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Announcements

> Midterm — we'll have it next week
> P3 due soon!
> WiIll reply about remaining Piazza questions tonight



Inference with Bayes’ Rule

> Example: Diagnostic probability from causal
probability:

P(Effect P
P(Cause|Effect) = (Effect|Cause) P(Cause)

P(Effect)
> Example: P(slm) = 0.8
> m is meningitis, s is stiff neck P(m) = 0.0001 - Example
: givens
P(s) = 0.1 i

_ P(sim)P(m) _ 0.8 x 0.0001

= 0.0008
P(s) 0.1

P(m|s)

> Note: posterior probability of meningitis still very small
> Note: you should still get stiff necks checked out! Why?



Example Problems

> Suppose a murder occurs in a town of population
10,000 (10,001 before the murder). A suspectis
brought in and DNA tested. The probability that there is
a DNA match give that a person is innocent is
1/100,000; the probability of a match on a guilty person
IS 1. What is the probability he is guilty given a DNA

match?

> Doctors have found that people with Kreuzfeld-Jacob
disease (KJ) are almost invariably ate lost of
hamburgers, thus p(HamburgerEater|KJ) = 0.9. KJ is a
rare disease: about 1 in 100,000 people get it. Eating
hamburgers is widespread: p(HamburgerEater) = 0.5.
What is the probabillity that a regular hamburger eater
will have KJ disease?



Inference by Enumeration

>

>

>

P(sun)?

P(sun | winter)?

P(sun | winter, warm)?

S T W P
summer | hot | sun | 0.30
summer | hot | rain | 0.05
summer | cold | sun | 0.10
summer | cold | rain | 0.05

winter hot | sun | 0.10
winter hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Birthday Paradox

> What's the probability that no two people in this
room have the same birthday?



Probabilistic Models

> Models are descriptions of how
(a portion of) the world works

> Models are always simplifications
> May not account for every variable
> May not account for all interactions
between variables

> What do we do with probabilistic models?

» We (or our agents) need to reason about unknown
variables, given evidence

Example: explanation (diagnostic reasoning)
Example: prediction (causal reasoning)
Example: value of information

YV V V



Bayes’ Nets: Big Picture

> Two problems with using full joint distribution tables
as our probabilistic models:

> Unless there are only a few variables, the joint is WAY too
big to represent explicitly

» Hard to learn (estimate) anything empirically about more
than a few variables at a time

> Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local
distributions (conditional probabillities)
> More properly called graphical models
> We describe how variables locally interact

> Local interactions chain together to give global, indirect
Interactions

> For about 10 min, we’ll be vague about how these
interactions are specified



Example Bayes’ Net




Graphical Model Notation

> Nodes: variables (with
domains)

» Can be assigned (observed) or
unassigned (unobserved)

> Arcs: Iinteractions
> Similar to CSP constraints

> Indicate “direct influence”
between variables

> For now: imagine that arrows
mean direct causation

Toothache @



Example: Coin Flips

> N independent coin flips

> No Interactions between variables: absolute
independence



Example: Traffic

> Variables:
> R: It rains e
> T: There is traffic

> Model 1: independence

> Model 2: rain causes traffic G

> Why is an agent using model 2 better?



Example: Traffic |l

> Let’s build a causal graphical model

> Variables

T: Traffic

R: It rains

L: Low pressure
D: Roof drips

B: Ballgame

C: Cavity

V V V V V VY



Example: Alarm Network

> Variables
> B: Burglary
A: Alarm goes off
M: Mary calls
J: John calls
E: Earthquake!

YV V VY V



Bayes’ Net Semantics

> Let's formalize the semantics of a
Bayes' net

> A set of nodes, one per variable X

> A directed, acyclic graph

> A conditional distribution for each
node

for each combination of parents’ values }\\/

> A collection of distributions over X, one

> CPT:cP(X]aj ...an)bility table
> Description of a noisy “causal” process

A Bayes net = Topology (graph)
+ Local Conditional Probabilities



Probabilities in BNs (Cavty)
(Caen)

> Bayes' nets implicitly encode joint distributions
» As a product of local conditional distributions

> To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(x;|parents(X;))
i=1
> Example:

P(cavity, catch, —toothache)

> This lets us reconstruct any entry of the full joint

> Not every BN can represent every joint distribution
> The topology enforces certain conditional independencies



Example: Coin Flips

P(X1) P(X>) P(Xn)
h 105 h 105 h 105
t 0.5 t 0.5 t 0.5
P(h h,t h) =

Only distributions whose variables are absolutely
independent can be represented by a Bayes’ net
with no arcs.



Example: Traffic

P(R)
@ r 1/4
=T 3/4
P(T|R)
r— t 3/4
-t 1/4
-t 1/2

P(T7 _'t)



Example: Alarm Network

P(E)

P(B)
001 Earthquake 002

Burglary

B E |P(AB.E)
T T| .95

T F | .94

F T| .29

F F 001

P(J|A) A [P(M|A)

F 1 .05

1 —

01
P(bv €, ﬂ(1'7].7 m) —



Example: Naive Bayes

> Imagine we have one cause y and several effects x:

P(y,z1,22...2n) = P(y)P(z1|y)P(z2]y) ... P(zn|y)

> This is a naive Bayes model
> We'll use these for classification later



Example: Traffic |l

> Variables

T: Traffic

R: It rains

L: Low pressure
D: Roof drips

B: Ballgame

YV V. V Y V



Size of a Bayes’ Net

> How big is a joint distribution over N Boolean variables?

> How big is an N-node net if nodes have k parents?

Both give you the power to calculate

BNs: Huge space savings!

Also easier to elicit local CPTs

Also turns out to be faster to answer queries (coming)

YV V V VY



Building the (Entire) Joint

> We can take a Bayes’ net and build the full joint
distribution it encodes

n
P(z1,22,...2n) = || P(x;|parents(X;))
i=1

> Typically, there’s no reason to build ALL of it
> But it's important to know you could!

> To emphasize: every BN over a domain implicitly
represents some joint distribution over that domain



Example: Traffic

> Basic traffic net
> Let's multiply out the joint

P(R) P(T, R)
r ljj F |t |3/16
or | 3 r | =t |1/16
P(T|R) ar t |6/16
- ¢ 3/4 AT =1 6/16
G -t 1/4
=T t 1/2




> Reverse causality?

P(T)

t |19/16

Example: Reverse Traffic

P(T,R)

3/16

1/16

6/16

6/16




Causality?

> When Bayes’ nets reflect the true causal patterns:
» Often simpler (nodes have fewer parents)
> Often easier to think about
> Often easier to elicit from experts

> BNs need not actually be causal

» Sometimes no causal net exists over the domain (especially
If variables are missing)

> E.g. consider the variables Traffic and Drips
> End up with arrows that reflect correlation, not causation

> What do the arrows really mean?
> Topology may happen to encode causal structure
> Topology really encodes conditional independence



Bayes’ Nets

> So far: how a Bayes’ net encodes a joint distribution

> Next: how to answer queries about that distribution

> Key idea: conditional independence

> Last class: assembled BNs using an intuitive notion of
conditional independence as causality

> Today: formalize these ideas

> Main goal: answer queries about conditional independence
and influence

> After that: how to answer numerical queries
(inference)



