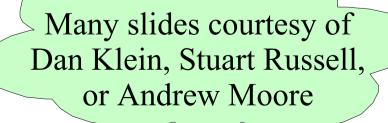
Hidden Markov Models

Hal Daumé III

- Computer Science University of Maryland
- me@hal3.name
- CS 421: Introduction to Artificial Intelligence
- 19 Apr 2012



Hal Daumé III (me@hal3.name)

CS421: Intro to AI

Reasoning over Time

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Need to introduce time into our models
- Basic approach: hidden Markov models (HMMs)
- More general: dynamic Bayes' nets

Markov Models

- A Markov model is a chain-structured BN
 - Each node is identically distributed (stationarity)
 - Value of X at a given time is called the state
 - > As a BN:

$$\begin{array}{c} \overbrace{X_1} & \overbrace{X_2} & \overbrace{X_3} & \overbrace{X_4} & \overbrace{X_$$

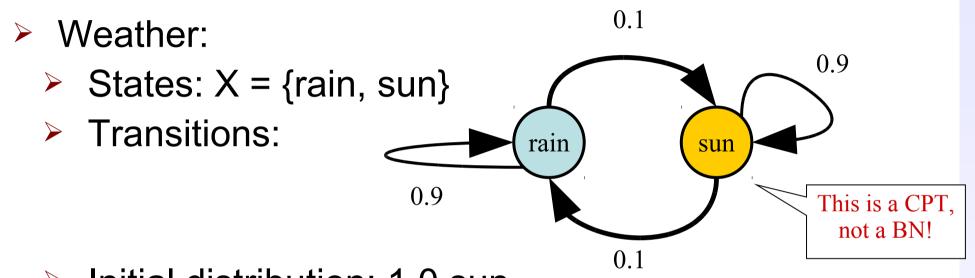
Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial probs)

Conditional Independence

 X_4

- Basic conditional independence:
 - Past and future independent of the present
 - Each time step only depends on the previous
 - This is called the (first order) Markov property
- Note that the chain is just a (growing) BN
 - We can always use generic BN reasoning on it (if we truncate the chain)

Example: Markov Chain



- Initial distribution: 1.0 sun
- What's the probability distribution after one step?

$$P(X_2 = \operatorname{sun}) = P(X_2 = \operatorname{sun}|X_1 = \operatorname{sun})P(X_1 = \operatorname{sun}) + P(X_2 = \operatorname{sun}|X_1 = \operatorname{rain})P(X_1 = \operatorname{rain})$$

 $0.9 \cdot 1.0 + 0.1 \cdot 0.0 = 0.9$

Hal Daumé III (me@hal3.name)

Mini-Forward Algorithm

- Question: probability of being in state x at time t?
- Slow answer:
 - Enumerate all sequences of length t which end in s
 - Add up their probabilities

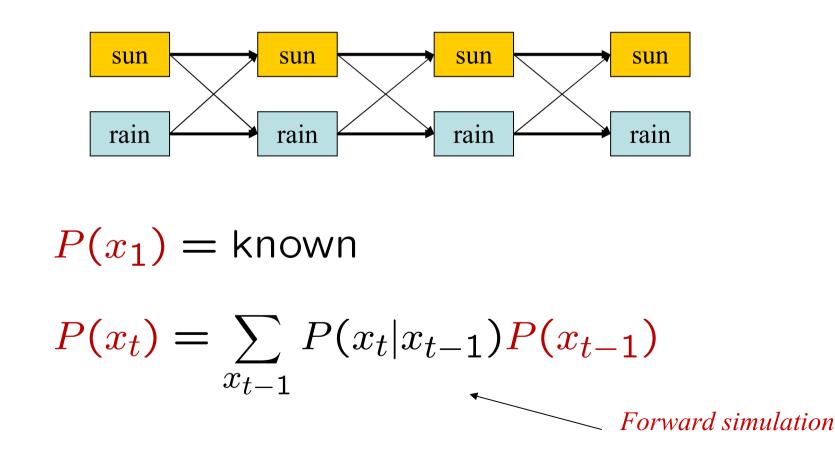
$$P(X_t = sun) = \sum_{x_1...x_{t-1}} P(x_1, \dots, x_{t-1}, sun)$$

 $P(X_1 = sun)P(X_2 = sun|X_1 = sun)P(X_3 = sun|X_2 = sun)P(X_4 = sun|X_3 = sun)$

 $P(X_{1} = sun)P(X_{2} = rain|X_{1} = sun)P(X_{3} = sun|X_{2} = rain)P(X_{4} = sun|X_{3} = sun)P(X_{4} = sun|X_{3} = sun)P(X_{4} = sun|X_{5} = sun)P(X_{5} = sun)P(X_{5}$

Mini-Forward Algorithm

- Better way: cached incremental belief updates
 - An instance of variable elimination!



