
http://pub.hal3.name#daume04abffs

Carefully Appoximated Bayes Factors
for Feature Selection in MaxEnt Models

Hal Daumé III

15 Nov 2004

1 Introduction

Feature selection is essentially a model selection problem. If we take a fre-
quentist maximum likelihood approach, we will, in the limit, select all features
(unless, as is typical, we apply some sort of “early stopping” critereon). Addi-
tionally, basing the next feature to selected solely on standard measures such
as likelihood gain, we fail to account for the variance of the estimate of this fea-
ture. In this note, I carefully derive an approximation to the Bayes factor in the
feature/model selection problem for maximum entropy models. See [2] for an
introduction to the use of maximum entropy models in the natural language
processing domain. The advantages to using a Bayesian criterea for model se-
lection are numerous, but the two strongest are that (a) it enables us to take into
account uncertainty in likelihood when adding new features and (b) it allows
us to decide when to stop adding features.

2 Background

Suppose we have data D = 〈xn, yn〉
N
n=1 ∈ (XF × Y)N , where X is typically

either R or 2, and Y is some small finite set. We have F -many “features” and
N -many data points. We model the relationship between X and Y through a
log-linear model with parameter λ ∈ R

F×|Y|:

p (y | x) =

∫

Λ

dF π(λ) expλy
>x

∑

y′∈Y λy′
>x

(1)

We assume a prior on λ, which is typically a Gaussian with zero mean and
constant diagonal covariance. Typically, the problem is separated into “train-
ing” and “prediction”, where we approximate:

1

p (yn+1 | xn+1,D) =

∫

Λ

dF π(λ | D) exp λy
>x

∑

y′∈Y λy′
>x

(2)

≈
exp λ̂y

>x
∑

y′∈Y λ̂y′
>x

(3)

where λ̂ = max
λ

dF π(λ | D)

The training portion therefore is tasked with finding the optimal λ̂, and the
prediction simply uses this estimated value to predict the new data point. This
methodology works well in practice – indeed, we shall use this model as our
classifier – but for the purpose of model selection, the maximum approximation
is a bad idea: we do wish to take into account the variance of λ.

In order to perform model selection, one typically computes and compares
the Bayes factor. Given R models, M1, . . . ,MR with prior distribution π(·),
we compute p (D | Mr) (the evidence of Mr) and combine this with the prior,
to obtained the Bayes factor, αr:

αr =
π(Mr)p (D | Mr)

∑R

r′=1 π(Mr′)p (D | Mr′)
(4)

The evidence, p (D | Mr), is computed by integrating over all possible model
parameters (in our case, the λs):

p (D | Mr) =

∫

Λ

dF π(λ |Mr)p (D | λ,Mr) (5)

The model with the highest Bayes factor, αr is selected as the “correct”
model. See [3, 5] for more discussion of the Bayes factor and issues in Bayesian
learning in general.

3 Feature Selection

3.1 Problem Definition

In the feature selection problem, we will assume that 1 ≤ G < F features have
already been selected (as the base case, we can simply select the “bias”) and we
wish to select one more feature from the set of F −G many available (or, if the
model is already optimal, we wish to stop). This can be considered a model se-
lection problem, where we define M0 to be the current model with G features,
and Mg to be the current model plus feature g for 1 ≤ g ≤ F − G. The feature
selection task is the equivalent to the model selection task with these models.
When M0 is chosen, it means that we have exhausted the useful features. In-
tuitively, a feature is good if (a) it is correlated with the class labels and (b) it
is not correlated with existing fatures. In our analysis, being correlated with

2

class labels will increase evidence (because the correct labels will become more
likely under any λ), while being correlated with existing features will decrease
evidence (because the variance of the parameters will increase, and the prior
preference for small models will factor in).

