Machine Learning

Hal Daumé I11

Computer Science
University of Maryland

me@hal3.name

CS 421: Introduction to Artificial Intelligence

8 May 2012

Many slides courtesy of
Dan Klein, Stuart Russell,
or Andrew Moore

Announcements

> Final exam review
> Please vote for a time slot:
> http://www.when2meet.com/?439876-EJD1w
> WiIll decide by class Thursday!

Machine Learning

> Up until now: how to reason in a model and
how to make optimal decisions

> Machine learning: how to select a model on the
basis of data / experience

> Learning parameters (e.g. probabilities)
> Learning structure (e.g. BN graphs)
> Learning hidden concepts (e.g. clustering)

Example: Spam Filter

> |nput: email
> Output: spam/ham
> Setup:

» Get a large collection of
example emails, each
labeled “spam” or “ham

> Note: someone has to
hand label all this data!

> Want to learn to predict
labels of new, future
emails
> Features: The
attributes used to make
the ham / spam

decision
> Words: FREE!
> Text Patterns: $dd, CAPS
> Non-text:

SenderIinContacts

X

X

Dear Sir.

First, I must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO
THIS MESSAGE AND PUT
"REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, TIknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner,
but when I plugged it in, hit the power
nothing happened.

Example: Digit Recognition

> Input: images / pixel grids
> Output: a digit 0-9
> Setup:

» Get a large collection of
example images, each labeled
with a digit

> Note: someone has to hand
label all this datal

» Want to learn to predict labels
of new, future digit images

> Features: The attributes used to
make the digit decision
> Pixels: (6,8)=ON
> Shape Patterns:
NumComponents, AspectRatio,
NumLoops
>

2
(
>

/
)

77

Other Classification Tasks

> In classification, we predict labels y (classes) for inputs x

> Examples:

Spam detection (input: document, classes: spam / ham)

OCR (input: images, classes: characters)

Medical diagnosis (input: symptoms, classes: diseases)
Automatic essay grader (input: document, classes: grades)
Fraud detection (input: account activity, classes: fraud / no fraud)
Customer service email routing

... many more

YV V.V VYV V V VY

> Classification is an important commercial technology!

Important Concepts

>

>

>

>
>
>

>
>

Data: labeled instances, e.g. emails marked spam/ham

Training set
Held out set
Test set

Features: attribute-value pairs which characterize each x
Experimentation cycle

Learn parameters (e.g. model probabilities) on training set

(Tune hyperparameters on held-out set)
» Compute accuracy of test set
> Very important: never “peek” at the test set!

Evaluation

> Accuracy: fraction of instances predicted correctly

>

Overfitting and generalization
> Want a classifier which does well on test data

Overfitting: fittin
generalizing we

ﬁ the training data very closely, but not

Training
Data

Held-Out
Data

Test
Data

Bayes Nets for Classification

> One method of classification:
Use a probabilistic model!
Features are observed random variables F,

Y is the query variable
Use probabilistic inference to compute most likely Y

YV V VY V

y = argmaxy P(y|f1...fn)

> You already know how to do this inference

Simple Classification

> Simple example: two binary features é@@g]‘@

. . P(S|M} P(F‘M)
P(m‘s, f) < direct estimate

P(s, flm)P(m)

<« Bayes estimate (no

P(mls, f) =

P(s, f) assumptions)
P(sl/m)P(f|lm)P(m) «—__ Conditional
P(m|s, f) = P(s, f) independence
> Y

+ < P(m,s, f) = P(s|m)P(flm)P(m)
pP(m,s, f) = P(s|m)P(f|m)P(m)

General Naive Bayes

> A general naive Bayes model:

Y] x |F["

parameters °

P(Y,F]_...Fn):

PO T P(FiIY)

‘i’ ‘ib e o o ‘ib

Y| parameters n x |F| x |Y| parameters

> We only specify how each feature depends on the class
> Total number of parameters is /inear in n

Inference for Naive Bayes

> (Goal: compute posterior over causes
> Step 1: get joint probability of causes and evidence

P(Y, f1...fn) =
[P(y1, f1---fn) |
P(y2, f1.--fn)
u P(ykaflfn) _

> Step 2: get probability of evidence

> Step 3: renormalize

=

- P(f1)I1; P(file1) |
P(f2) I1; P(file2) >

| PUW T Piler)
P(f1...fn) &~

s

P(Y’flfn)

General Naive Bayes

> What do we need in order to use naive Bayes?

