Reinforcement Learning II: Q-learning

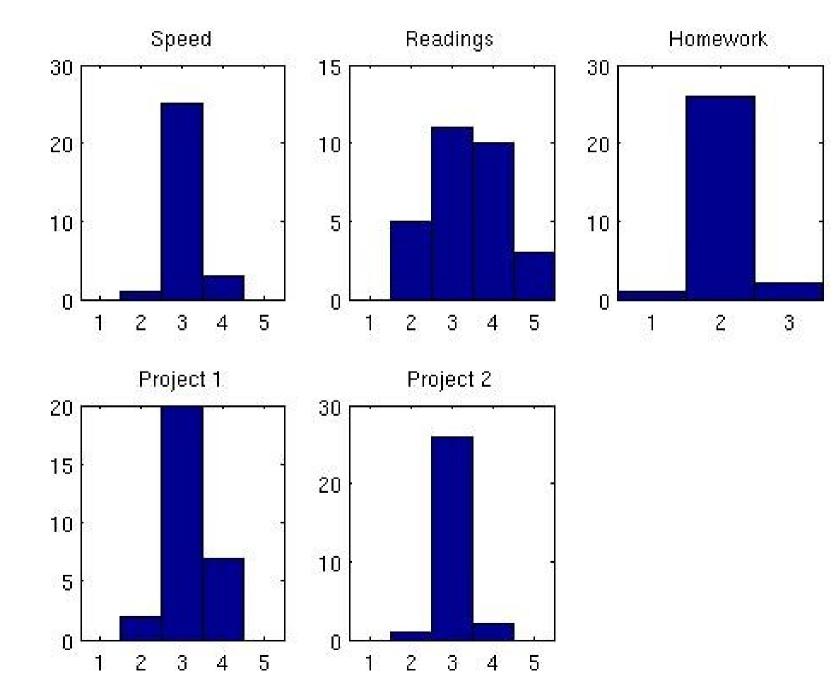
Hal Daumé III

- Computer Science University of Maryland
- me@hal3.name
- CS 421: Introduction to Artificial Intelligence
- 28 Feb 2012

Many slides courtesy of Dan Klein, Stuart Russell, or Andrew Moore

Hal Daumé III (me@hal3.name)

Midcourse survey, quantitative



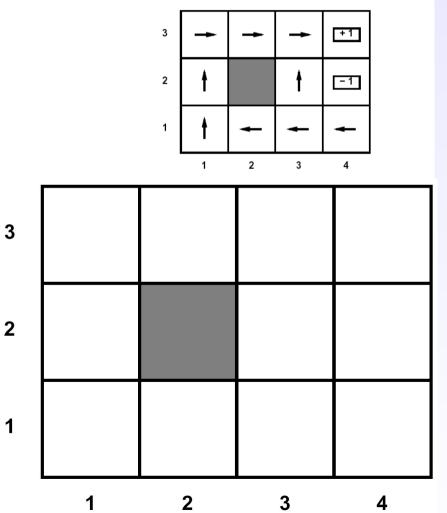
Midcourse survey, qualitative

- > (3) Too much class time on minutiae of homeworks
- (2) Project 1 not discussed much: made heuristics hard
- (2) More motivating examples (products or research)
- (2) Practice problems for exams, more HW examples
- (2) Reduce overall number of topics, or point toward important ones
- > (2) Handin link should be at the top of the web page
- (1) Textbook too wordy with too few visuals
- (1) Talk about (dis)advantages of approaches in class
- ➤ (1) More time going over algos in class
- ➤ (1) Make sure exam stuff is on slides
- (1) Tweak homeworks toward readings

Example: TD Policy Evaluation

$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[R(s,a,s') + \gamma V^{\pi}(s') \right]$$

(1,1) up -1	(1,1) up -1
(1,2) up -1	(1,2) up -1
(1,2) up -1	(1,3) right -1
(1,3) right -1	(2,3) right -1
(2,3) right -1	(3,3) right -1
(3,3) right -1	(3,2) up -1
(3,2) up -1	(4,2) exit -100
(3,3) right -1	(done)
(4,3) exit +100	
(done)	
	Take $\gamma = 1$, $\alpha = 0.5$

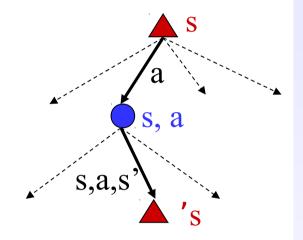


Hal Daumé III (me@hal3.name)

Problems with TD Value Learning

- TD value leaning is model-free for policy evaluation
- However, if we want to turn our value estimates into a policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q^*(s,a)$$

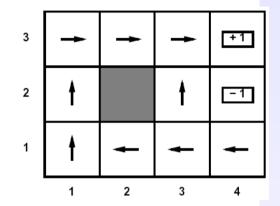


$$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right]$$

- Idea: learn Q-values directly
- Makes action selection model-free too!

