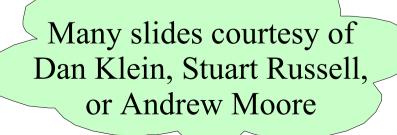


Hal Daumé III

- Computer Science University of Maryland
- me@hal3.name
- CS 421: Introduction to Artificial Intelligence
- 3 Apr 2012



Hal Daumé III (me@hal3.name)

CS421: Intro to AI

Announcements

- Midterm we'll have it next week
- P3 due soon!
- Will reply about remaining Piazza questions tonight

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(\text{Cause}|\text{Effect}) = \frac{P(\text{Effect}|\text{Cause})P(\text{Cause})}{P(\text{Effect})}$$

Example:

m is meningitis, s is stiff neck

$$P(s|m) = 0.8 P(m) = 0.0001 P(s) = 0.1$$

Example givens

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Example Problems

- Suppose a murder occurs in a town of population 10,000 (10,001 before the murder). A suspect is brought in and DNA tested. The probability that there is a DNA match give that a person is innocent is 1/100,000; the probability of a match on a guilty person is 1. What is the probability he is guilty given a DNA match?
- Doctors have found that people with Kreuzfeld-Jacob disease (KJ) are almost invariably ate lost of hamburgers, thus p(HamburgerEater|KJ) = 0.9. KJ is a rare disease: about 1 in 100,000 people get it. Eating hamburgers is widespread: p(HamburgerEater) = 0.5. What is the probability that a regular hamburger eater will have KJ disease?

Inference by Enumeration

P(sun)?

P(sun | winter)?

P(sun | winter, warm)?

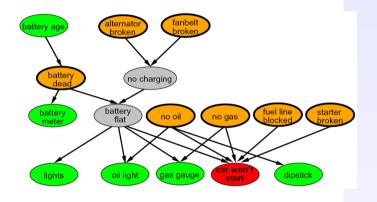
S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Birthday Paradox

What's the probability that no two people in this room have the same birthday?

Probabilistic Models

- Models are descriptions of how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables

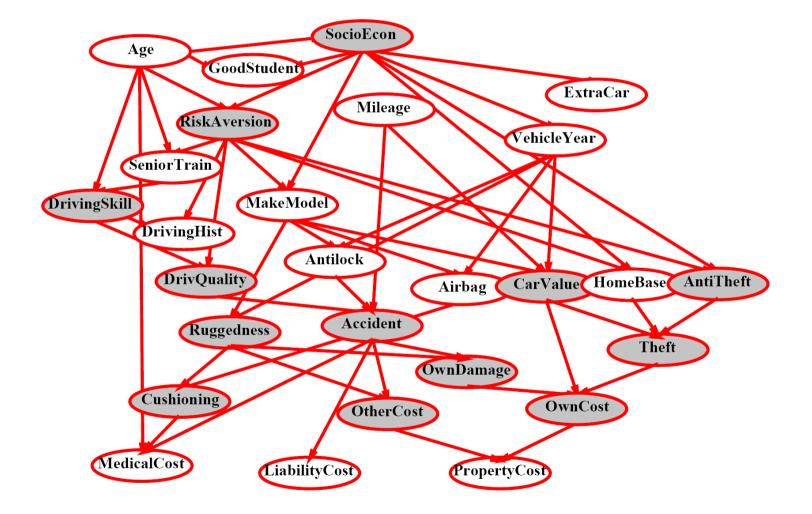


- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Bayes' Nets: Big Picture

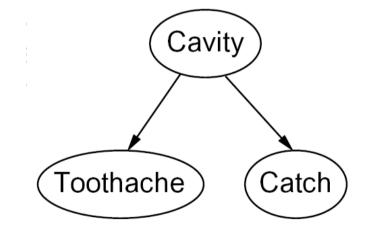
- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net



Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
- For now: imagine that arrows mean direct causation



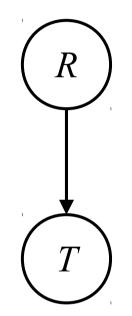
Example: Coin Flips

N independent coin flips

No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence
- Model 2: rain causes traffic



> Why is an agent using model 2 better?