> Inference (you know this part)
> Start with a bunch of conditionals, P(Y) and the P(F |Y) tables

» Use standard inference to compute P(Y|F,...F.)
> Nothing new here

> Estimates of local conditional probability tables
> P(Y), the prior over labels
> P(F|Y) for each feature (evidence variable)
> These probabilities are collectively called the parameters of the
model and denoted by 6
> Up until now, we assumed these appeared by magic, but...
> ...they typically come from training data: we’ll look at this now

A Digit Recognizer

> |Input: pixel grids

> Qutput: a digit 0-9

QONP —~©

Naive Bayes for Digits

> Simple version:
> One feature F; for each grid position <i,j>
> Possible feature values are on / off, based on
whether intensity is more or less than 0.5 in
underlying image
> Each input maps to a feature vector, e.g.

‘1—>(F0,0=0 Fp1=0 Fgo=1 Fy3=1 Fy4=0

> Here: lots of features, each is binary
> Naive Bayes model:
P(Y|Fo0---Fi5,15) o P(Y)][] P(F ;1Y)
]
> What do we need to learn?

. ..F15,15 — O)

Examples: CPTs

P(Y) P(F31 =on|Y) P(F55=onlY)
1 ol / 1 [0.01 / 10.05
2 |01 2 10.05 2 | 0.01
3 101 3 10.05 3 10.90
4 101 | 4 10.30 4 10.80
> |01 5 10.80 5 10.90
6 101 6 |0.90 6 |0.90
7 101 7 10.05 7 10.25
§ 0.1 8 |0.60 8 |0.85
9 |01 9 10.50 9 |0.60
0 101 0 |0.80 0 |0.80

Parameter Estimation

> Estimating distribution of random variables like X or X | Y

> Empirically: use training data
> For each outcome x, look at the empirical rate of that value:

P () = count(x) ‘

total samples
P PyL(r) =1/3

> This is the estimate that maximizes the likelihood of the data

L(z,60) = [] Po(=y)

> Elicitation: ask a human!

» Usually need domain experts, and sophisticated ways of eliciting
probabilities (e.g. betting games)

> Trouble calibrating

A Spam Filter

>

>
>

>

>

>

>
>

>

Nalve Bayes spam
filter

Data:

Collection of emails,
labeled spam or ham

Note: someone has to
hand label all this data!

Split into training, held-
out, test sets

Classifiers
Learn on the training set

(Tune it on a held-out
set)

Test it on new emails

X

\

Dear Sir.

First, I must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO
THIS MESSAGE AND PUT
"REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner,
but when I plugged it in, hit the power
nothing happened.

Naive Bayes for Text

> Bag-of-Words Naive Bayes:
> Predict unknown class label (spam vs. ham)
> Assume evidence features (e.g. the words) are independent
> Warning: subtly different assumptions than before!

Word at position
> (Generative model i, not i word in

the dictionary!
P(C,W1...Wy) = P(Y) [[P(W;]C) J’y
i —

>

> Tied distributions and bag-of-words
> Usually, each variable gets its own conditional probability
distribution P(F|Y)
> In a bag-of-words model
» Each position is identically distributed
> All positions share the same conditional probs P(W|C)
> Why make this assumption?

Example: Spam Filtering

> Model:

P(C,W1...Wy) = P(C)] P(W;|C)

> What are the parameters?

P(C)
ham : 0.66
spam: 0.33

> Where do these tables come from?

P(W|spam)
the : 0.0156
to 0.0153
and : 0.0115
of 0.0095
you : 0.0093
a : 0.0086
with: 0.0080
from: 0.0075

P(W|ham)
the : 0.0210
to 0.0133
of : 0.0119
2002: 0.0110
with: 0.0108
from: 0.0107
and : 0.0105
a 0.0100

Spam Example

Word P(w|spam) P(w|ham) Tot Spam Tot Ham

(prior) 0.33333 0.66666 1.1 0.4

P(spam | w) = 98.9

Example: Overfitting

P(features,C = 2) P(features,C = 3)

P(C=2)=0.1 P(C=3)=0.1

P(on|C =2)=0.8 P(on|C=3)=0.8

P(on|C =3) =0.9

P(on|C=2)=0.1

P(off|C = 3) = 0.7

P(off|C = 2) = 0.1

P(on|C =3)=0.0

P(on|C =2) =0.01

2 wins!!

