE is the system described in this paper.

The first statistic reported in the table is probability of
success using this system (number of successful searches
divided by the number of total searches). Next, Avg. Suc-
cess Cost, is the average cost of the relevant URL for
that system. This cost averages only over the successes
(queries for which a relevant URL was found). The next
statistic, Avg. Cost, is the average cost including failures,
where the cost of a failure is, in the case of vanilla MSN,
the number of returned results and, in the case of QDSE,
the cost of reading the top five results, all the labels and
one category expansion5. The last statistic, Avg. Mutual

5It is also possible that the user could have guessed look-
ing just at the category expansions that his search had failed,
in which case the cost would be less. In this sense, this is an
over-estimate of the cost for failed QDSE searches.

MSN QDSE
Prob. Success 88.0% 67.7%

Avg. Success Cost 12.4 4.7
Avg. Cost 22.9 9.0

Avg. Mutual Cost 23.0 9.0
kappa 0.57 0.45

Table 2: Results of the evaluation

Cost, is the average cost for all pairs where both systems
found a relevant document. The last line reports inter-
annotator agreement as calculated over the 12 pairs. This
is low, due partly to the small sample size and partly to
the fact that the intents themselves were still somewhat
underspecified.

7.2 Predictivity Results

We performed two calculations on the results of the pre-
dictivity annotations. In the first calculation, we consider
the relevance judgments on the QDSE system to be the
gold standard. Whenever a relevant link was found in the
top 5 (i.e., in the vanilla MSN Search results), this query
was thrown out (our model is that the user reads these top
five first and only then reads the categories – in the case
when one of these top five is relevant, there is no need for
him to go further). Excluding these pairs, we calculated
average precision of choosing the correct first category.
This measures the extent to which the oracle system is
correct. On this task, precision was 0.54.

The second calculation we made was to determine
whether a user can predict, looking at the headers only,
whether their search has been successful. In the task of
simply identifying failed searches, precision was 0.70.

Inter-annotator agreement for predictivity was some-
what low, with a kappa value of only 0.49.

7.3 Analysis

As can be seen from Table 2, a user is actually less likely
to find a relevant query in the top 100 documents using
the QDSE system than using the MSN system. However,
this is a somewhat artificial task: experience shows that
very few users will actually read through the top 100 re-
turned documents before giving up. Moreover, as seen in
the evaluation of the predictivity results, users can decide,
with a precision of 0.70, whether their search has failed
having read only the category labels. This is in stark
contrast to the vanilla MSN search where they could not
know without reading all the results whether their search
had succeeded.

Moreover, if one does not wish to give up on recall at
all, we could simply list all the MSN search results im-
mediately after the QDSE results (removing the top 5,
since these will be duplicates). By doing this, we ensure
that the probability of success is at least as high for the

QDSE system. We can estimate the additional cost this
would incur to the QDSE system as follows. First, we
notice that Avg. Cost and Avg. Mutual Cost are nearly
identical for the MSN system. This means that regardless
of whether a query was successful or not for the QDSE
system, the cost for a single query in the MSN system is
about 23. In particular, this means that the cost for a sin-
gle query in the MSN system for which the QDSE system
failed is also about 23. Thus, in the 88.0−67.7

88.0 = 23 per-
cent of the cases where QDSE failed but MSN didn’t, we
can assume an additional cost for QDSE of 23 − 5 = 18
(the top 5 are removed). This comes to a total cost of
0.23 ∗ 18 = 4.15. Thus, in the situation where we insist
on not losing recall, the cost of the QDSE+MSN com-
bined system is 13.2, still superior to the vanilla MSN
search.

If one is optimistic and is willing to assume that a user
will know based only on the category labels whether or
not their search has succeeded, then the interesting com-
parison from Table 2 is between Avg. Success Cost for
QDSE and Avg. Cost for MSN. In this case, our cost
of 4.7 is a factor of 5 better than the MSN cost. Even
if one does not accept our hypothesis that users can pre-
dict the correct category, this still leaves room for them
to guess incorrectly three times (and hence view four full
categories) before our method begins to get more costly
than vanilla search.

If, on the other hand, one is pessimistic and believes
that a user will not be able to identify based on the cate-
gory names whether or not their search has succeeded in
the QDSE system, then the interesting comparison is be-
tween the Avg. Costs for MSN and QDSE. Again, here,
we can see that the user can try three categories before
vanilla MSN search wins.

One can also be extremely pessimistic and believe that
you cannot tell based on the category names in QDSE
whether or not you have succeeded, but can tell in MSN.
It is quite unlikely that this is the case, but even if it is, the
interesting comparison is between the Avg. Success Cost
for MSN and the Avg. Cost for QDSE. Even in this case,
our system still wins out by a cost of 9.0 to 12.4, which
is enough for them to guess the wrong category once and
then read through half of another category.

8 Conclusion

We have presented a method for providing useful sug-
gested queries for underspecified informational queries
by partitioning search results according to related queries.

We evaluated our system using an unbiased metric
against a standard web search system and found that, for
informational queries, our system enables users to more
quickly find their desired information. This conclusion is
based on an “oracle” assumption, which we also evalu-
ate. Based on these evaluations, we can show that even

under a pessimistic view point, our system outperforms
the vanilla search engine.

There is still room for improvement, especially in the
predictivity results. We would like users to be able to
more readily identify the class into which a relevant doc-
ument (if one exists) would be found. We are investi-
gating multi-document summarization techniques which
might allow users to better pinpoint the category in which
a relevant document might be found.

References

Doug Beeferman and Adam Berger. 2000. Agglomera-
tive clustering of a search engine query log. In Knowl-
edge Discovery and Data Mining, pages 407–416.

Sergey Brin and Lawrence Page. 1998. The anatomy of a
large-scale hypertextual Web search engine. Computer
Networks and ISDN Systems, 30(1–7):107–117.

A. Broder. 2002. A taxonomy of web search. In SIGIR
Forum, volume 36(2).

Jaime G. Carbonell and Jade Goldstein. 1998. The use of
MMR, diversity-based reranking for reordering docu-
ments and producing summaries. In Research and De-
velopment in Information Retrieval, pages 335–336.

Susan T. Dumais and Hao Chen. 2000. Hierarchical clas-
sification of Web content. In Nicholas J. Belkin, Peter
Ingwersen, and Mun-Kew Leong, editors, Proceedings
of SIGIR-00, 23rd ACM International Conference on
Research and Development in Information Retrieval,
pages 256–263, Athens, GR. ACM Press, New York,
US.

Susan T. Dumais, Edward Cutrell, and Hao Chen. 2001.
Optimizing search by showing results in context. In
CHI, pages 277–284.

Anton Leuski and James Allan. 2000. Details of light-
house. Technical Report IR-212, Center for Intelligent
Information Retrieval.

Oren Zamir and Oren Etzioni. 1999. Grouper: a dynamic
clustering interface to Web search results. Computer
Networks (Amsterdam, Netherlands: 1999), 31(11–
16):1361–1374.

