Bayes Nets IV: Sampling

Hal Daumé III

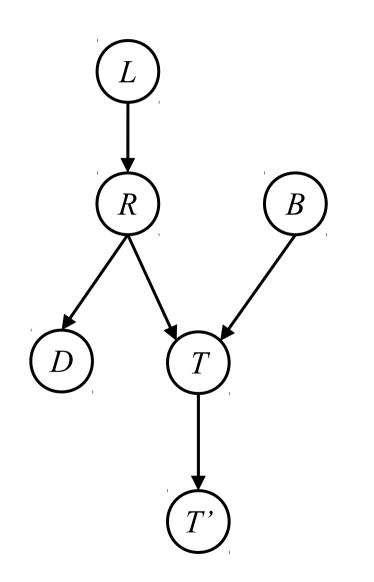
- Computer Science University of Maryland
- me@hal3.name
- CS 421: Introduction to Artificial Intelligence
- 12 Apr 2012

Many slides courtesy of Dan Klein, Stuart Russell, or Andrew Moore

Hal Daumé III (me@hal3.name)

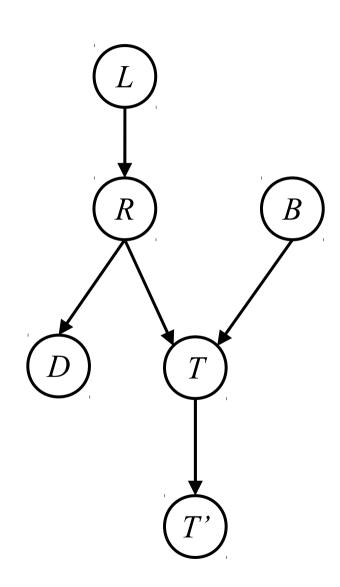
CS421: Intro to AI

Exercise



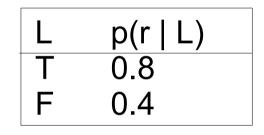
- Consider:
 - Evidence = b, not t'
 - > Query = r?
- Questions:
 - What are the initial factors?
 - If you ran inference by enumeration, how many things would you have to sum over?
 - Run variable elimination, choosing alphabetically when you have to select a variable

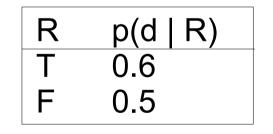
Exercise II



Consider:

- Evidence = b, not t'
- Query = r?

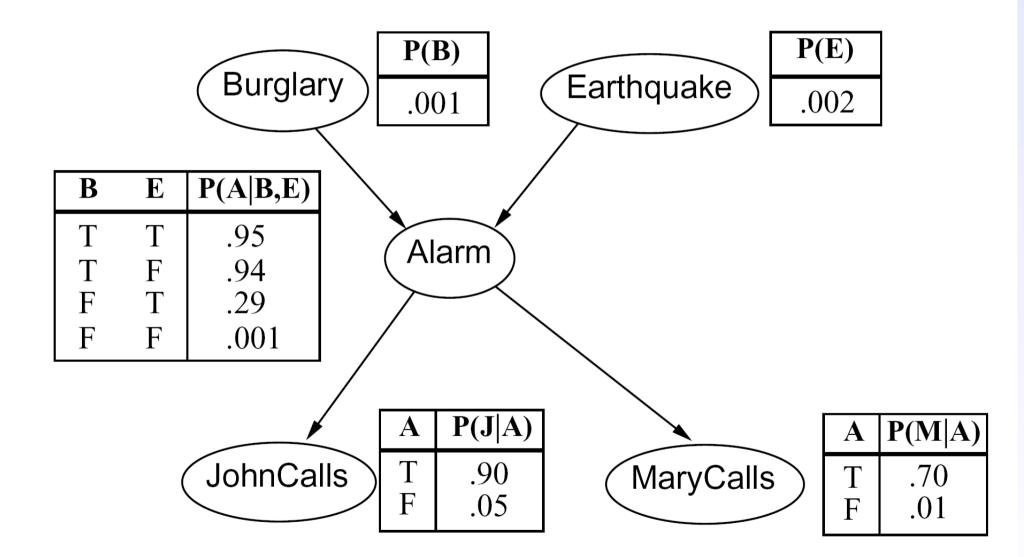




R	В	p(t R, B)
Τ	Т	0.2
T	F	0.1
F	Т	0.7
F	F	0.3

Hal Daumé III (me@hal3.name)

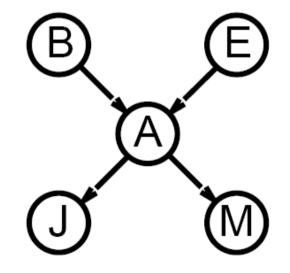
Reminder: Alarm Network



Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the marginal probabilities you need
 - Figure out ALL the atomic probabilities you need
 - Calculate and combine them
- > Example:

$$P(b|j,m) = \frac{P(b,j,m)}{P(j,m)}$$

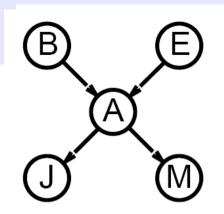


General Variable Elimination

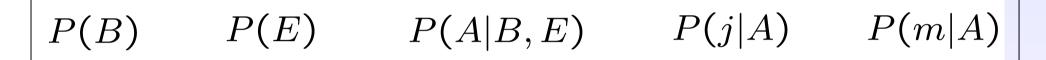
• Query:
$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Project out H
- Join all remaining factors and normalize