Active Learning

- Full reinforcement learning
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You can choose any actions you like
 - Goal: learn the optimal policy (maybe values)
- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning!

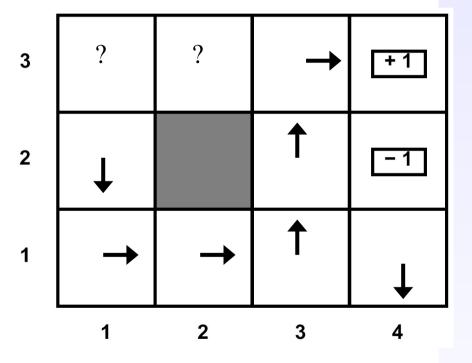


Model-Based Learning

- In general, want to learn the optimal policy, not evaluate a fixed policy
- Idea: adaptive dynamic programming
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat
 - Crucial: we have to make sure we actually learn about all of the model

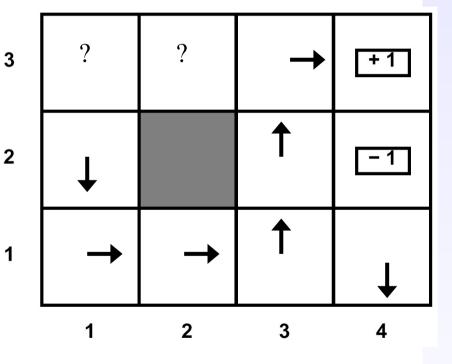
Example: Greedy ADP

- Imagine we find the lower path to the good exit first
- Some states will never be visited following this policy from (1,1)
- We'll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy



What Went Wrong?

- Problem with following optimal policy for current model:
 - Never learn about better regions of the space if current policy neglects them
- Fundamental tradeoff: exploration vs. exploitation
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility
 - Exploitation: once the true optimal policy is learned, exploration reduces utility
 - Systems must explore in the beginning and exploit in the limit



Q-Value Iteration

Value iteration: find successive approx optimal values

- > Start with $V_0^*(s) = 0$, which we know is right (why?)
- > Given V_i^* , calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- But Q-values are more useful!
 - > Start with $Q_0^*(s,a) = 0$, which we know is right (why?)
 - \blacktriangleright Given Q_i^* , calculate the q-values for all q-states for depth i+1:

$$Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_i(s',a') \right]$$

Q-Learning

- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - > Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right]$$
$$sample = R(s,a,s') + \gamma \max_{a'} Q(s',a')$$

Incorporate the new estimate into a running average:

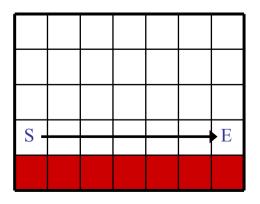
$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

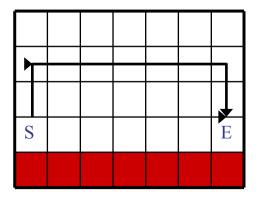
Q-Learning Properties

[DEMO – Grid Q's]

Will converge to optimal policy

- If you explore enough
- If you make the learning rate small enough
- But not decrease it too quickly!
- Basically doesn't matter how you select actions (!)
- Neat property: learns optimal q-values regardless of action selection noise (some caveats)





Hal Daumé III (me@hal3.name)

Exploration / Exploitation

- Several schemes for forcing exploration
 - > Simplest: random actions (ϵ greedy)
 - Every time step, flip a coin
 - > With probability ε , act randomly
 - > With probability 1- ε , act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - > One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