Example: Spam Filtering

> Raw probabilities alone don’t affect the posteriors;
relative probabilities (odds ratios) do:

P(W|ham) P(W|spam)
P(W|spam) P(W|ham)
south-west : inf screens : inf
nation : inf minute : inf
morally : inf guaranteed : inf
nicely : inf $205.00 : inf
extent : inf delivery : inf
seriously : inf signature : inf

What went wrong here?

Generalization and Overfitting

> Relative frequency parameters will overfit the training data!

> Just because we never saw a 3 with pixel (15,15) on during
training doesn’t mean we won't see it at test time

Unlikely that every occurrence of “minute” is 100% spam
Unlikely that every occurrence of “seriously” is 100% ham
What about all the words that don’t occur in the training set at all?

In general, we can’t go around giving unseen events zero
probability

vV V V VY

> As an extreme case, imagine using the entire email as the only
feature

> Would get the training data perfect (if deterministic labeling)
> Wouldn’t generalize at all

> Just making the bag-of-words assumption gives us some
generalization, but isn’t enough

> To generalize better: we need to smooth or regularize the estimates

Estimation: Smoothing

> Problems with maximum likelihood estimates:
> If | flip a coin once, and it's heads, what's the estimate for
P(heads)?
> Whatif | flip 10 times with 8 heads?
> Whatif | flip 10M times with 8M heads?

> Basic idea:

> We have some prior expectation about parameters (here, the
probability of heads)

> Given little evidence, we should skew towards our prior
> Given a lot of evidence, we should listen to the data

Estimation: Smoothing

> Relative frequencies are the maximum likelihood
estimates

Onrr, = arg gnaxP(XlG) count(z)

total samples

= PuL(z) =

= arg max | [Py(X;)
0 i

> In Bayesian statistics, we think of the parameters as
just another random variable, with its own distribution

Oprap = arg max P(0|X)
0

= arg gnax P(X|0)P(0)/P(X) j1>

= arg max P(X|0)P(0)
0

Estimation: Laplace Smoothing

> Laplace’s estimate:
> Pretend you saw every

outcome once more than you
actually did @ @ @

_ c(x)+1
PLap(®) =Sy + 1 Py (X) =
_ c(xz) +1
N+ |X] Prap(X) =

» Can derive this as a MAP
estimate with Dirichlet priors
(see ¢s5350)

Estimation: Laplace Smoothing

> Laplace’s estimate
(extended):

> Pretend you saw every outcome

k extra times
c(x) + k
N + k| X|

Prapr(z) =

> What's Laplace with k = 0?
> ks the strength of the prior

> Laplace for conditionals:

> Smooth each condition
independently:

c(x,y) + k

Prapi(zly) = (9) + BIX]

OO

Prapo(X) =

Prapi1(X) =

Prap100(X) =

Estimation: Linear Interpolation

> |n practice, Laplace often performs poorly for P(X|Y):
> When [X] is very large
> When |Y] is very large

> Another option: linear interpolation
> Also get P(X) from the data
> Make sure the estimate of P(X|Y) isn’t too different from P(X)

Prin(zly) = aP(z]y) + (1.0 — o) P(z)

> Whatif 0 is 0? 17

Real NB: Smoothing

> For real classification problems, smoothing is critical
> New odds ratios:

P(W|ham) P(W|spam)
P(W|spam) P(W|ham)
helvetica : 11.4 verdana : 28.8
seems : 10.8 Credit : 28.4
group : 10.2 ORDER : 27.2
ago : 8.4 : 26.9
areas : 8.3 money : 26.5

Do these make more sense?

