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Announcements

> Today is a brand new day!



Today

> Probability

Random Variables

Joint and Conditional Distributions
Inference, Bayes’ Rule
Independence

vV YV Y V

> You'll need all this stuff for the next few weeks, so
make sure you go over it!



Uncertainty

> (General situation:

> Evidence: Agent knows
certain things about the state
of the world (e.g., sensor
readings or symptoms)

> Hidden variables: Agent
needs to reason about other
aspects (e.g. where an
object is or what disease is
present)

> Model: Agent knows | 0.17
something about how the
known variables relate to the

unknown variables 001 003

> Probabilistic reasoning gives us
a framework for managing our
beliefs and knowledge




Random Variables

> A random variable is some aspect of the world about which
we (may) have uncertainty
> R =lsitraining?
> D = How long will it take to drive to work?
> L =Where am I?

> We denote random variables with capital letters

> Like in a CSP, each random variable has a domain
> Rin {true, false} (often write as {r, -r})
> DinJ0, o)
> L in possible locations



Probabilities

> We generally calculate conditional probabilities
> P(on time | no reported accidents) = 0.90
> These represent the agent’s beliefs given the evidence

> Probabilities change with new evidence:
> P(on time | no reported accidents, 5 a.m.) = 0.95
> P(on time | no reported accidents, 5 a.m., raining) = 0.80
> QObserving new evidence causes beliefs to be updated



Probabilistic Models

> CSPs:

>
>

>

Variables with domains

Constraints: state whether
assignments are possible

Ideally: only certain
variables directly interact

> Probabilistic models:

>

>

>

Y VYV

(Random) variables with
domains

Assignments are called
outcomes

Joint distributions: say
whether assignments
(outcomes) are likely

Normalized: sum to 1.0

Ideally: only certain
variables directly interact

T Y
hot sun T
hot rain F
cold sun F
cold rain T
T W
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Joint Distributions

> A joint distribution over a set of random variables: X1, Xo,... X
specifies a real number for each assignment (or outcome):

P(X1{=z1,Xo=xo,...Xp = xn)

P(x1,x2,...2n)

T \\ P
» Size of distribution if n variables with hot | sun | 0.4
domain sizes d? ot | maim 1 01

cold sun 0.2
cold rain 0.3

> Mustobey: 0 < P(z1,xp,...2n) <1
Z P(:L‘l,mg,...a:n)=1

($17£U27°'°xn)

> For all but the smallest distributions, impractical to write out



Events

> An eventis a set E of outcomes

P(F) = >  P(xy...zn)

> From a joint distribution, we can
calculate the probability of any event

> Probability that it's hot AND sunny?
> Probability that it's hot?

> Probability that it's hot OR sunny?

> Typically, the events we care about are
partial assignments, like P(T=h)

T Y
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Marginal Distributions

> Marginal distributions are sub-tables which eliminate variables
> Marginalization (summing out): Combine collapsed rows by

adding
P(T,W)

T Y P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

—_—
P(t) = Z P(t,s)

———
P(s) =) P(t,s)
t

P(T)

T P

hot

0.5

cold

0.5

P(W)

\\ P

Sun

0.6

rain

0.4

P(X1=z1) =) P(X;=ux1,Xp =)
T2




Conditional Distributions

> Conditional distributions are probability distributions over

P(W|T)

Conditional Distributions

Joint Distribution

some variables given fixed values of others

- P(W|T = hot)
Y P
sun 0.8
rain 0.2

P(W|T = cold)

W

P

P(T,W)
T W
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Sun

0.4

rain

0.6




Conditional Distributions

> A simple relation between joint and conditional probabilities
> In fact, this is taken as the definition of a conditional probability

P(alb) = P(a,b)
P(b)
P(T,W)
T W
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(a,b)

P(a) P(b)

PW =r|T =c¢) =777



Conditional Probabilities

> Conditional or posterior probabilities:
> E.g., P(cavity | toothache) = 0.8
> Given that foothache is all | know...

