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Announcements

➢ Midterm – we'll have it next week
➢ P3 due soon!
➢ Will reply about remaining Piazza questions tonight
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Inference with Bayes’ Rule

➢ Example: Diagnostic probability from causal 
probability:

➢ Example:
➢ m is meningitis, s is stiff neck

➢ Note: posterior probability of meningitis still very small
➢ Note: you should still get stiff necks checked out!  Why?

Example
givens
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Example Problems
➢ Suppose a murder occurs in a town of population 

10,000 (10,001 before the murder).  A suspect is 
brought in and DNA tested.  The probability that there is 
a DNA match give that a person is innocent is 
1/100,000; the probability of a match on a guilty person 
is 1.  What is the probability he is guilty given a DNA 
match?

➢ Doctors have found that people with Kreuzfeld-Jacob 
disease (KJ) are almost invariably ate lost of 
hamburgers, thus p(HamburgerEater|KJ) = 0.9.  KJ is a 
rare disease: about 1 in 100,000 people get it.  Eating 
hamburgers is widespread: p(HamburgerEater) = 0.5.  
What is the probability that a regular hamburger eater 
will have KJ disease?
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Inference by Enumeration

➢ P(sun)?

➢ P(sun | winter)?

➢ P(sun | winter, warm)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Birthday Paradox

➢ What's the probability that no two people in this 
room have the same birthday?
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Probabilistic Models

➢ Models are descriptions of how
(a portion of) the world works

➢ Models are always simplifications
➢ May not account for every variable
➢ May not account for all interactions

between variables

➢ What do we do with probabilistic models?
➢ We (or our agents) need to reason about unknown 

variables, given evidence
➢ Example: explanation (diagnostic reasoning)
➢ Example: prediction (causal reasoning)
➢ Example: value of information



CS421: Intro to AI8 Hal Daumé III (me@hal3.name)

Bayes’ Nets: Big Picture

➢ Two problems with using full joint distribution tables 
as our probabilistic models:

➢ Unless there are only a few variables, the joint is WAY too 
big to represent explicitly

➢ Hard to learn (estimate) anything empirically about more 
than a few variables at a time

➢ Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local 
distributions (conditional probabilities)

➢ More properly called graphical models
➢ We describe how variables locally interact
➢ Local interactions chain together to give global, indirect 

interactions
➢ For about 10 min, we’ll be vague about how these 

interactions are specified



CS421: Intro to AI9 Hal Daumé III (me@hal3.name)

Example Bayes’ Net
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Graphical Model Notation

➢ Nodes: variables (with 
domains)

➢ Can be assigned (observed) or 
unassigned (unobserved)

➢ Arcs: interactions
➢ Similar to CSP constraints
➢ Indicate “direct influence” 

between variables

➢ For now: imagine that arrows 
mean direct causation
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Example: Coin Flips

X1 X2 Xn

➢ N independent coin flips

➢ No interactions between variables: absolute 
independence
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Example: Traffic

➢ Variables:
➢ R: It rains
➢ T: There is traffic

➢ Model 1: independence

➢ Model 2: rain causes traffic

➢ Why is an agent using model 2 better?

R

T
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Example: Traffic II

➢ Let’s build a causal graphical model

➢ Variables
➢ T: Traffic
➢ R: It rains
➢ L: Low pressure
➢ D: Roof drips
➢ B: Ballgame
➢ C: Cavity
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Example: Alarm Network

➢ Variables
➢ B: Burglary
➢ A: Alarm goes off
➢ M: Mary calls
➢ J: John calls
➢ E: Earthquake!
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Bayes’ Net Semantics

➢ Let’s formalize the semantics of a 
Bayes’ net

➢ A set of nodes, one per variable X
➢ A directed, acyclic graph
➢ A conditional distribution for each 

node
➢ A collection of distributions over X, one 

for each combination of parents’ values

➢ CPT: conditional probability table
➢ Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) 
                        + Local Conditional Probabilities
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Probabilities in BNs

➢ Bayes’ nets implicitly encode joint distributions
➢ As a product of local conditional distributions
➢ To see what probability a BN gives to a full assignment, 

multiply all the relevant conditionals together:

➢ Example:

➢ This lets us reconstruct any entry of the full joint
➢ Not every BN can represent every joint distribution

➢ The topology enforces certain conditional independencies
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Example: Coin Flips

h 0.5
t 0.5

h 0.5
t 0.5

h 0.5
t 0.5

X1 X2 Xn

Only distributions whose variables are absolutely 
independent can be represented by a Bayes’ net 
with no arcs.
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Example: Traffic

R

T

   r 1/4

¬r 3/4

 r    t 3/4

¬t 1/4

¬r    t 1/2

¬t 1/2
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Example: Alarm Network
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Example: Naïve Bayes

➢ Imagine we have one cause y and several effects x:

➢ This is a naïve Bayes model
➢ We’ll use these for classification later
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Example: Traffic II

➢ Variables
➢ T: Traffic
➢ R: It rains
➢ L: Low pressure
➢ D: Roof drips
➢ B: Ballgame

R

T

B

D

L
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Size of a Bayes’ Net

➢ How big is a joint distribution over N Boolean variables?

➢ How big is an N-node net if nodes have k parents?

➢ Both give you the power to calculate
➢ BNs: Huge space savings!
➢ Also easier to elicit local CPTs
➢ Also turns out to be faster to answer queries (coming)
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Building the (Entire) Joint

➢ We can take a Bayes’ net and build the full joint 
distribution it encodes

➢ Typically, there’s no reason to build ALL of it
➢ But it’s important to know you could!

➢ To emphasize: every BN over a domain implicitly 
represents some joint distribution over that domain
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Example: Traffic

➢ Basic traffic net
➢ Let’s multiply out the joint

R

T

   r 1/4

¬r 3/4

 r    t 3/4

¬t 1/4

¬r    t 1/2

¬t 1/2

   r    t 3/16
   r ¬t 1/16

¬r    t 6/16

¬r ¬t 6/16
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Example: Reverse Traffic

➢ Reverse causality?

T

R

   t 9/16

¬t 7/16

 t    r 1/3

¬r 2/3

¬t    r 1/7

¬r 6/7

   r    t 3/16
   r ¬t 1/16

¬r    t 6/16

¬r ¬t 6/16
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Causality?

➢ When Bayes’ nets reflect the true causal patterns:
➢ Often simpler (nodes have fewer parents)
➢ Often easier to think about
➢ Often easier to elicit from experts

➢ BNs need not actually be causal
➢ Sometimes no causal net exists over the domain (especially 

if variables are missing)
➢ E.g. consider the variables Traffic and Drips
➢ End up with arrows that reflect correlation, not causation

➢ What do the arrows really mean?
➢ Topology may happen to encode causal structure
➢ Topology really encodes conditional independence
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Bayes’ Nets

➢ So far: how a Bayes’ net encodes a joint distribution

➢ Next: how to answer queries about that distribution
➢ Key idea: conditional independence
➢ Last class: assembled BNs using an intuitive notion of 

conditional independence as causality
➢ Today: formalize these ideas
➢ Main goal: answer queries about conditional independence 

and influence

➢ After that: how to answer numerical queries 
(inference)


