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Exercise

> (Consider:
> Evidence = b, not t'

G > Query =r?

> Questions:

e e > What are the initial factors?

> If you ran inference by
enumeration, how many things

e e would you have to sum over?

> Run variable elimination, choosing
alphabetically when you have to

e select a variable
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> (Consider:
> Evidence = b, not t'
> Query =r?
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Reminder: Alarm Network
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Inference by Enumeration

> Given unlimited time, inference in BNs is easy
> Recipe:
> State the marginal probabilities you need

> Figure out ALL the atomic probabilities you need
» Calculate and combine them

> Example:
B)
P(b,j,m) ( @
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General Variable Elimination

> Query: P(Q|E1 —=e1,... . = ek)

> Start with initial factors:
> Local CPTs (but instantiated by evidence)

> While there are still hidden variables (not Q or evidence):
> Pick a hidden variable H
> Join all factors mentioning H
> Project out H

> Join all remaining factors and normalize



Example
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P(B|j,m) « P(B, j,m) g o
P(B) P(E) P(A|B,E) P(j|A) P(m|A)
Choose A

P(A|B,E)

P(j|A) X > P(yym,AB,E) | > P(j,m|B,FE)

P(ml|A)

P(B)

P(F) P(j,m|B, F)




Example
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j> P(j,m|B)

P(B) P(E) P(j,m|B, E)
Choose E
P(E) :x > P(j,m, E|B)
P(j,m|B, E) :
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

Normalize

%) PG.m.B)

P(B|j, m)



Variable Elimination

> What you need to know:

> Should be able to run it on small examples, understand the
factor creation / reduction flow

> Better than enumeration: VE caches intermediate
computations

> Saves time by marginalizing variables as soon as possible
rather than at the end

> Polynomial time for tree-structured graphs — sound familiar?
> We will see special cases of VE later
> You'll have to implement the special cases

> Approximations
> Exact inference is slow, especially with a lot of hidden nodes

> Approximate methods give you a (close, wrong?) answer,
faster



Sampling

> Basic idea:
> Draw N samples from a sampling distribution S

> Compute an approximate posterior probability

> Show this converges to the true probability P @
> Outline:

»  Sampling from an empty network

> Rejection sampling: reject samples disagreeing with
evidence

> Likelihood weighting: use evidence to weight samples



Prior Sampling
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Prior Sampling

> This process generates samples with probability

Sps(z1...2zn) = || P(z;|Parents(X;)) = P(z1...2n)
=1

...l.e. the BN'’s joinzt probability
> Let the number of samples of an event be Nps(z1...zn)

> Then NlimOOP(a:l,...,xn) = |lim Npg(z1,...,2zn)/N

N—00
— SPS(CUL c . ,a:n)
= P(xq1...xn)
> |.e., the sampling procedure is consistent



Example

> We’'ll get a bunch of samples from the BN:
C,S,INnw
C,S, W
=C,S, I W
C, 1S, I, W
-C, S, W
> If we want to know P(W)
We have counts <w:4, -w:1>
Normalize to get P(W) = <w:0.8, -w:0.2>
This will get closer to the true distribution with more samples
Can estimate anything else, too

What about P(C| =r)? P(C| =r, ~w)?

Vv V VY V VY



Rejection Sampling

> Let’'s say we want P(C)
> No point keeping all samples around
> Just tally counts of C outcomes
> Let's say we want P(C| s)
» Same thing: tally C outcomes, but ignore

(reject) samples which don’t have S=s C, S, I, W
> This is rejection sampling C,s,IwW
> ltis also consistent (correct in the limit) nC S, LW
C, S, W

-G, S, bW



Likelihood Weighting

> Problem with rejection sampling:
> If evidence is unlikely, you reject a lot of samples
> You don'’t exploit your evidence as you sample
> Consider P(B|a)

Burglary

> ldea: fix evidence variables and sample the rest

Burglary @

> Problem: sample distribution not consistent!
> Solution: weight by probability of evidence given parents




Likelihood Sampling
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Likelihood Weighting

» Sampling distribution if z sampled and e fixed

evidence
[

Sws(z,e) = || P(z|Parents(Z;))
i=1

> Now, samples have weights

w(z,e) = ﬁ P(e;|Parents(E;))
i=1

> Together, weighted sampling distribution is
consistent

Sws(z,e)w(z,e) = ﬁ P(e;|Parents(E;)) ﬁ P(e;|Parents(FE;))
i=1 i=1

= P(z,e)



Likelihood Weighting

> Note that likelihood weighting doesn’t
solve all our problems

» Rare evidence is taken into account for
downstream variables, but not upstream
ones

> A better solution is Markov-chain Monte
Carlo (MCMC), more advanced

> We'll return to sampling for robot
localization and tracking in dynamic
BNs




