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Announcements
➢ Today is a brand new day!
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Today

➢ Probability
➢ Random Variables
➢ Joint and Conditional Distributions
➢ Inference, Bayes’ Rule
➢ Independence

➢ You’ll need all this stuff for the next few weeks, so 
make sure you go over it!
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Uncertainty

➢ General situation:
➢ Evidence: Agent knows 

certain things about the state 
of the world (e.g., sensor 
readings or symptoms)

➢ Hidden variables: Agent 
needs to reason about other 
aspects (e.g. where an 
object is or what disease is 
present)

➢ Model: Agent knows 
something about how the 
known variables relate to the 
unknown variables

➢ Probabilistic reasoning gives us 
a framework for managing our 
beliefs and knowledge
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Random Variables

➢ A random variable is some aspect of the world about which 
we (may) have uncertainty

➢ R = Is it raining?
➢ D = How long will it take to drive to work?
➢ L = Where am I?

➢ We denote random variables with capital letters

➢ Like in a CSP, each random variable has a domain
➢ R in {true, false}   (often write as {r, ¬r})
➢ D in [0, ∞)
➢ L in possible locations
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Probabilities

➢ We generally calculate conditional probabilities 
➢ P(on time | no reported accidents) = 0.90
➢ These represent the agent’s beliefs given the evidence

➢ Probabilities change with new evidence:
➢ P(on time | no reported accidents, 5 a.m.) = 0.95
➢ P(on time | no reported accidents, 5 a.m., raining) = 0.80
➢ Observing new evidence causes beliefs to be updated
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Probabilistic Models

➢ CSPs:
➢ Variables with domains
➢ Constraints: state whether 

assignments are possible
➢ Ideally: only certain 

variables directly interact

➢ Probabilistic models:
➢ (Random) variables with 

domains
➢ Assignments are called 

outcomes
➢ Joint distributions: say 

whether assignments 
(outcomes) are likely

➢ Normalized: sum to 1.0
➢ Ideally: only certain 

variables directly interact

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun T

hot rain F

cold sun F

cold rain T
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Joint Distributions
➢ A joint distribution over a set of random variables:

specifies a real number for each assignment (or outcome): 

➢ Size of distribution if n variables with 
domain sizes d?

➢ Must obey:

➢ For all but the smallest distributions, impractical to write out

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3
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Events

➢ An event is a set E of outcomes

➢ From a joint distribution, we can 
calculate the probability of any event

➢ Probability that it’s hot AND sunny?

➢ Probability that it’s hot?

➢ Probability that it’s hot OR sunny?

➢ Typically, the events we care about are 
partial assignments, like P(T=h)

 

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3
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Marginal Distributions
➢ Marginal distributions are sub-tables which eliminate variables 
➢ Marginalization (summing out): Combine collapsed rows by 

adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Conditional Distributions

➢ Conditional distributions are probability distributions over 
some variables given fixed values of others

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Conditional Distributions Joint Distribution
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Conditional Distributions

➢ A simple relation between joint and conditional probabilities
➢ In fact, this is taken as the definition of a conditional probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3
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Conditional Probabilities

➢ Conditional or posterior probabilities:
➢ E.g., P(cavity | toothache) = 0.8
➢ Given that toothache is all I know…

➢ Notation for conditional distributions:
➢ P(cavity | toothache) = a single number
➢ P(Cavity, Toothache) = 2x2 table summing to 1
➢ P(Cavity | Toothache) = Two 2-element vectors, each summing to 1

➢ If we know more:
➢ P(cavity | toothache, catch) = 0.9
➢ P(cavity | toothache, cavity) = 1

➢ Note: the less specific belief remains valid after more evidence arrives, but 
is not always useful

➢ New evidence may be irrelevant, allowing simplification:
➢ P(cavity | toothache, traffic) = P(cavity | toothache) = 0.8

➢ This kind of inference, guided by domain knowledge, is crucial



CS421: Intro to AI14 Hal Daumé III (me@hal3.name)

Normalization Trick

➢ A trick to get a whole conditional distribution at once:
➢ Select the joint probabilities matching the evidence
➢ Normalize the selection (make it sum to one)

➢ Why does this work?  Because sum of selection is 
P(evidence)!

 

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.1
cold 0.3

T P
hot 0.25
cold 0.75

Select Normalize
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The Product Rule

➢ Sometimes have a joint distribution but want a conditional
➢ Sometimes the reverse

➢ Example:

R P
sun 0.8
rain 0.2

D W P
wet sun 0.1
dry sun 0.9
wet rain 0.7
dry rain 0.3

D W P
wet sun 0.08
dry sun 0.72
wet rain 0.14
dry rain 0.06
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Bayes’ Rule

➢ Two ways to factor a joint distribution over two 
variables:

➢ Dividing, we get:

➢ Why is this at all helpful?
➢ Lets us build one conditional from its reverse
➢ Often one conditional is tricky but the other one is simple
➢ Foundation of many systems we’ll see later (e.g. ASR, MT)

➢ In the running for most important AI equation!