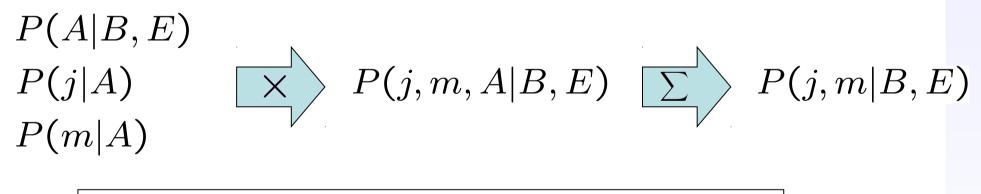
Example



$P(B|j,m) \propto P(B,j,m)$



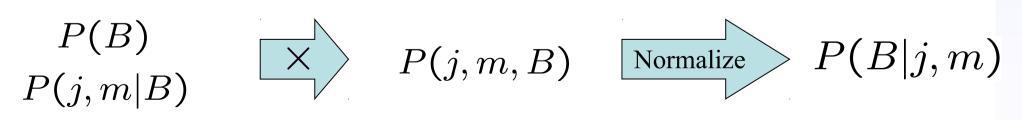
Choose A



P(E)P(j,m|B,E)P(B)

Example P(j,m|B,E)P(E)P(B)M Choose E P(E)P(j,m,E|B) [Σ] P(j,m|B)P(j,m|B,E)P(B)P(j,m|B)

Finish with B



Variable Elimination

What you need to know:

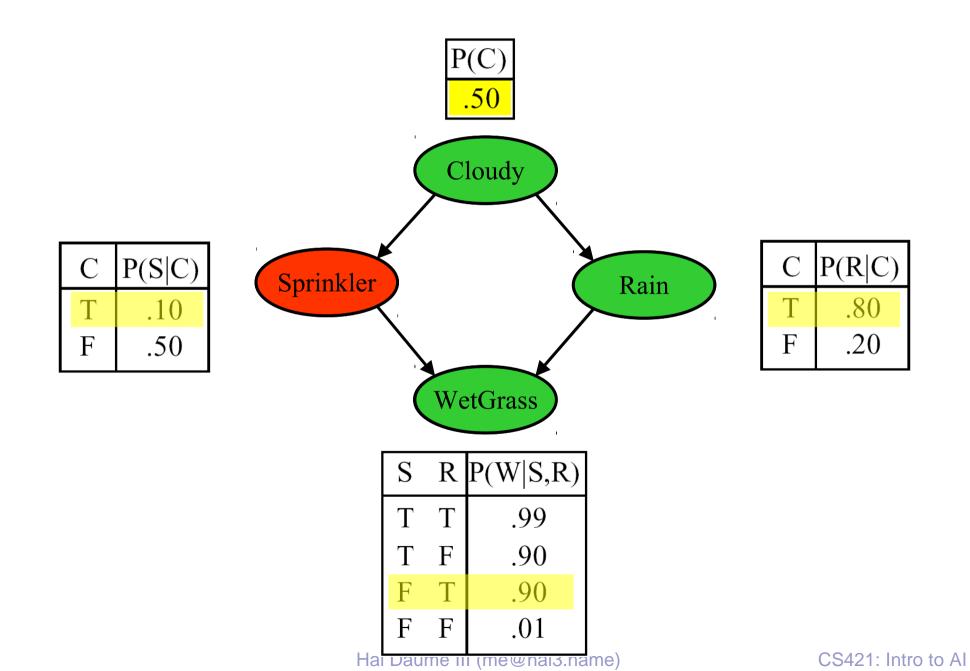
- Should be able to run it on small examples, understand the factor creation / reduction flow
- Better than enumeration: VE caches intermediate computations
- Saves time by marginalizing variables as soon as possible rather than at the end
- Polynomial time for tree-structured graphs sound familiar?
- We will see special cases of VE later
 - You'll have to implement the special cases
- Approximations
 - > Exact inference is slow, especially with a lot of hidden nodes
 - Approximate methods give you a (close, wrong?) answer, faster

Sampling

- Basic idea:
 - Draw N samples from a sampling distribution S
 - Compute an approximate posterior probability
 - Show this converges to the true probability P

- > Outline:
 - Sampling from an empty network
 - Rejection sampling: reject samples disagreeing with evidence
 - Likelihood weighting: use evidence to weight samples

Prior Sampling



11

Prior Sampling

This process generates samples with probability

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \text{Parents}(X_i)) = P(x_1 \dots x_n)$$