Like most Bayesian methods, the procedure outlined above is simple. We
compute the model evidence under each proposed model according to Eq (5),
combine these with the model priors as in Eq (4) and select the largest on (the
denominator in Eq (4) doesn’t even need to be computed). Of course, the prob-
lem lies in the fact that Eq (5) is analytically intractable.

When faced with analytically intractable integrals (a commonplace occu-
rance in Bayesian learning), one basically has three choices for how to ap-
proximate the integral. One can use a variational approximation, which typi-
cally amounts to an EM-like iterative optimization procedure; one can use an
MCMC technique, which requires the computation of many samples over the
desired posterior; or one can use the Laplace (or “saddle-point” approximation),
in which the posterior is approximated to be Gaussian, and the normalizing
constant for the Gaussian (which is available analytically) is used for the evi-
dence. (See [6] for a discussion of all of these options.) In this note, we use the
Laplace approximation, since it is deterministic, very efficient (in this case) and
gives a reasonable approximation.

3.2 Laplace Approximation

To compute the Laplace approximation, we need to be able to manipulate the
posterior q(λ) = π(λ | Mr)p (D | λ,Mr). In particular, we need to be able to
compute the λ which maximizes q(λ), and we need to be able to compute the
matrix of second derivatives of − log q at this maximum:

Aij = −
∂2

∂λi∂λj

log q(x)

∣

∣

∣

∣

∣

λ=λ0

(6)

where λ0 maximizes q. In this case, we can approximate the evidence, Eq (5)
as:

p (D | Mr) ≈ q(λ0)

√

(2π)K

det A
(7)

where K is the dimensionality of A (in our case, F −G for M0 and F −G+1
for Mg) and det A is the matrix determinant of A.

3.3 Approximating the Laplace Approximation

Following Eq (4), we define βr as the log, unnormalized Bayes factor:

βr = log π(Mr) + log p (D | Mr) (8)

This, under the Laplace approximation, becomes:

3

βr = log π(Mr) + log π(λr
0) + log p (D | λr

0) +
K

2
log(2π) −

1

2
log det Ar (9)

Where λr
0 maximizes q and Ar is the corresponding negative log Hessian

matrix for model Mr. Unfortunately, when millions or billions of features are
used, computing λr

0 for each possible feature becomes computationally impos-
sible. This, we make our first approximation:
Assumption 1: Suppose λ0

0 maximizes q for the current G-many features, and
we are considering the addition of feature g. Then λ

g
0 equals λ0

0 in all places
except position g. In other words, when a feature is added, we hold all other
weights constant. This is known as the mean-field approximation in statistical
physics.

This assumption is reasonable in the case of feature selection because in
the feature selection problem, we are explicitly trying to add features that are
uncorrelated, which makes it likely that this assumption will give a reasonable
approximation (of course, once a feature has been chosen and added, we will
re-estimate the entire λ vector).

Under this assumption, we can rewrite the β values, ignoring common
terms, as (I have also assume that the prior for feature values factors over the
different features, as it does in all cases I know of):

β0 = log π(M0) + log p
(

D | λ0
)

−
1

2
log det A0 (10)

βg = log π(Mg) + log π(µg) + log p
(

D | λ0, µg

)

+
1

2
log(2π) −

1

2
log det Ag

Where λ0 = argmaxλ π(λ)p (D | λ), µg = argmaxµ π(µ)p
(

D | λ0, µ
)

, A0 is
the Hessian for λ0 and Ag is the Hessian for λ0 and µg.

While this is becoming more tractable, computing the determinant of a G+
1×G+1 matrix for each feature remains prohibitive. We thus approximate the
A matrix by a diagonal matrix.
Assumption 2: The off-diagonal elements of the A matrix are 0.

