
Notes on CG and LM-BFGS
Optimization of Logistic Regression

Hal Daumé III
Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292

hdaume@isi.edu

1 Introduction

It has been recognized that the typical iterative scaling methods [BDD96, Ber97]
used to train logistic regression classification models (maximum entropy models)
are quite slow. Goodman has suggested the use of a component-wise optimiza-
tion of GIS [Goo02], which he has measured to be faster on many tasks. However,
in general, the iterative scaling methods pale in comparison to conjugate gradient
ascent (for binary problems) and limited memory BFGS for multiclass problems
[Min01, Min03, Mal02]. Unfortunately, while these methods are typically algorith-
mically more efficient than the iterative scaling algorithms, they are also signifi-
cantly more difficult to implement (especially LM-BFGS). This paper describes one
particular implementation that is known to be quite fast, and has gone through
several iterations of optimization. The actual implementation can be downloaded
from http://www.isi.edu/~hdaume/megam/ and may be used freely for any research
purposes1. The intended audience of this paper is quite technical: I assume you
know what logistic regression/maximum entropy models are, I assume you know
what gradients and Hessians are, etc.

2 Notation

We will assume throughout that we have N many training iid data points, xn and
their corresponding classes yn. Each data point will have F many components,
denoted xnf . For binary problems, we assume yn ∈ {−1,+1} and for multiclass
problems, we assume yn ∈ {1, 2, . . . , C} where C is the total number of classes. We
will use a Gaussian prior on weights with precision (inverse variance) λ, and will
denote our weight vector w of length F . Dot products will be written using matrix
notation, eg w>w will be the 2-norm of w; correspondingly, ww> will denote an
F × F matrix. We will typically denote gradients by g, a vector of length F , and
Hessians by H, a square matrix with dimension F . In general, subscripts will the
the lower-case version of their upper bound, and vectors will be indexed from 1 (i.e.,∑F
f=1 xnf or

∏N
n=1 yn). In such cases, we will typically leave off the upper and lower

1Suitable acknowledgment is appreciated, either in the form of a footnote or a reference
to this paper (a bibtex entry can be found on the web page); If you wish to use the software
for commercial/non-research purposes, please contact me.

bounds from the sum or product to simplify notation. In general, if there is a vector
v that changes over iterations, v′ will refer to the value at the current iteration,
and v will refer to the value at the previous iteration (though our algorithms will
explicitly update these).

3 Conjugate Gradient Ascent

The basic idea in CG is to select our search direction so that it is perpendicular to
the search direction from the previous iteration; see [Min03] for further details. In
particular, if u is an arbitrary direction, we update w by:

w′ ← w +
g>u

λu>u+
∑
n σ (w>xn)σ (−w>xn) (u>xn)2

u

and σ is the logistic function, σ(a) = (1 + exp−a)−1; the gradient is given by:

g = −λw +
∑
n

σ
(
−ynw>xn

)
ynxn

We choose u according to u′ ← g−βu, where a good value of β is according to the
Hestenes-Stiefel formula:

β =
g′> (g′ − g)
u> (g′ − g)

As can be observed, the value w>xn appears quite frequently in all expressions.
Implementationally, it is very important to cache this value and update it between
iterations, rather than constantly recompute it. My recommended implementation
is shown in Figure 1. In general with the problems we work with, each xn will be
sparse, and will typically be implemented by storing two arrays, one for indices and
one for feature values (note that the indices need not be sorted). In the algorithm,
we need to compute both dense dot products, and dot products between sparse
vectors xn and dense vectors. Both of these can be implemented efficiently, the
first in a direct sum/loop, the latter in a loop over the indices of xn, summing the
corresponding components of the dense vector. Note that in the computation of β
in the algorithm, we do not need to actually construct a new vector g′− g, but can
rather take the dot product implicitly. Finally, it is recommended that the memory
for g′ be allocated outside the loop, so we do not waste time doing so inside.

4 Limited Memory BFGS

For multiclass problems, it becomes impossible to explicitly construct and invert
the Hessian matrix. In the binary instance, the Hessian had a simple form the
enabled simple analytic inversion; the alternative used in LM-BFGS is to use only
an approximation to the true Hessian, and to build this approximation up iteratively.
In particular, we will approximate the Hessian at iteration i using the previous M
values of the weight vector and of the gradient (of course, when i < M , we only use
the i− 1 most recent).