Tuning on Held-Out Data

> Now we've got two kinds of
unknowns

> Parameters: the probabilities P(Y]| Tal
farame training

> Hyperparameters, like the amount
of smoothing to do: k, a

> \Where to learn?

accuracy

> Iaeiarn parameters from training held-out
ata
> Must tune hyperparameters on test
different data
> Why?
> For each value of the Qo

hyperparameters, train and test on
the held-out data

» Choose the best value and do a
final test on the test data

Generative vs. Discriminative

> (Generative classifiers:
> E.g. nalve Bayes
> We build a causal model of the variables
> We then query that model for causes, given evidence

> Discriminative classifiers:

E.g. perceptron (next)

No causal model, no Bayes rule, often no probabilities
Try to predict output directly

Loosely: mistake driven rather than model driven

YV V V VY

31

The Binary Perceptron

> Inputs are feature values
> Each feature has a weight
> Sum is the activation

activationy(z) =) w; - fi(x)

> |f the activation is:

> Positive, output 1 W,

> Negative, output O i W '
f, 1 > = >0?
1 —>

32

Example: Spam

> Imagine 4 features:
> Free (number of occurrences of “free”) Wt (2)
> Money (occurrences of “money”)
> BIAS (always has value 1)

. £(x) w > wi - fi(x)

BIAS 1 BIAS : -3 (L(=3) +
free 1 free 4 (1)(4) +
“free money” money : 1 money : 2 (1)(2) +
the 0 the : 0 (0)(0) +

=3

Binary Decision Rule

> |n the space of feature vectors
> Any weight vector is a hyperplane
> One side will be class 1
> Other will be class -1

BRIAS -
free
money

DN DB W

the

Multiclass Decision Rule

f -wq biggest
> |If we have more than two S —
classes:
> Have a weight vector for - fam
each class biggeit \ biggezt
» Calculate an activation for
each class

activationy(z,c) =) we; - fi(x)
i

> Highest activation wins

c = arg max (activationy(zx,c))
C

35

Example

BIAS 1

win 1

“win the vote™ game 0

vote 1

the 1
WSPORTS WpOLITICS WTECH
BIAS : =2 BIAS 1 BIAS 2
win : 4 win 2 win 0
game 4 game 0 game 2
vote 0 vote 4 vote 0
the 0 the 0 the 0

The Perceptron Update Rule

> Start with zero weights
Pick up training instances one by one
> Try to classify

A\

¢ = argmax, we- f(x)

= argmax, > ;we; - fi(x)

> If correct, no change!

> If wrong: lower score of wrong answer,
raise score of right answer

we = we — f(x)

Wer = Wer + f(x)

Example

“win the vote”
“win the election”

“win the game”

WSPORTS WpOLITICS WTECH
BIAS : BIAS : BIAS
game ; game ; game
vote : vote : vote

the : the : the

38

Examples: Perceptron

> Separable Case

A5

M

{8

5

2L

15

L

+ +
- O
+ O O
O
O O

'I]]]]] [
-0 0 @ 1 r £ ZF I & 44 F T B

39

Mistake-Driven Classification

> In naive Bayes, parameters:
> From data statistics
» Have a causal interpretation
> One pass through the data

> For the perceptron parameters:

>
>
>

From reactions to mistakes
Have a discriminative interpretation

Go through the data until held-out
accuracy maxes out

Training
Data

Held-Out
Data

Test
Data

40

Properties of Perceptrons

> Separability: some parameters get the
training set perfectly correct

> Convergence: if the training is
separable, perceptron will eventually
converge (binary case)

> Mistake Bound: the maximum number
of mistakes (binary case) related to the
margin or degree of separability

1

mistakes < 5—2

Separable

41

Examples: Perceptron

> Non-Separable Case

T

HE{

i

FBd-

Fl-

E

z|L

Mo

i

M3k

m

IR
a

+
+ Q
O O
+
O O

0

1
1

1

1 1 1 | 1
2 2 K] 3 4 4] 3 B

42

Issues with Perceptrons

o training
> Overtraining: test / held-out -
accuracy usually rises, then S
falls > fact
> Overtraining isn’t quite as O erout
bad as overfitting, but is
similar iterations

> Regularization: if the data isn’t
separable, weights might
thrash around

> Averaging weight vectors
over time can help (averaged
perceptron)

> Mediocre generalization: finds -
a “barely” separating solution

43

Linear Separators

> Which of these linear separators is optimal?

44

Support Vector Machines

> Maximizing the margin: good according to intuition and theory.
> Only support vectors matter; other training examples are ignorable.
> Support vector machines (SVMs) find the separator with max margin

1 >
EHWH

Vi,c wer - f(x;) > we - f(x;) + 1

45

min
w

Summary

> Nailve Bayes
> Build classifiers using model of training data
> Smoothing estimates is important in real systems

> Perceptrons:
> Make less assumptions about data
> Mistake-driven learning
> Multiple passes through data

46

