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Announcements
➢ Midterms graded

➢ Grades posted, pick up after class, complain soon :)
➢ Grade distribution:

➢ Projects:
➢ P3 solution is posted
➢ P4 (a combined P4/P5 is posted)

➢ If you do well on P4, it's worth 14%
➢ otherwise, it's worth 8.75%
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Contest
➢ Capture-the-flag style pacman

➢ Tight connection to P4
➢ Completely optional, team based (<=3 students)

➢ Deadline: 8 May

➢ Prizes:
➢ Worth a few points on the final exam
➢ See web page for prize details
➢
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Reachability (D-Separation)

➢ Question: Are X and Y 
conditionally independent given 
evidence variables {Z}?

➢ Look for “active paths” from X 
to Y

➢ No active paths = 
independence!

➢ A path is active if each triple is 
either a:

➢ Causal chain A → B → C 
where B is unobserved (either 
direction)

➢ Common cause A ← B → C 
where B is unobserved

➢ Common effect (aka v-
structure)
A → B ← C where B or one of 
its descendents is observed

Active Triples Inactive Triples
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Causality?

➢ When Bayes’ nets reflect the true causal patterns:
➢ Often simpler (nodes have fewer parents)
➢ Often easier to think about
➢ Often easier to elicit from experts

➢ BNs need not actually be causal
➢ Sometimes no causal net exists over the domain
➢ E.g. consider the variables Traffic and Drips
➢ End up with arrows that reflect correlation, not causation

➢ What do the arrows really mean?
➢ Topology may happen to encode causal structure
➢ Topology only guaranteed to encode conditional independencies
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Inference by Enumeration

➢ Given unlimited time, inference in BNs is easy
➢ Recipe:

➢ State the marginal probabilities you need
➢ Figure out ALL the atomic probabilities you need
➢ Calculate and combine them

➢ Example:
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Example

Where did we 
use the BN 
structure?

We didn’t!
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Example

➢ In this simple method, we only need the 
BN to synthesize the joint entries
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Normalization Trick

Normalize
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Inference by Enumeration?
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Variable Elimination

➢ Why is inference by enumeration so slow?
➢ You join up the whole joint distribution before you sum out 

the hidden variables
➢ You end up repeating a lot of work!

➢ Idea: interleave joining and marginalizing!
➢ Called “Variable Elimination”
➢ Still NP-hard, but usually much faster than inference by 

enumeration

➢ We’ll need some new notation to define VE
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Factor Zoo I

Joint distribution: P(X,Y)
➢ Entries P(x,y) for all x, y
➢ Sums to 1

➢ Selected joint: P(x,Y)
➢ A slice of the joint 

distribution
➢ Entries P(x,y) for fixed 

x, all y
➢ Sums to P(x)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T W P
cold sun 0.2
cold rain 0.3
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Factor Zoo II

➢ Family of conditionals: 
P(X |Y)
➢ Multiple conditionals
➢ Entries P(x | y) for all x, y
➢ Sums to |Y|

➢ Single conditional: P(Y | x)
➢ Entries P(y | x) for fixed 

x, all y
➢ Sums to 1

T W P
hot sun 0.8
hot rain 0.2
cold sun 0.4
cold rain 0.6

T W P
cold sun 0.4
cold rain 0.6
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Factor Zoo III

➢ Specified family: P(y | X)
➢ Entries P(y | x) for

fixed y, all x
➢ Sums to … who knows!

➢ In general, when we write P(Y1 … YN | X1 … XM)
➢ It is a “factor,” a multi-dimensional array
➢ Its values are all P(y1 … yN | x1 … xM)
➢ Any unassigned X or Y is a dimension missing (selected) 

from the array

T W P
hot rain 0.2
cold rain 0.6
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Basic Objects

➢ Track objects called factors
➢ Initial factors are local CPTs

➢ One per node in the BN

➢ Any known values are specified
➢ E.g. if we know J = j and E = ¬e, the initial factors are

➢ VE: Alternately join and marginalize factors
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Basic Operation: Join

➢ First basic operation: join factors
➢ Combining two factors:

➢ Just like a database join
➢ Build a factor over the union of the variables involved

➢ Example:

➢ Computation for each entry: pointwise products



CS421: Intro to AI17 Hal Daumé III (me@hal3.name)