Example: Traffic II

Let's build a causal graphical model

Variables

- ➤ T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

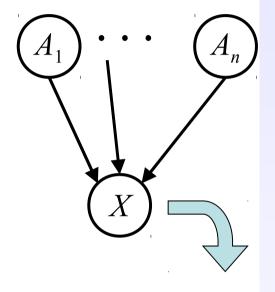
Example: Alarm Network

Variables

- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values



 $P(X|A_1\ldots A_n)$

- > CPT: $cP(X|a_1 \dots a_n)$ bility table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs



- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

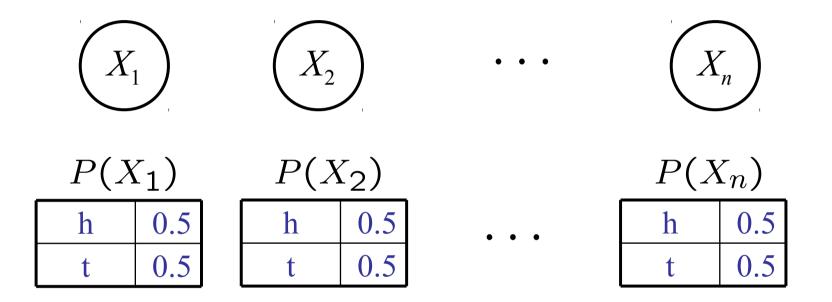
$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

> Example:

 $P(cavity, catch, \neg toothache)$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips



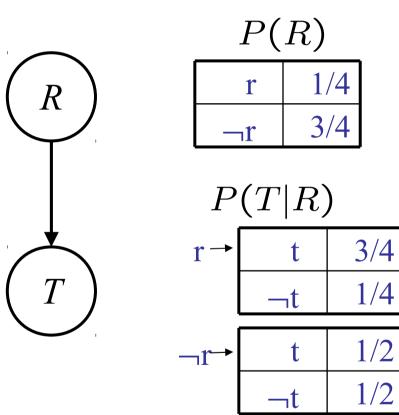
P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Hal Daumé III (me@hal3.name)