Under this assumption, we need only compute Aii = ai, which can be com-
puted in our case as:

ai = −

N
∑

n=1





(

∑

y x
y
ni exp

[

λy
>xn + µxni

]

∑

y exp [λy
>xn + µxni]

)2

−

∑

y (xni)
2 exp

[

λy
>xn + µxni

]

∑

y exp [λy
>xn + µxni]





(11)
The error introduced by this approximation is likely negligible: as stated

before, we are interested in computing features that are not correlated with
eachother. If a feature g is not correlated with any existing feature, then this
approximation is good (since inductively the “old” A matrix can be approx-
imated by the diagonal, the “new” matrix can also be approximated by the

4

diagonal). Since the log determinant of a diagonal matrix is simply the sum of
its elements, under this new assumption, we get:

β0 = log π(M0) + log p
(

D | λ0
)

(12)

βg = log π(Mg) + log π(µg) + log p
(

D | λ0, µg

)

+
1

2
log(2π) +

1

2
log ag

Eq (12) has a nice intuitive interpretation. A feature g has a high factor if
(a) it makes the data log posterior high and (b) has low variance. This means
that a feature both (a) has to be useful for predicting the classes and (b) not be
underspecified by the data.

3.4 Model Priors

The only aspect of the feature selector not yet described is the form of the model
priors π(Mr). Note that although not written as such, this is actually condi-
tional on the current model, π(Mr | M̂), where M̂ is the currently selected set
of features. The simplest prior available simply places uniform weights on
each possible model:

π(Mr | |M̂| = G) =
1

F − G + 1
(13)

where F − G is the number of inactive features, and the one is added to
account for M0. Other model priors are possible when prior information is
actually available: indeed, one might know a priori that some features are more
or less good, given the currently selected features, and a carefully crafted prior
could account for this knowledge.

3.5 Selecting Multiple Features

For efficiency’s sake, it is often desirable to select 1 < S < F − G features at
a time. One could do so by computing the Bayes factor for all subsets of fea-
tures, but this is computationally way too expensive. Alternatively, one could
simply compute the approximate Bayes factor βg for all unadded features, and
add the top S at once. The problem with this approach is that in problems with
many highly correlated features, the top S features are likely to be very similar.
From the perspective of data modeling, this is not so bad. We will have redun-
dant features to compute, but the model is able to deal reasonably well with
redundant features. The primary concern is that, as more redundant features
are added, our approximation to the Hessian matrix becomes worse.

To fix this problem without requiring a quadratic explosing in the number
of optimizations required, we recommend the following approach. Suppose
the two best features are g′ and g, respectively, according to the approximate
Bayes factors. We will always at feature g′. Then, based on that we have added
feature g′, we recompute βg according to:

5

log π(Mg) + log π(µg) + log p
(

D | λ0, µg′ , µg

)

+
1

2
log(2π) +

1

2
log ag (14)

If g and g′ are highly correlated, then the model in which their values have
been approximated according to the mean field assumption will likely overfit
the data, thus resulting in a decrease in the data log likelihood. This will cause
the approximate Bayes factor to be lower than that for a feature with little cor-
relation to g′.

3.6 Corrective Feature Selection

As mentioned before, since we make the mean field approximation, to compute
the optimal µ for a new feature g, we need only consider data points in which
feature g actually appears. Moreover, the data log likelihood will also only
change at those points. Thus:

log p
(

D | λ0, µg

)

=

N
∑

n=1



λ0
yn

>xn + µgxng − log
∑

y′∈Y

exp
(

λ0
y′

>xn + µgxng

)





(15)
We can make the maximum approximation (also known as the Viterbi ap-

proximation) in Eq (15), by replacing the sum over y′ with the max over y′. In
this case, the log “eats” the exp, and we obtain:

log p
(

D | λ0, µg

)

≈

N
∑

n=1

[

λ0
yn

>xn + µgxng − max
y′

(

λ0
y′

>xn + µgxng

)

]

(16)

The computation of the gradient of this approximation is not possible since
it contains discontinuities and thus this approximation is useless for the pur-
pose of optimization. However, it should be noted that under this approxima-
tion, the gradient of µg will be non-zero only if y 6= y′. In other words, the
gradient will be non-zero only when example n is misclassified. We can thus
improve the efficiency of our algorithm by considering the addition of features
that are present only at misclassified points.