...i.e. the BN's joint probability

> Let the number of samples of an event be $N_{PS}(x_1 \dots x_n)$

> Then
$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n)/N$$

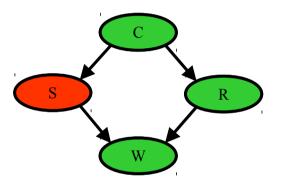
= $S_{PS}(x_1, \dots, x_n)$
= $P(x_1 \dots x_n)$

I.e., the sampling procedure is consistent

Example

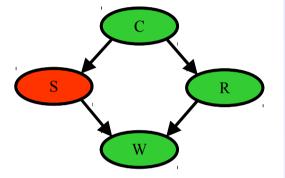
> We'll get a bunch of samples from the BN:

- c, ⊸s, r, w c, s, r, w
- ¬c, s, r, ¬w
- C, ¬S, ſ, W
- ¬C, S, ¬r, W
- If we want to know P(W)
 - ➤ We have counts <w:4, ¬w:1>
 - > Normalize to get $P(W) = \langle w: 0.8, \neg w: 0.2 \rangle$
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - ▶ What about $P(C | \neg r)$? $P(C | \neg r, \neg w)$?



Rejection Sampling

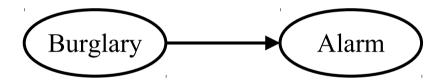
- Let's say we want P(C)
 - No point keeping all samples around
 - Just tally counts of C outcomes
- Let's say we want P(C| s)
 - Same thing: tally C outcomes, but ignore (reject) samples which don't have S=s
 - This is rejection sampling
 - It is also consistent (correct in the limit)



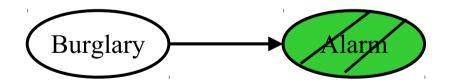
C, ¬S, r, W C, S, r, W ¬C, S, r, ¬W C, ¬S, r, W ¬C, S, ¬r, W

Likelihood Weighting

- Problem with rejection sampling:
 - If evidence is unlikely, you reject a lot of samples
 - You don't exploit your evidence as you sample
 - Consider P(B|a)

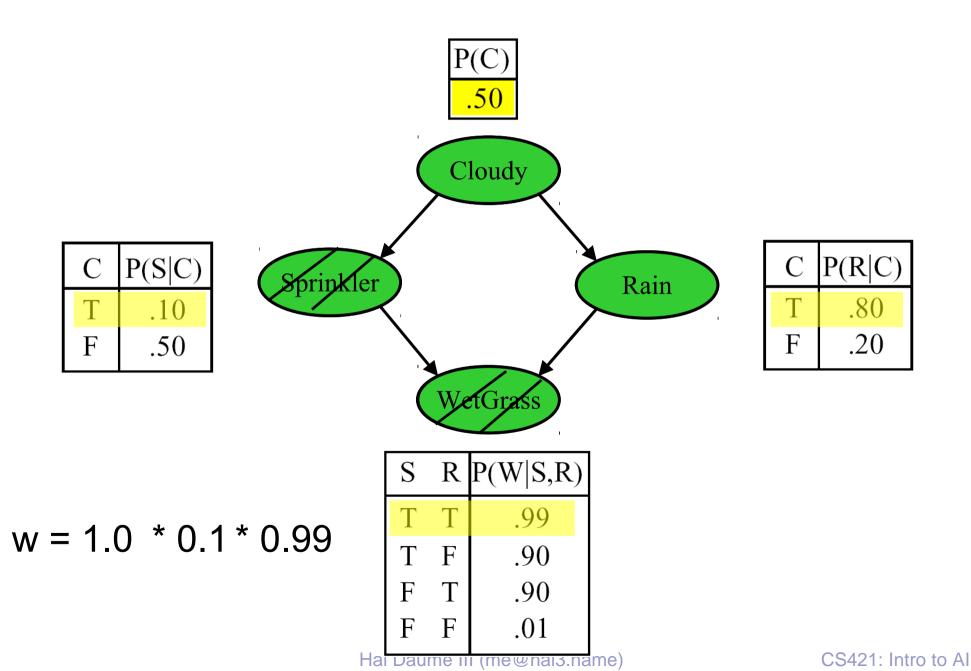


Idea: fix evidence variables and sample the rest



- Problem: sample distribution not consistent!
- Solution: weight by probability of evidence given parents

Likelihood Sampling



16

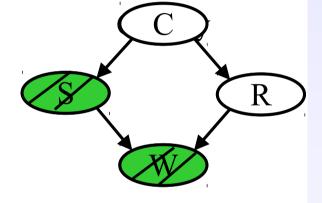
Likelihood Weighting

Sampling distribution if z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$



Together, weighted sampling distribution is consistent

$$S_{WS}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i)) \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$

$$= P(\mathbf{z}, \mathbf{e})$$

Likelihood Weighting

- Note that likelihood weighting doesn't solve all our problems
- Rare evidence is taken into account for downstream variables, but not upstream ones
- A better solution is Markov-chain Monte Carlo (MCMC), more advanced
- We'll return to sampling for robot localization and tracking in dynamic BNs