> Notation for conditional distributions:
> P(cavity | toothache) = a single number
> P(Cavity, Toothache) = 2x2 table summing to 1
> P(Cavity | Toothache) = Two 2-element vectors, each summing to 1

> If we know more:
> P(cavity | toothache, catch) = 0.9
> P(cavity | toothache, cavity) = 1

> Note: the less specific belief remains valid after more evidence arrives, but
is not always useful

> New evidence may be irrelevant, allowing simplification:
> P(cavity | toothache, traffic) = P(cavity | toothache) = 0.8
> This kind of inference, guided by domain knowledge, is crucial



Normalization Trick

> A trick to get a whole conditional distribution at once:
> Select the joint probabilities matching the evidence
> Normalize the selection (make it sum to one)

LW P P(T,7) P(Tr)
lﬁot su.n 8411 - > - -
rain 1| e— )
co(;d sun | 0.2] Sel hot | O.1f @ i hot | 0.25
u . ormalize
- clect  "cold | 0.3 cold | 0.75
cold | rain | 0.3

> Why does this work? Because sum of selection is
P(evidence)!

P(zy,x2) _  P(x1,22)

P(x1|xp) =

P(x2) >xq P(1,72)



The Product Rule

> Sometimes have a joint distribution but want a conditional

> Sometimes the reverse

> Example:

P(S)

R P
sun | 0.8

rain | 0.2

(> P(z,y) = P(zly) P(y)

P(x,y)
P(y)
P(D|W)
D \\Y P
wet sun | 0.1
dry | sun | 0.9
wet | rain | 0.7
dry | rain | 0.3

"

P(D,W)

D A%\ P
wet | sun | 0.08
dry | sun | 0.72
wet | rain | 0.14
dry | rain | 0.06




Bayes’ Rule

> Two ways to factor a joint distribution over two

variables:
That’s my rule!
P(x,y) = P(aly)P(y)= P(y|z) P() \/ :
> Dividing, we get: d
P(y|x)
P(x|ly) = P(x
(ely) = 5y P@)

> Why is this at all helpful?

> Lets us build one conditional from its reverse
> Often one conditional is tricky but the other one is simple
> Foundation of many systems we’ll see later (e.g. ASR, MT)

> In the running for most important Al equation!


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

> Example: Diagnostic probability from causal
probability:

P(Effect P
P(Cause|Effect) = (Effect|Cause) P(Cause)

P(Effect)
> Example: P(slm) = 0.8
> m is meningitis, s is stiff neck P(m) = 0.0001 - Example
: givens
P(s) = 0.1 i

_ P(sim)P(m) _ 0.8 x 0.0001

= 0.0008
P(s) 0.1

P(m|s)

> Note: posterior probability of meningitis still very small
> Note: you should still get stiff necks checked out! Why?



Ghostbusters

> Let’'s say we have two distributions:
> Prior distribution over ghost locations: P(L)
> Say this is uniform (for now)
> Sensor reading model: P(R | L)
> Given by some known black box process
> E.g. P(R=yellow | L=(1,1)) = 0.1

> For now, assume the reading is always for the
lower left corner

> We can calculate the posterior
distribution over ghost locations using
Bayes’ rule:

Pl|r) o P(r|€) P(£)




Example Problems

> Suppose a murder occurs in a town of population
10,000 (10,001 before the murder). A suspectis
brought in and DNA tested. The probability that there is
a DNA match give that a person is innocent is
1/100,000; the probability of a match on a guilty person
IS 1. What is the probability he is guilty given a DNA

match?

> Doctors have found that people with Kreuzfeld-Jacob
disease (KJ) are almost invariably ate lots of
hamburgers, thus p(HamburgerEater|KJ) = 0.9. KJ is a
rare disease: about 1 in 100,000 people get it. Eating
hamburgers is widespread: p(HamburgerEater) = 0.5.
What is the probabillity that a regular hamburger eater
will have KJ disease?