In order to facilitate the use of such memories, we introduce a new data structure
that contains three arrays of length exactly M (doubly linked lists would also work),

Algorithm CG(x,y, λ)
Initialize w ← 〈0〉F , wtx← 〈0〉N , g ← 〈0〉F , u← 〈0〉F
while not converged do
g′ ← −λw
for n = 1 . . . N do
g′ ← g′ + σ (−yn wtx[n]) ynxn

end for
β ←

(
g′> (g′ − g)

)
/
(
u> (g′ − g)

)
u← g − βu
z ←

(
g′>u

)
/
(
λu>u+

∑
n σ (wtx[n])σ (− wtx[n]) (u>xn)2

)
w ← w + zu
for n = 1 . . . N do

wtx[n]← wtx[n] + zu>xn
end for
g ← g′

end while
return w

Figure 1: The full training algorithm for conjugate gradient ascent.

one for the old weight vectors, one for the old gradient vectors, and one for a scalar.
The data structure should support a push operation that adds a new vector pair and
scalar to the memory, overwriting the oldest if necessary. We also need to be able
to iterate through the memory both from most recent back, and from least recent
forward. This is implemented in the data structure memory in the implementation
referenced in the introduction.

In LM-BFGS, we take steps according to:

w′ ← w − ηHg

where η is a step size parameter. For η = 1, this is a Newton step; however, step
sizes < 1 are useful and so we use a line search algorithm [PFTV02] to find it
(this is described later). The LM-BFGS trick is to be able to compute Hg in a
reasonable amount of time, using our memory. This trick is described in general
terms in [NN91, AM94] and will simply be used in our algorithm, specialized to the
case of logistic regression.

As in CG, it is important to cache the dot product of the weights with the feature
vectors. However, in this case, storing such values takes a matrix of size N×C, since
we need to store it for each2 class. Nevertheless, doing so is quite imperative to
efficient optimization; otherwise, all execution time is spent on function evaluation.
Additionally, we also compute a value qtx which stores the dot product of the change
in weight by x, also of size N × C. The algorithm for LM-BFGS optimization
is depicted in Figure 5. This requires three subroutines, ComputeGradient,
ComputePosterior and LineSearch. These are depicted in Figures 2, 3 and 4,
respectively.

The main LM-BFGS algorithm essentially performs one one iteration without using
any Hessian information (the part before the while loop) and then begins the loop,
using previous iteration’s gradients. At each iteration it finds a step parameter η
by calling the LineSearch algorithm. In our experience, this algorithm terminates
after zero, one or two iterations, and its computations are very inexpensive, so there
is no need to use a more complex line search. The notation memd[m] means the

Algorithm ComputeGradient(x,y,w, wtx)
g ← −λw
for n = 1, . . . , N do
z ←

⊕
c wtx[n, c]

for c = 1, . . . , C do
g ← g + (δc,yn

− exp(wtx[n, c]− z))xnc
end for

end for
return g

Figure 2: The ComputeGradient subroutine required for LM-BFGS.

Algorithm ComputePosterior(λ,y,w, q,wtx, qtx, η)
p← −λ/2

(
w>w + η2q>q + 2ηq>w

)
for n = 1, . . . , N do
s← −∞
for c = 1, . . . , C do
χ← wtx[n, c] + ηqtx[n, c]
s← s⊕ χ
if c = yn then
p← p+ wtx[n, c]

end if
end for
p← p− s

end for
return p

Figure 3: The ComputePosterior subroutine required for LineSearch.

mth vector d to be pushed into memory, where m = M means the most recent
and m = 1 means the least recent; the other subscripts are the same. Again, it
is advantageous to allocate all memory outside any loops and compute using only
existing arrays. In fact, we can gain some memory savings by storing the vectors d
and u in the approximate Hessian computation in place of g, and then restoring it
later (see my implementation for this slight trick).

The computation of the gradient and posterior make use of the ⊕ operator, which
is defined to be addition of values in log-space. This can be implemented efficiently
and each ⊕ operation requires a logarithm and exponentiation computation.

⊕
is

simply a
∑

-sum using ⊕ instead of +.

In the ComputePosterior algorithm, within one line search, the values w>w,
q>q and q>w will always be the same, so it is recommended that these are cached
outside of the ComputePosterior and passed in as arguments (this is done in
my implementation as well).

Finally, the line search is a simple backtracking line search [PFTV02]. This uses
the technique of modeling the (negative log) posterior by a cubic and explicitly
maximizing it each time. Note that the maximization need not converge – we only
need a value of η that attains sufficient decrease. In the full LM-BFGS algorithm,
if the value η returned is ever zero, then the iterations need to stop (if this is not
done, then on the next iteration things will blow up).

5 Summary

I have described efficient implementations of the conjugate gradient and limited
memory BFGS methods for optimizing logistic regression classifiers. I have made
available a public implementation of these methods to demonstrate their effec-
tiveness on real world problems. The algorithms described herein are completely
self-contained and require no digging through literature to find sub-components.
This was done, perhaps, at a slight loss in generality, but the reader is directed to
[Min03, AM94] for more general details. It is my sincere hope that these notes and
the implementation are helpful to some users.