That’s my rule!

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
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Inference with Bayes’ Rule

➢ Example: Diagnostic probability from causal 
probability:

➢ Example:
➢ m is meningitis, s is stiff neck

➢ Note: posterior probability of meningitis still very small
➢ Note: you should still get stiff necks checked out!  Why?

Example
givens
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Ghostbusters

➢ Let’s say we have two distributions:
➢ Prior distribution over ghost locations: P(L)

➢ Say this is uniform (for now)
➢ Sensor reading model: P(R | L)

➢ Given by some known black box process
➢ E.g. P(R = yellow | L=(1,1)) = 0.1
➢ For now, assume the reading is always for the 

lower left corner

➢ We can calculate the posterior 
distribution over ghost locations using 
Bayes’ rule:
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Example Problems
➢ Suppose a murder occurs in a town of population 

10,000 (10,001 before the murder).  A suspect is 
brought in and DNA tested.  The probability that there is 
a DNA match give that a person is innocent is 
1/100,000; the probability of a match on a guilty person 
is 1.  What is the probability he is guilty given a DNA 
match?

➢ Doctors have found that people with Kreuzfeld-Jacob 
disease (KJ) are almost invariably ate lots of 
hamburgers, thus p(HamburgerEater|KJ) = 0.9.  KJ is a 
rare disease: about 1 in 100,000 people get it.  Eating 
hamburgers is widespread: p(HamburgerEater) = 0.5.  
What is the probability that a regular hamburger eater 
will have KJ disease?
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Inference by Enumeration

➢ P(sun)?

➢ P(sun | winter)?

➢ P(sun | winter, warm)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20
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Inference by Enumeration

➢ General case:
➢ Evidence variables: 
➢ Query variables:
➢ Hidden variables:

➢ We want:

➢ First, select the entries consistent with the evidence
➢ Second, sum out H:

➢ Finally, normalize the remaining entries to conditionalize

➢ Obvious problems:
➢ Worst-case time complexity O(dn) 
➢ Space complexity O(dn) to store the joint distribution

All variables

21
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Independence

➢ Two variables are independent in a joint distribution if:

➢ This says that their joint distribution factors into a product two simpler 
distributions

➢ Usually variable aren’t independent!

➢ Can use independence as a modeling assumption
➢ Independence can be a simplifying assumption
➢ Empirical joint distributions: at best “close” to independent
➢ What could we assume for {Weather, Traffic, Cavity}?

➢ Independence is like something from CSPs: what?
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Example: Independence

➢ N fair, independent coin flips:

H 0.5
T 0.5

H 0.5
T 0.5

H 0.5
T 0.5
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Example: Independence?

➢ Arbitrary joint 
distributions can be 
poorly modeled by 
independent factors

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T S P
warm sun 0.3
warm rain 0.2
cold sun 0.3
cold rain 0.2

T P
warm 0.5
cold 0.5

W P
sun 0.6
rain 0.4
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Conditional Independence

➢ Warning: we’re going to use domain knowledge, not laws of 
probability, here to simplify a model!

➢ If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:

➢ P(catch | toothache, cavity) = P(catch | cavity)

➢ The same independence holds if I don’t have a cavity:
➢ P(catch | toothache, ¬cavity) = P(catch| ¬cavity)

➢ Catch is conditionally independent of Toothache given Cavity:
➢ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

➢ Equivalent statements:
➢ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
➢ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) 

P(Catch | Cavity)
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Conditional Independence

➢ Unconditional (absolute) independence is very rare (why?)

➢ Conditional independence is our most basic and robust form of 
knowledge about uncertain environments:

➢ What about this domain:
➢ Traffic
➢ Umbrella
➢ Raining

➢ What about fire, smoke, alarm?
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The Chain Rule II

➢ Can always write any joint distribution as an incremental 
product of conditional distributions

➢ Why?

➢ This actually claims nothing…

➢ What are the sizes of the tables we supply?
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The Chain Rule III

➢ Trivial decomposition:

➢ With conditional independence:

➢ Conditional independence is our most basic and robust form 
of knowledge about uncertain environments

➢ Graphical models (next class) will help us work with and think 
about conditional independence
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Birthday Paradox

➢ What's the probability that no two people in this 
room have the same birthday?