Hal Daumé III (me@hal3.name)

CS421: Intro to Al

Example

From initial observation of sun

From initial observation of rain

$$\begin{pmatrix} 0.0 \\ 1.0 \end{pmatrix} \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix} \begin{pmatrix} 0.18 \\ 0.82 \end{pmatrix} \longrightarrow \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

$$P(X_1) P(X_2) P(X_3) P(X_{\infty})$$

Hal Daumé III (me@hal3.name)

CS421: Intro to Al

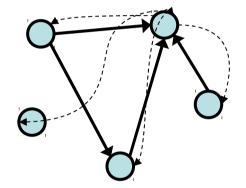
Stationary Distributions

- If we simulate the chain long enough:
 - What happens?
 - Uncertainty accumulates
 - Eventually, we have no idea what the state is!
- Stationary distributions:
 - For most chains, the distribution we end up in is independent of the initial distribution (but not always uniform!)
 - Called the stationary distribution of the chain
 - Usually, can only predict a short time out

Web Link Analysis

PageRank over a web graph

- Each web page is a state
- Initial distribution: uniform over pages
- Transitions:
 - With prob. c, uniform jump to a random page (dotted lines)
 - With prob. 1-c, follow a random outlink (solid lines)

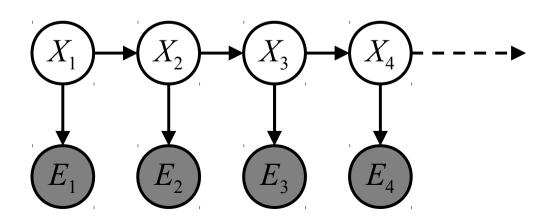


Stationary distribution

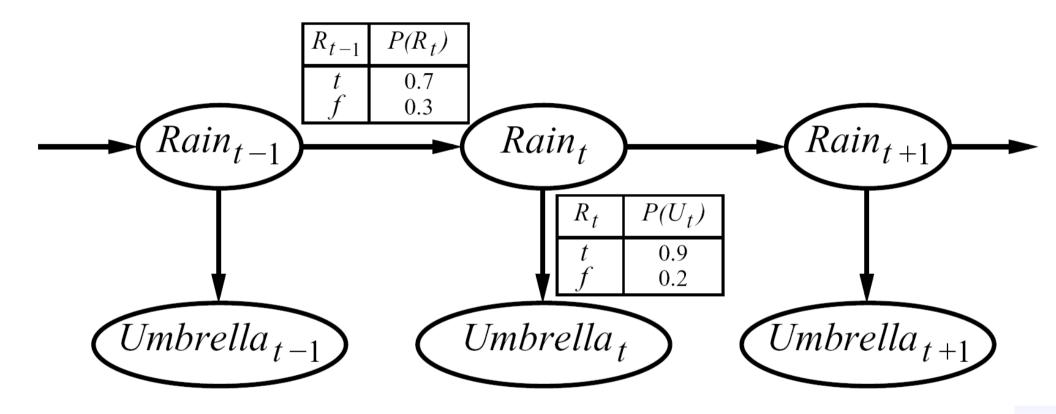
- Will spend more time on highly reachable pages
- E.g. many ways to get to the Acrobat Reader download page
- Somewhat robust to link spam (but not immune)
- Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors

Hidden Markov Models

- Markov chains not so useful for most agents
 - Eventually you don't know anything anymore
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states S
 - You observe outputs (effects) at each time step
 - As a Bayes' net:



Example



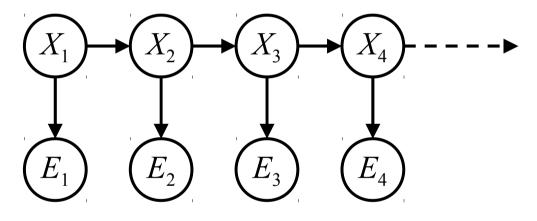
- An HMM is defined by:
 - > Initial distribution: $P(X_1)$
 - Transitions:
 - Emissions:

 $P(X_T|X_{T-1})$

P(E|X)

Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present
 - Current observation independent of all else given current state



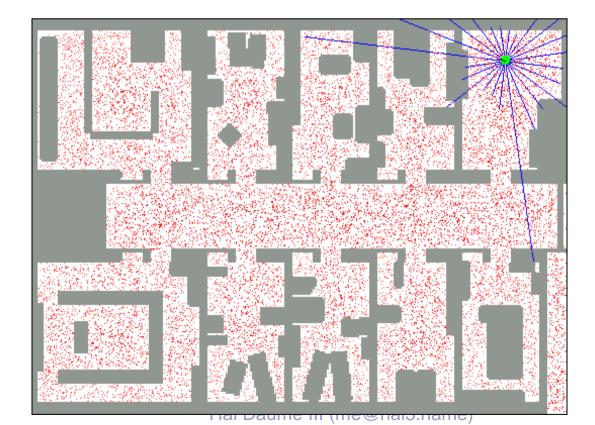
- Quiz: does this mean that observations are independent given no evidence?
 - [No, correlated by the hidden state]

Real HMM Examples

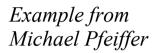
- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

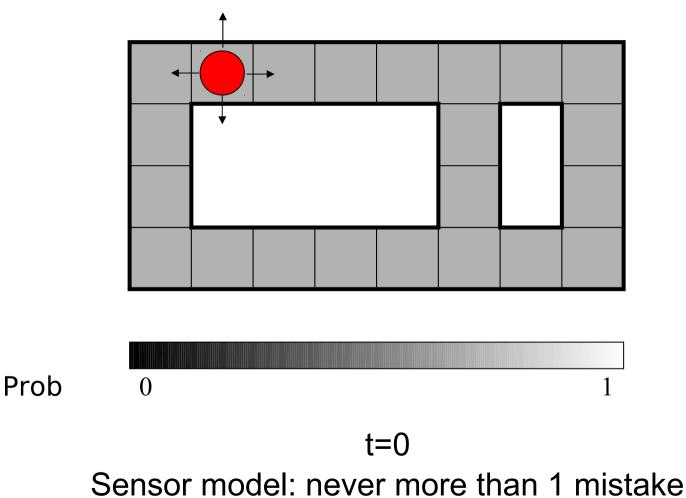
Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution B(X) (the belief state)
- We start with B(X) in an initial setting, usually uniform
- > As time passes, or we get observations, we update B(X)