3.7 Implementation

The implementation of the technique described in this note is straightforward.
Pseudocode for the method is shown in Figure 1. In this, we assume that we
are able to find the MAP parameters (the call to OptMAP) for a model with a
certain set of features: in practice, I use LM-BFGS to optimize maxent models
[7, 1, 4].

6

Algorithm APPROXBFFS
Active← {Bias}
while true do

λ0 ← OptMAP(D, Active)
β0 ← log p

�
D | λ0, Active �

Proposed← � n|yn 6=ŷn
xn −Active

for g ∈ Proposed do
µg ← OptSingle(D, λ0, g)

end for
Current← ∅
while |Current| ≤ S and Proposed 6= ∅ do

for g ∈ Proposed do

ag ← − � N

n=1

�����
y xni exp[λy

>xn+µxni]�
y exp[λy

>xn+µxni] 	 2

−

�
y(xni)

2 exp[λy
>xn+µxni]�

y exp[λy
>xn+µxni]

βg ← log π(µg) + log p
�
D | λ0, µg, Active ∪ Current ∪ {g} �

+ 1
2

log(2π) + 1
2

log ag

end for
if β0 > βg for all g ∈ Proposed then

break
end if
ĝ ← argmaxg βg

β0 ← βg

Current← Current ∪ {ĝ}
Proposed← Proposed− {ĝ}

end while
if Current = ∅ then

break
end if
Active← Active ∪ Current

end while
return Active

Figure 1: Approximate Bayes factor feature selection algorithm.

The algorithm also assumes we can optimize µ for a single parameter under
the factorial assumption. Given λ, the derivative of the data log likelihood for
feature g is:

d
dµ

log p (D | λ, g) =

N
∑

n=1



xng − log
∑

y′

pn,y′xng exp (µxng)
∑

y′ pn,y′ exp (µxng)



 (17)

Here, pn,y′ is the current probability of class y′ for data point n under λ:
pn,y′ ∝ exp λy′

>xn. Using Eq (17), we can perform simple Newton steps to
find µ. We can do a bit better by considering the second derivative, which
we must calculate anyway, as they are exactly the ag values from the Hessian
approximation.

7

4 Conclusion

Using two carefully chosen assumptions (first, the mean-field approximation;
second, that features are not correlated) together with the Laplace approxima-
tion, we have obtained an efficient feature selection algorithm for maximum
entropy models based on Bayes factors. This algorithm is implemented in the
MEGAM toolkit: http://www.isi.edu/˜hdaume/megam/.

References

[1] Brett M. Averick and Jorge J. Moré. Evaluation of large-scale optimization
problems on vector and parallel architectures. SIAM Journal of Optimization,
4, 1994.

[2] Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. A
maximum entropy approach to natural language processing. Computational
Linguistics, 22(1):39–71, 1996.

[3] James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer
Series in Statistics. Springer-Verlag, second edition, September 1985.

[4] Hal Daumé III. Notes on CG and LM-BFGS optimization of logistic re-
gression. Paper available at http://www.isi.edu/˜hdaume/docs/
daume04cg-bfgs.ps, implementation available at http://www.isi.
edu/˜hdaume/megam/, August 2004.

[5] Robert E. Kass and Adrian E. Raftery. Bayes factors and model uncertainty.
Journal of the American Statistical Association, 90:773–795, 1995.

[6] David J.C. MacKay. Information Theory, Inference & Learning Algorithms.
Cambridge University Press, first edition, June 2002.

[7] S.G. Nash and J. Nocedal. A numerical study of the limited memory BFGS
method and the truncated Newton method for large scale optimization.
SIAM Journal of Optimization, 1:358–372, 1991.

8

