Bayes Nets II: Independence Day

Hal Daumé III

Computer Science University of Maryland

me@hal3.name

CS 421: Introduction to Artificial Intelligence

5 Apr 2012

Many slides courtesy of Dan Klein, Stuart Russell, or Andrew Moore

Announcements

- HW07 bug
 - If you did the full thing, great
 - If not, that's fine too
- P2 results have been sent, please complain now:)
- Midterms will be returned on Tuesday
 - Solution is posted online
 - Let me know if you find bugs :)

Bayes' Nets

- So far:
 - What is a Bayes' net?
 - What joint distribution does it encode?
- Next: how to answer queries about that distribution
 - Key idea: conditional independence
 - Last class: assembled BNs using an intuitive notion of conditional independence as causality
 - Today: formalize these ideas
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

Conditional Independence

- Reminder: independence
 - X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) --- \rightarrow X \perp \!\!\!\perp Y$$

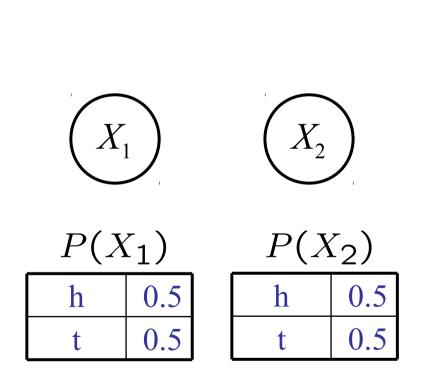
X and Y are conditionally independent given Z

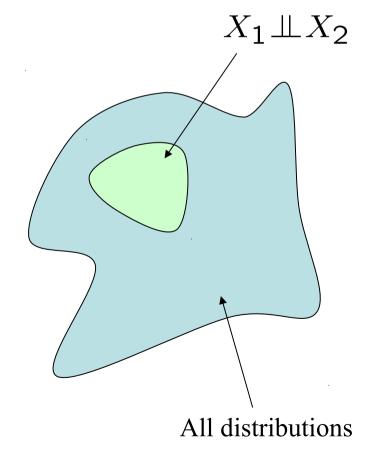
$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) - - \cdot X \perp Y \mid Z$$

(Conditional) independence is a property of a distribution

Example: Independence

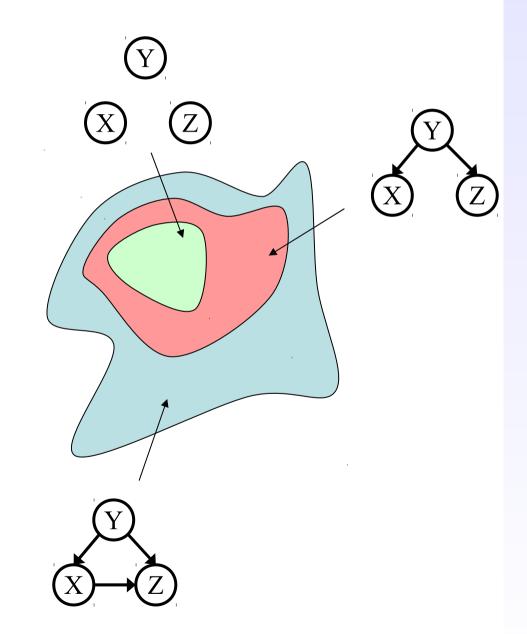
For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!





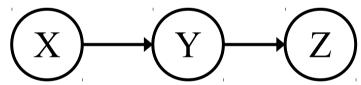
Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs



Independence in a BN

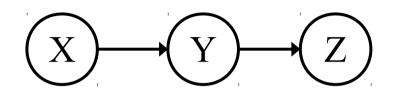
- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can calculate using algebra (really tedious)
 - If no, can prove with a counter example
 - Example:



- Question: are X and Z independent?
 - Answer: not necessarily, we've seen examples otherwise: low pressure causes rain which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

Causal Chains

This configuration is a "causal chain"



P(x,y,z) = P(x)P(y|x)P(z|y)

X: Low pressure

Y: Rain

Z: Traffic

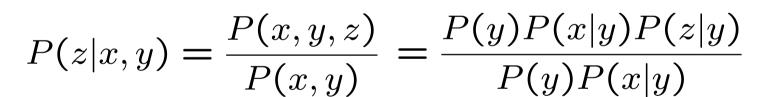
Is X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

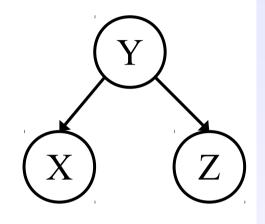
 $= P(z|y) \qquad \qquad Yes!$ Evidence along the chain "blocks" the influence

Common Cause

- Another basic configuration: two effects of the same cause
 - Are X and Z independent?
 - Are X and Z independent given Y?



= P(z|y) Observing the cause blocks influence between effects.