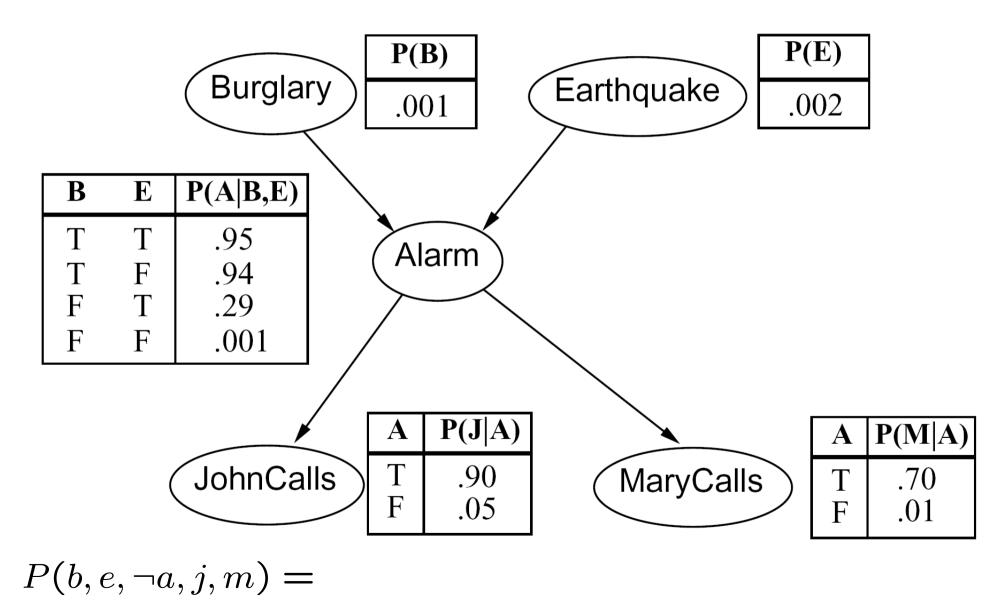
CS421: Intro to Al

Example: Traffic



 $P(r,\neg t) =$

Example: Alarm Network



Example: Naïve Bayes

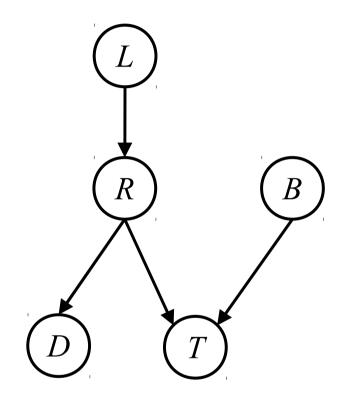
Imagine we have one cause y and several effects x:

 $P(y, x_1, x_2 \dots x_n) = P(y)P(x_1|y)P(x_2|y) \dots P(x_n|y)$

- This is a naïve Bayes model
- We'll use these for classification later

Example: Traffic II

- Variables
 - ➤ T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame



Size of a Bayes' Net

How big is a joint distribution over N Boolean variables?

How big is an N-node net if nodes have k parents?

- Both give you the power to calculate
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (coming)

Building the (Entire) Joint

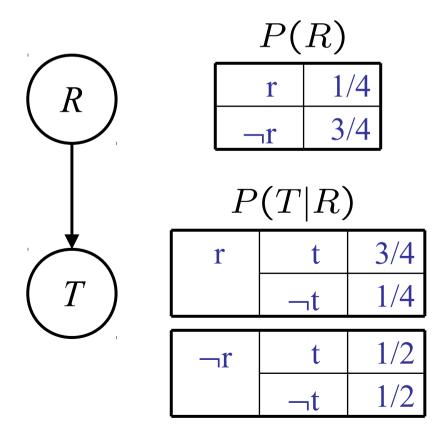
We can take a Bayes' net and build the full joint distribution it encodes

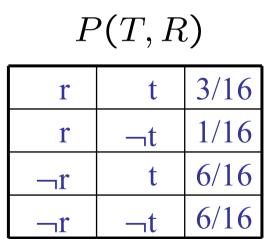
$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- > Typically, there's no reason to build ALL of it
- But it's important to know you could!
- To emphasize: every BN over a domain implicitly represents some joint distribution over that domain

Example: Traffic

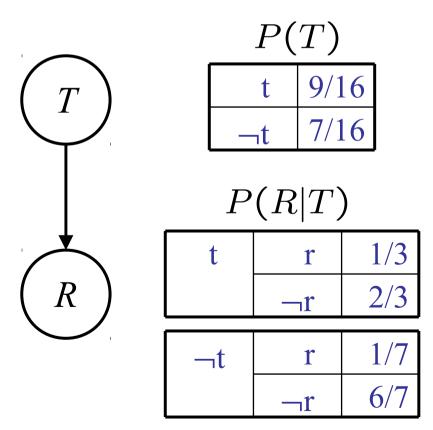
- Basic traffic net
- Let's multiply out the joint

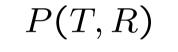


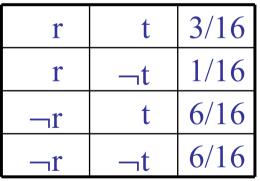


Example: Reverse Traffic

Reverse causality?







Causality?

> When Bayes' nets reflect the true causal patterns:

- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

Bayes' Nets

So far: how a Bayes' net encodes a joint distribution

- Next: how to answer queries about that distribution
 - Key idea: conditional independence
 - Last class: assembled BNs using an intuitive notion of conditional independence as causality
 - Today: formalize these ideas
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)