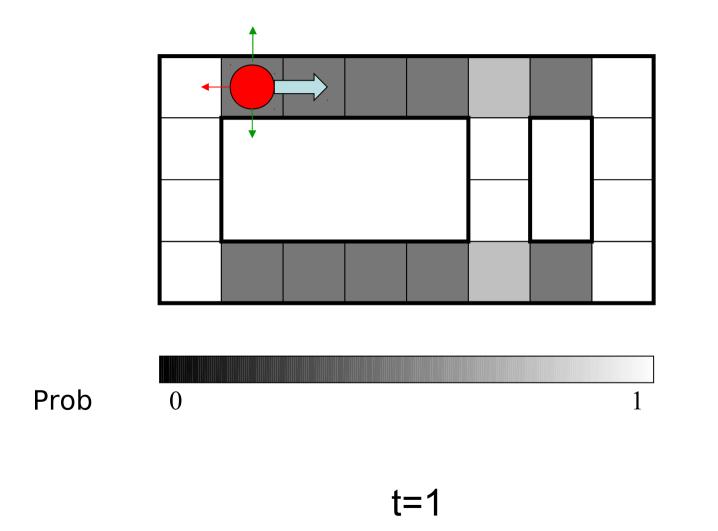
CS421: Intro to AI

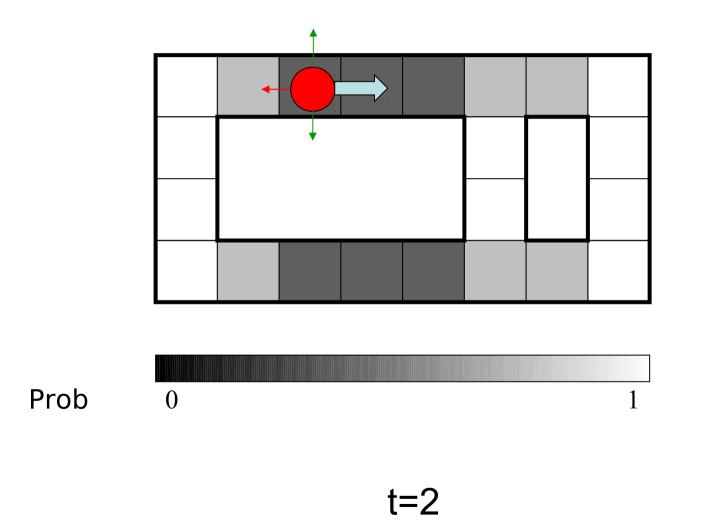


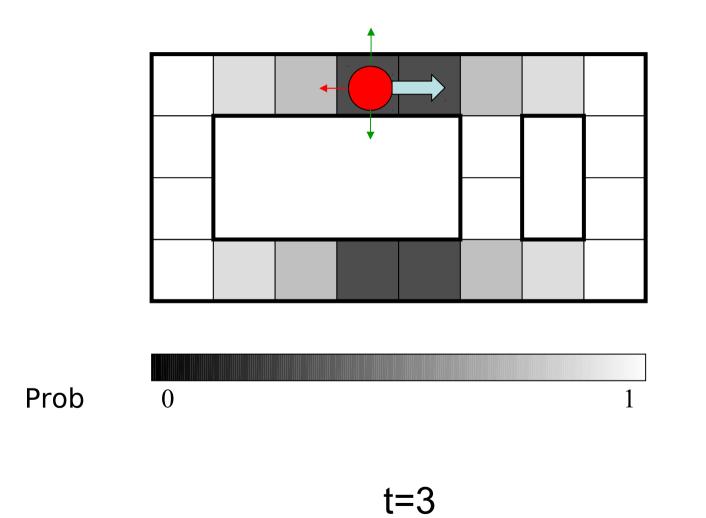


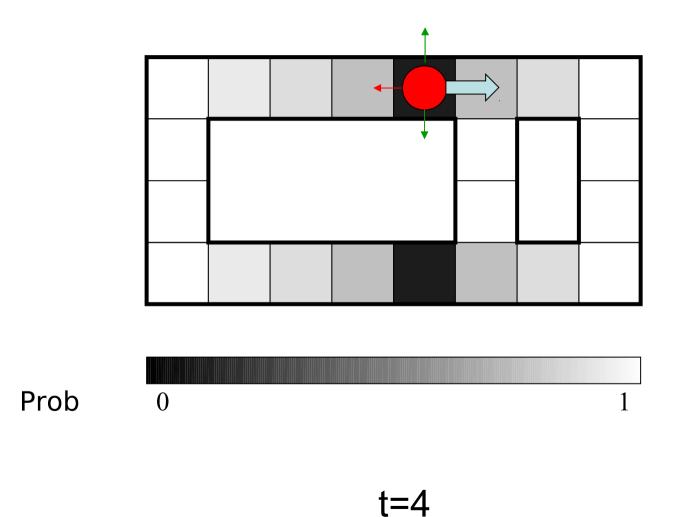
Motion model: may not execute action with small prob.

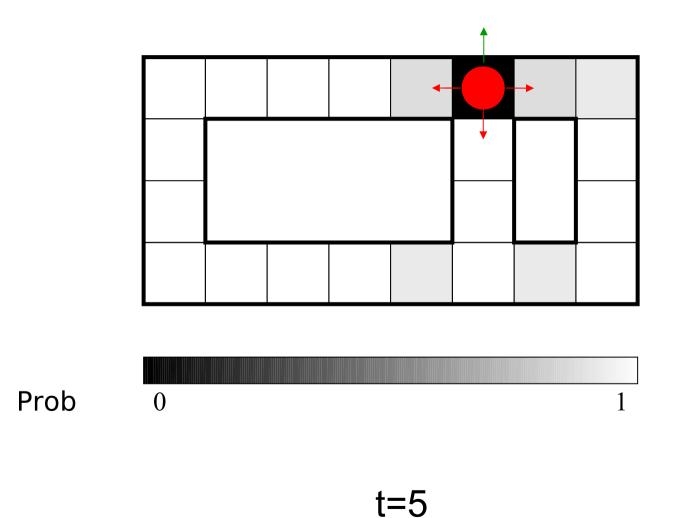
Hal Daumé III (me@hal3.name)