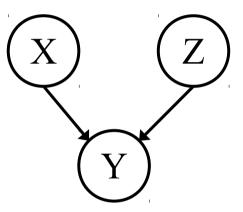
Y: Project due

X: Email busy

Z: Lab full

Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: remember the ballgame and the rain causing traffic, no correlation?
 - Still need to prove they must be (try it!)
 - Are X and Z independent given Y?
 - No: remember that seeing traffic put the rain and the ballgame in competition?
 - This is backwards from the other cases
 - Observing the effect enables influence between effects.



X: Raining

Z: Ballgame

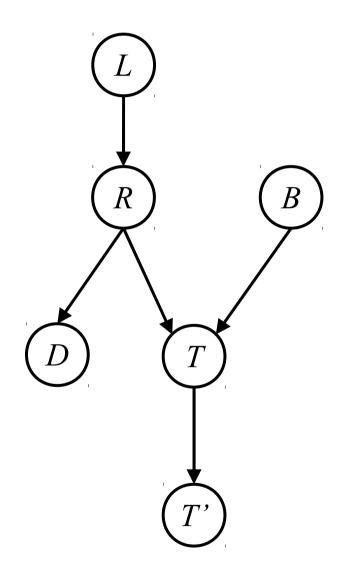
Y: Traffic

The General Case

- Any complex example can be analyzed using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph

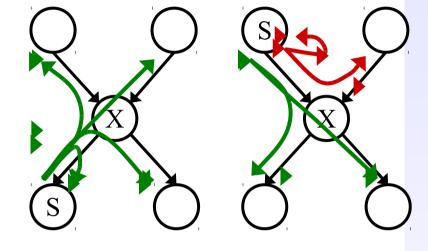
Reachability

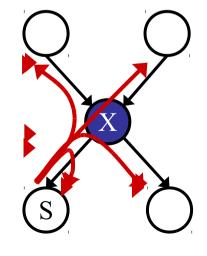
- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

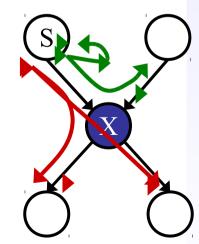


Reachability (the Bayes' Ball)

- Correct algorithm:
 - Shade in evidence
 - Start at source node
 - Try to reach target by search
 - States: pair of (node X, previous state S)
 - Successor function:
 - X unobserved:
 - To any child
 - To any parent if coming from a child
 - X observed:
 - From parent to parent
 - If you can't reach a node, it's conditionally independent of the start node given evidence





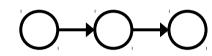


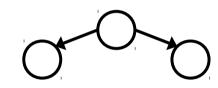
Reachability (D-Separation)

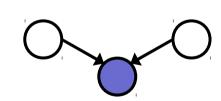
- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Look for "active paths" from X to Y
 - No active paths = independence!
- A path is active if each triple is either a:
 - Causal chain A → B → C where B is unobserved (either direction)
 - Common cause A ← B → C where B is unobserved
 - Common effect (aka vstructure)

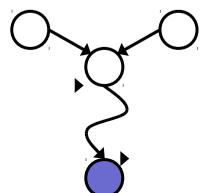
 $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed

Active Triples

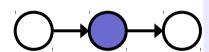


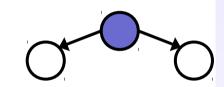






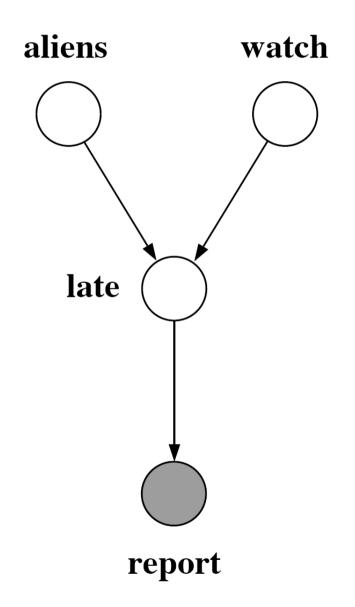
Inactive Triples





Example

$$A \! \perp \! \! \! \perp W | R$$



Example

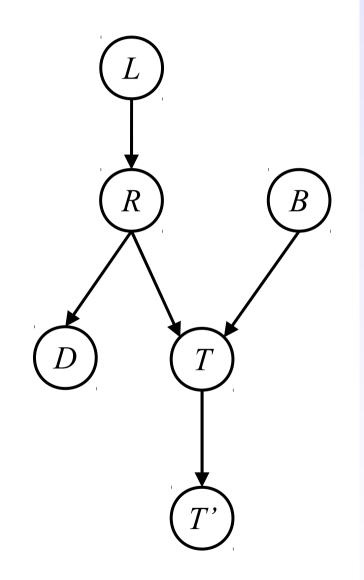
$$L \perp \!\!\! \perp T' | T$$
 Yes

$$L \! \perp \! \! \perp \! \! B$$
 Yes

$$L \! \perp \! \! \perp \! \! B | T$$

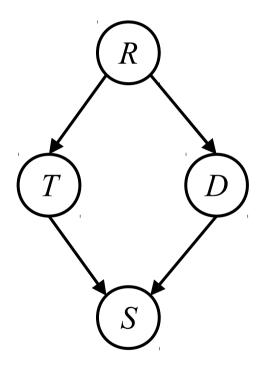
$$L \! \perp \! \! \perp \! \! B | T'$$

$$L \perp \!\!\! \perp B | T, R$$



Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:

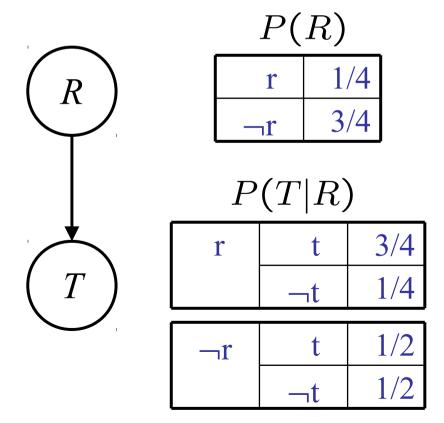


Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology only guaranteed to encode conditional independence

Example: Traffic

- Basic traffic net
- Let's multiply out the joint

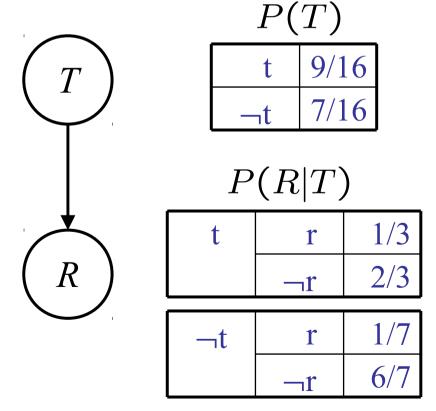


T(T,TC)		
r	t	3/16
r	$\neg t$	1/16
$\neg r$	t	6/16
$\neg r$	¬t	6/16

P(T|R)

Example: Reverse Traffic

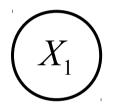
Reverse causality?

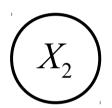


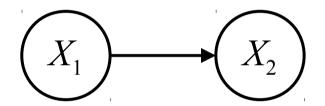
P(T,R)			
r	t	3/16	
r	¬t	1/16	
$\neg r$	t	6/16	
r	t	6/16	

Example: Coins

Extra arcs don't prevent representing independence, just allow non-independence







$$P(X_1)$$

h	0.5
t	0.5

$$P(X_2)$$

h	0.5
t	0.5

$$P(X_1)$$

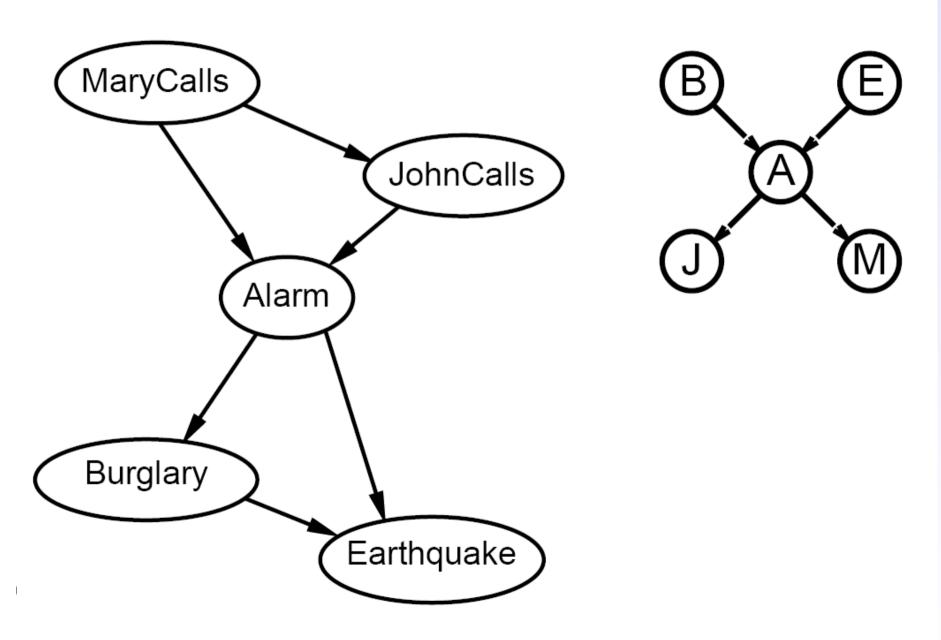
h	0.5
t	0.5

$$P(X_2|X_1)$$

h h	0.5
t h	0.5

h t	0.5
t t	0.5

Alternate BNs



Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- The Bayes' ball algorithm (aka d-separation)
- A Bayes' net may have other independencies that are not detectable until you inspect its specific distribution