References

[AM94] Brett M. Averick and Jorge J. Moré. Evaluation of large-scale optimiza-
tion problems on vector and parallel architectures. SIAM Journal of
Optimization, 4, 1994.

[BDD96] Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra.
A maximum entropy approach to natural language processing. Compu-
tational Linguistics, 22(1):39–71, 1996.

[Ber97] A. Berger. The improved iterative scaling algorithm: A gentle introduc-
tion, 1997.

[Goo02] Joshua Goodman. Sequential conditional generalized iterative scaling.
In Proceedings of the Conference of the Association for Computational
Linguistics (ACL), 2002.

[Mal02] Robert Malouf. A comparison of algorithms for maximum entropy pa-
rameter estimation. In Proceedings of CoNLL, 2002.

[Min01] Thomas P. Minka. Algorithms for maximum-likelihood logistic regres-
sion. Technical Report 758, Carnegie Mellon University, 2001.

[Min03] Thomas P. Minka. A comparison of numerical optimizers for logistic
regression. http://www.stat.cmu.edu/~minka/papers/logreg/, 2003.

[NN91] S.G. Nash and J. Nocedal. A numerical study of the limited memory
BFGS method and the truncated Newton method for large scale opti-
mization. SIAM Journal of Optimization, 1:358–372, 1991.

[PFTV02] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C. Cambridge University Press, second
edition, January 2002.

Algorithm LineSearch(λ,y, wtx,w, q, g, qtx)
τ ← min{1, 100/

√
q>q}

fold ←ComputePosterior(λ,y, q,wtx, qtx, 0)
γ ← τg>q
if γ < 0 then

return 0
end if
ηmin ← 1e-10/maxf ((τ abs qf)/max{(abswf), 1})
η ← 1, ηold ← 0, f2 ← fold
while true do

if τη < ηmin then
return 0

else
f ←ComputePosterior(λ,y, q,wtx, qtx, ητ)
if f ≥ fold + 1e-4τηγ then

return τη
else if abs(η − 1) < 1e-20 then
ηtmp ← γ/(2(fold + γ − f))
ηold ← η, η ← max{ηtmp, (η/10)}, f2 ← f

else
r1 ← f − fold − γη
r2 ← f2 − fold − γηold
a← (r1/η2 − r2/η2

old)/(η − ηold)
b← (ηr2/η2

old − ηoldr1/η2)/(η − ηold
ηtmp ← 0
if abs a < 1e-20 then
ηtmp ← −γ/(2b)

else
d← b2 − 3aγ
if d < 0 then
ηtmp ← η/2

else if b <= 0 then
ηtmp ← (

√
d− b)/(3a)

else
ηtmp ← −γ/(b+

√
d)

end if
end if
ηtmp ← min{ηtmp, η/2}
ηold ← η, η ← max{ηtmp, (η/10)}, f2 ← f

end if
end if

end while
return τη

Figure 4: The LineSearch subroutine required for LM-BFGS.

Algorithm LM-BFGS(x,y, λ)
Initialize w ← 〈0〉F , wtx← 〈0〉N×C
g ←ComputeGradient(x,y,w, wtx)
q ← g/

√
g>g

qtx← q>x
η ←LineSearch(λ,y, wtx,w, q, g, qtx)
for n = 1 . . . N, c = 1 . . . C do

wtx[n, c]← wtx[n, c] + η qtx[n, c]>xnc
end for
w′ ← w + ηq
Initialize mem← ∅
while not converged do
g′ ←ComputeGradient(x,y,w, wtx)
α← (g′ − g)> (w′ −w)
σ ← (g′ − g)> (g′ − g)
Push d = (w′ −w), u = (g′ − g) and α onto mem
q ← g′

β ← 〈0〉M
for m = M, . . . , 1 do
β[m]← (memd[m]) / (memα[m])
q ← q − β[m] (memu[m])

end for
q ← σq
for m = 1, . . . ,M do
ζ ← (memu[m])>q
for f = 1, . . . , F do
ξ ← (memd[m, f]) (β[m]− ζ/ (mema[m]))
q[f]← q[f] + ξ
ζ ← ζ + ξ

end for
end for
q ← −q
qtx← q>x
η ←LineSearch(λ,y, wtx,w, q, g, qtx)
for n = 1 . . . N, c = 1 . . . C do

wtx[n, c]← wtx[n, c] + η qtx[n, c]>xnc
end for
w′ ← w + ηq
g ← g′

end while
return w

Figure 5: The full training algorithm for limited memory BFGS.