Inference by Enumeration

>

>

>

P(sun)?

P(sun | winter)?

P(sun | winter, warm)?

S T W P
summer | hot | sun | 0.30
summer | hot | rain | 0.05
summer | cold | sun | 0.10
summer | cold | rain | 0.05

winter hot | sun | 0.10
winter hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

> (General case:
> Evidence variables: (E1 ... E) = (e1...¢g) X1, X0, ... Xn
> Query variables:  Y;...Yn
> Hidden variables: ;... H, All variables

> Wewant: P(Y1...Ymle1...ep)

> First, select the entries consistent with the evidence

» Second, sum out H:

P(Y1...Ym,e1...ep) = 2, P(Y1...Ym,h1...hy,e1...ep)

T~
X1, Xo. ... Xn

> Finally, normalize the remaining entries to conditionalize

> Obvious problems:
> Worst-case time complexity O(d)
> Space complexity O(d") to store the joint distribution

21



Independence

> Two variables are independent in a joint distribution if:
P(X,Y) = P(X)P(Y)

> This says that their joint distribution factors into a product two simpler
distributions

» Usually variable aren’t independent!

> Can use independence as a modeling assumption
> Independence can be a simplifying assumption
> Empirical joint distributions: at best “close” to independent
> What could we assume for {\Weather, Traffic, Cavity}?

> Independence is like something from CSPs: what?



Example: Independence

P(Xn)

H |05

T 0.5
-

> N fair, independent coin flips:
P(X1) P(X>?)
H |05 H |05
T |05 T |05
S~
——
 P(X1,Xa,... Xn)
2™
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Example: Independence?

> Arbitrary joint
distributions can be
poorly modeled by
independent factors

P(T,W)

T W P
hot | sun | 04
hot | rain | 0.1

cold | sun | 0.2
cold | ramn | 0.3

P(T) P(W)
T P W P
warm | 0.5 sun | 0.6
cold | 0.5 rain | 0.4
P(T)P(W)
T S P
warm | sun | 0.3
warm | rain | 0.2
cold | sun | 0.3
cold | ramn | 0.2




Conditional Independence

> Warning[;: we're going to use domain knowledge, not laws of
probability, here to simplify a model!

> If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

» P(catch | toothache, cavity) = P(catch | cavity)

» The same independence holds if | don’'t have a cavity:
» P(catch | toothache, —cavity) = P(catch| - cavity)

> Catch is conditionally independent of Toothache given Cavity:
> P(Catch | Toothache, Cavity) = P(Catch | Cavity)

> Equivalent statements:
» P(Toothache | Catch , Cavity) = P(Toothache | Cavity)

> PEToothache, Catch | Cavity) = P(Toothache | Cavity)
P(Catch | Cavity)



Conditional Independence

> Unconditional (absolute) independence is very rare (why?)

» Conditional independence is our most basic and robust form of
knowledge about uncertain environments:

P(X,Y|Z) = P(X|2)P(Y|2)

> What about this domain:
> Traffic
> Umbrella
> Raining
> What about fire, smoke, alarm?



The Chain Rule li

> Can always write any joint distribution as an incremental
product of conditional distributions

P(X1,Xo,...Xn) = P(X1)P(X5|X1)P(X3| X2, X1) ...
P(X1,Xo,...Xp) = HP(XZ—]Xl X 1)

> Why? Z

> This actually claims nothing...

> What are the sizes of the tables we supply?



The Chain Rule lll

> Trivial decomposition:
P(Traffic, Rain,Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain, Traffic)
> With conditional independence:
P(Traffic, Rain, Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain)

» Conditional independence is our most basic and robust form
of knowledge about uncertain environments

> Graphical models (next class) will help us work with and think
about conditional independence



Birthday Paradox

> What's the probability that no two people in this
room have the same birthday?