Basic Operation: Join

➢ In general, we join on a variable
➢ Take all factors mentioning that variable
➢ Join them all together

➢ Example:

➢ Join on A:
➢ Pick up these:

➢ Join to form:
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Basic Operation: Eliminate

➢ Second basic operation: marginalization
➢ Take a factor and sum out a variable

➢ Shrinks a factor to a smaller one
➢ A projection operation

➢ Example:

➢ Definition:
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General Variable Elimination

➢ Query:

➢ Start with initial factors:
➢ Local CPTs (but instantiated by evidence)

➢ While there are still hidden variables (not Q or evidence):
➢ Pick a hidden variable H
➢ Join all factors mentioning H
➢ Project out H

➢ Join all remaining factors and normalize
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Example

Choose A
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Example

Choose E

Finish with B

Normalize
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Variable Elimination

➢ What you need to know:
➢ Should be able to run it on small examples, understand the 

factor creation / reduction flow
➢ Better than enumeration: VE caches intermediate 

computations
➢ Saves time by marginalizing variables as soon as possible 

rather than at the end
➢ Polynomial time for tree-structured graphs – sound familiar?

➢ We will see special cases of VE later
➢ You’ll have to implement the special cases

➢ Approximations
➢ Exact inference is slow, especially with a lot of hidden nodes
➢ Approximate methods give you a (close, wrong?) answer, 

faster
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Sampling

➢ Basic idea:
➢ Draw N samples from a sampling distribution S
➢ Compute an approximate posterior probability
➢ Show this converges to the true probability P

➢ Outline:
➢ Sampling from an empty network
➢ Rejection sampling: reject samples disagreeing with 

evidence
➢ Likelihood weighting: use evidence to weight samples
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Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



CS421: Intro to AI25 Hal Daumé III (me@hal3.name)

Prior Sampling

➢ This process generates samples with probability

…i.e. the BN’s joint probability

➢ Let the number of samples of an event be

➢ Then

➢ I.e., the sampling procedure is consistent
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Example

➢ We’ll get a bunch of samples from the BN:

c, ¬s, r, w
c, s, r, w

¬c, s, r, ¬w

c, ¬s, r, w

¬c, s, ¬r, w
➢ If we want to know P(W)

➢ We have counts <w:4, ¬w:1>
➢ Normalize to get P(W) = <w:0.8, ¬w:0.2>
➢ This will get closer to the true distribution with more samples
➢ Can estimate anything else, too
➢ What about P(C| ¬r)?   P(C| ¬r, ¬w)?

Cloudy

Sprinkler Rain

WetGrass

C

S R

W
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Rejection Sampling

➢ Let’s say we want P(C)
➢ No point keeping all samples around
➢ Just tally counts of C outcomes

➢ Let’s say we want P(C| s)
➢ Same thing: tally C outcomes, but ignore 

(reject) samples which don’t have S=s
➢ This is rejection sampling
➢ It is also consistent (correct in the limit)

c, ¬s, r, w
c, s, r, w
¬c, s, r, ¬w
c, ¬s, r, w
¬c, s, ¬r, w

Cloudy

Sprinkler Rain

WetGrass

C

S R

W
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Likelihood Weighting

➢ Problem with rejection sampling:
➢ If evidence is unlikely, you reject a lot of samples
➢ You don’t exploit your evidence as you sample
➢ Consider P(B|a)

➢ Idea: fix evidence variables and sample the rest

➢ Problem: sample distribution not consistent!
➢ Solution: weight by probability of evidence given parents

Burglary Alarm

Burglary Alarm
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Likelihood Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

w = 1.0 * 0.1 * 0.9
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Likelihood Weighting

➢ Sampling distribution if z sampled and e fixed 
evidence

➢ Now, samples have weights

➢ Together, weighted sampling distribution is 
consistent

Cloudy

Rain

C

S R

W
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Likelihood Weighting

➢ Note that likelihood weighting doesn’t 
solve all our problems

➢ Rare evidence is taken into account for 
downstream variables, but not upstream 
ones

➢ A better solution is Markov-chain Monte 
Carlo (MCMC), more advanced

➢ We’ll return to sampling for robot 
localization and tracking in dynamic 
BNs

Cloudy

Rain

C

S R

W