Passage of Time

Assume we have current belief P(X | evidence to date)

 $B(X_t) = P(X_t | e_{1:t})$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

Or, compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x) B(x_t)$$

Basic idea: beliefs get "pushed" through the transitions

With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

As time passes, uncertainty "accumulates"

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.05 0.01 0.05 <0.01 <0.01 <0.01
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 0.06 <0.01 <0.01 <0.01	0.02 0.14 0.11 0.35 <0.01 <0.01
<0.01 <0.01 1.00 <0.01 <0.01 <0.01	<0.01 0.76 0.06 0.06 <0.01 <0.01	0.07 0.03 0.05 <0.01 0.03 <0.01
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 0.06 <0.01 <0.01 <0.01	0.03 0.03 <0.01 <0.01 <0.01 <0.01

T = 1

$$T = 2$$

T = 5

$$B'(X) = \sum_{x} P(X'|x) B(x)$$

Transition model: ships usually go clockwise

Hal Daumé III (me@hal3.name)

CS421: Intro to Al

Observation

Assume we have current belief P(X | previous evidence): $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

Then:

$$P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

> Or:

$$B(X_{t+1}) \propto P(e|X)B'(X_{t+1})$$

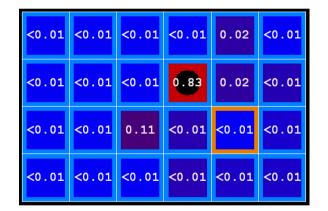
- Basic idea: beliefs reweighted by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

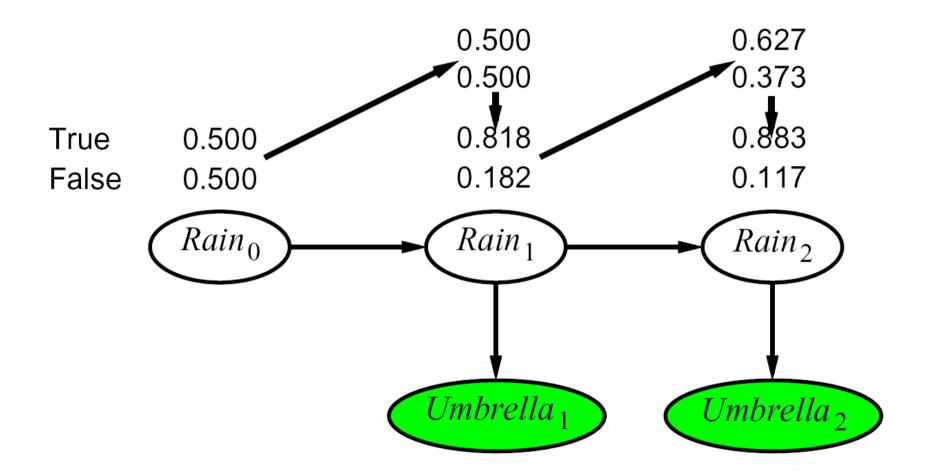
Before observation



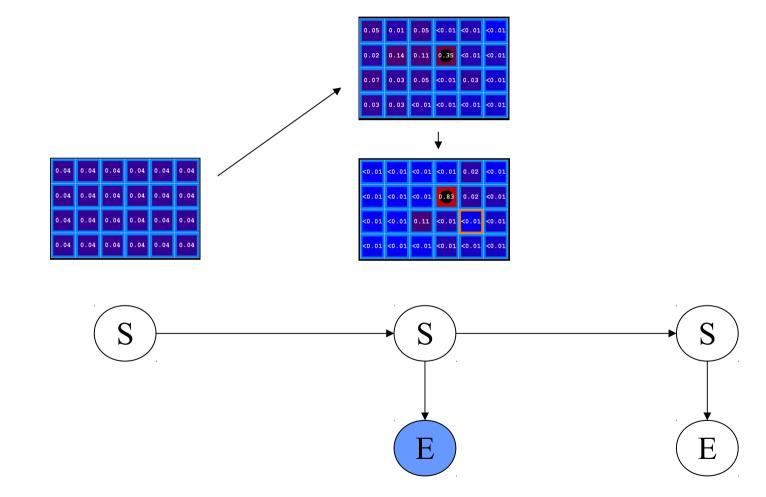
After observation

$B(X) \propto P(e|X)B'(X)$

Example HMM



Example HMM



CS421: Intro to Al

Updates: Time Complexity

- Every time step, we start with current P(X | evidence)
- We must update for time:

$$P(X_t|e_{1:t-1}) \propto \sum_{x_{t-1}} P(X_t|x_{t-1}) P(x_{t-1}|e_{1:t-1})$$

We must update for observation:

$$P(X_t|e_{1:t}) \propto P(e_t|X_t)P(X_t|e_{1:t-1})$$

- So, linear in time steps, quadratic in number of states |X|
- Of course, can do both at once, too

The Forward Algorithm

- Can do belief propagation exactly as in previous slides, renormalizing each time step
- In the standard forward algorithm, we actually calculate P(X,e), without normalizing (it's a special case of VE)

$$P(x_t|e_{1:t}) \propto P(x_t, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t)$$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

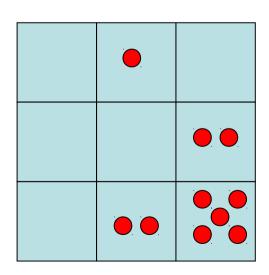
Hal Daumé III (me@hal3.name)

CS421: Intro to AI

Particle Filtering

- Sometimes |X| is too big to use exact inference
 - \succ |X| may be too big to even store B(X)
 - E.g. X is continuous
 - |X|² may be too big to do updates
- Solution: approximate inference
 - Track samples of X, not all values
 - Time per step is linear in the number of samples
 - But: number needed may be large
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

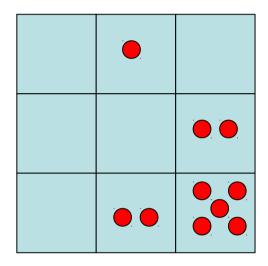


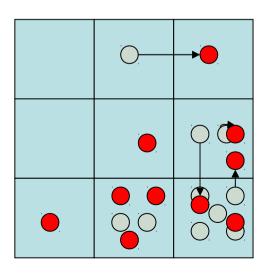
Particle Filtering: Time

Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples are their own weights
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If we have enough samples, close to the exact values before and after (consistent)





CS421: Intro to AI

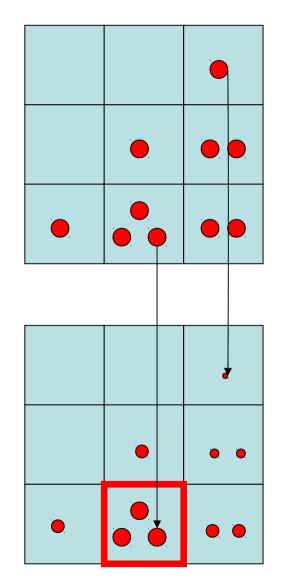
Particle Filtering: Observation

- Slightly trickier:
 - We don't sample the observation, we fix it
 - This is similar to likelihood weighting, so we downweight our samples based on the evidence

w(x) = P(e|x)

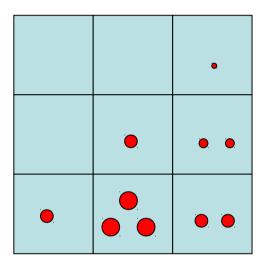
 $B(X) \propto P(e|X)B'(X)$

Note that, as before, the probabilities don't sum to one, since most have been downweighted (they sum to an approximation of P(e))



Particle Filtering: Resampling

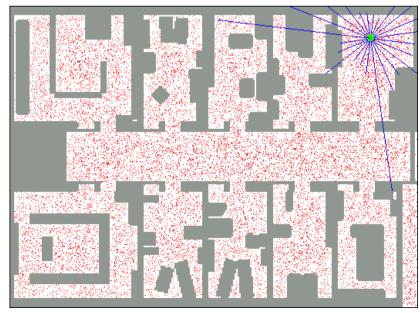
- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one





Robot Localization

- In robot localization:
 - > We know the map, but not the robot's position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 - Particle filtering is a main technique

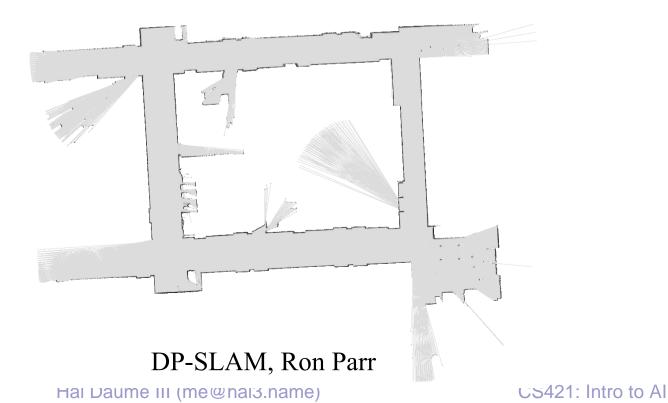


Hal Daumé III (me@hal3.name)

CS421: Intro to Al

SLAM

- SLAM = Simultaneous Localization And Mapping
 - We do not know the map or our location
 - Our belief state is over maps and positions!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods



Most Likely Explanation

- Question: most likely sequence ending in x at t?
 - E.g. if sun on day 4, what's the most likely sequence?
 - Intuitively: probably sun all four days
- Slow answer: enumerate and score

$$P(X_t = sun) = \max_{x_1 \dots x_{t-1}} P(x_1, \dots, x_{t-1}, sun)$$

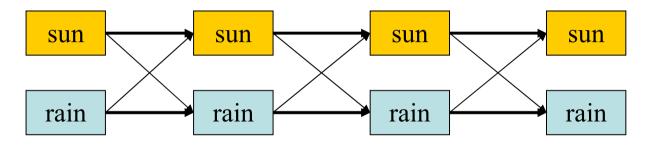
 $P(X_{1} = sun)P(X_{2} = sun|X_{1} = sun)P(X_{3} = sun|X_{2} = sun)P(X_{4} = sun|X_{3} = sun)$

 $P(X_1 = sun)P(X_2 = rain|X_1 = sun)P(X_3 = sun|X_2 = rain)P(X_4 = sun|X_3 = sun)$

Hal Daumé III (me@hal3.name)

Mini-Viterbi Algorithm

Better answer: cached incremental updates



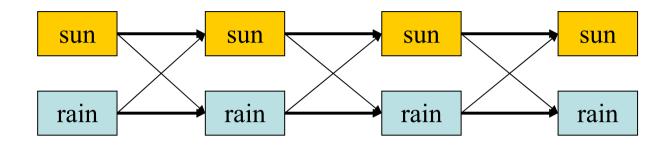
Define:

$$m_t[x] = \max_{x_{1:t-1}} P(x_{1:t-1}, x)$$
$$a_t[x] = \arg_{x_{1:t-1}} P(x_{1:t-1}, x)$$

Read best sequence off of m and a vectors

Hal Daumé III (me@hal3.name)

Mini-Viterbi



$$m_t[x] = \max_{x_{1:t-1}} P(x_{1:t-1}, x)$$

= $\max_{x_{1:t-1}} P(x_{1:t-1}) P(x|x_{t-1})$
= $\max_{x_{t-1}} P(x_t|x_{t-1}) \max_{x_{1:t-2}} P(x_{1:t-1})$

$$= \max_{x_{t-1}} P(x_t | x_{t-1}) m_{t-1}[x]$$

$$m_1[x] = P(x_1)$$

Hal Daumé III (me@hal3.name)

CS421: Intro to Al

Viterbi Algorithm

- Question: what is the most likely state sequence given the observations?
 - Slow answer: enumerate all possibilities
 - Better answer: cached incremental version

$$\begin{aligned} x_{1:T}^* &= \operatorname*{arg\,max}_{x_{1:T}} P(x_{1:T}|e_{1:T}) \\ m_t[x_t] &= \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t}) \\ &= \max_{x_{1:t-1}} P(x_{1:t-1}, e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t) \\ &= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) \max_{x_{1:t-2}} P(x_{1:t-1}, e_{1:t-1}) \\ &= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}] \end{aligned}$$

Hal Daumé III (me@hal3.name)

Example