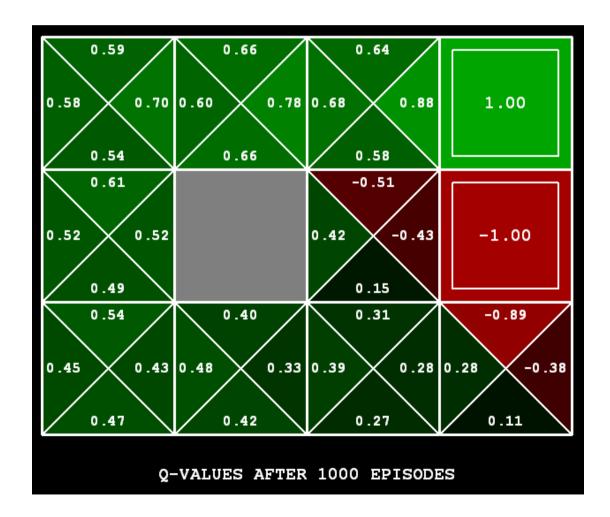
When to explore

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established
- Exploration function
 - > Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u,n) = u + k/n^{(exact form not important)}$

$$Q_{i+1}(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q_i(s',a')$$
$$Q_{i+1}(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q_i(s',a'), N(s',a'))$$

Q-Learning

Q-learning produces tables of q-values:



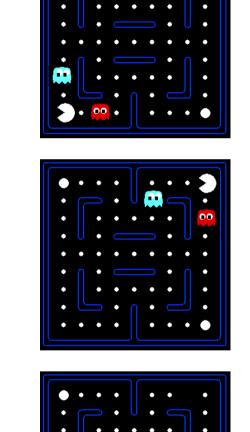
Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

- Let's say we discover through experience that this state is bad:
- In naïve q learning, we know nothing about this state or its q states:

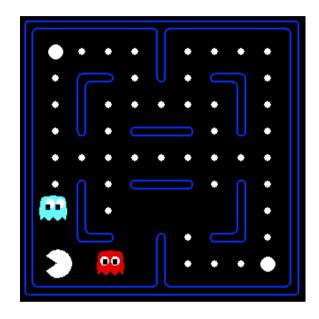
Or even this one!



Hal Daumé III (me@hal3.name)

Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - ➤ etc.
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



Linear Feature Functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

 $Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!

Function Approximation

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

Q-learning with linear q-functions:

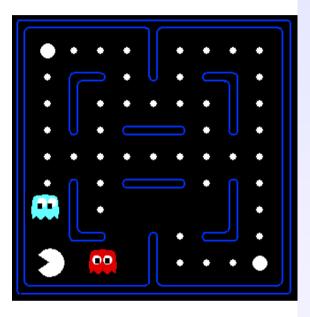
 $Q(s, a) \leftarrow Q(s, a) + \alpha [error]$ $w_i \leftarrow w_i + \alpha [error] f_i(s, a)$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state's features
- Formal justification: online least squares

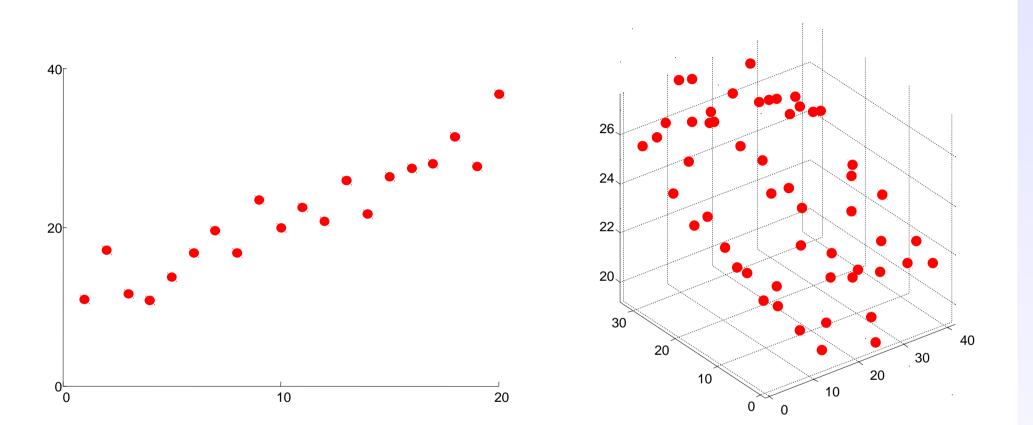
Example: Q-Pacman

 $Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$ $f_{DOT}(s, \text{NORTH}) = 0.5$ $f_{GST}(s, \text{NORTH}) = 1.0$ Q(s, a) = +1R(s, a, s') = -500error = -501 $w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$ $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$ $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$

Hal Daumé III (me@hal3.name)



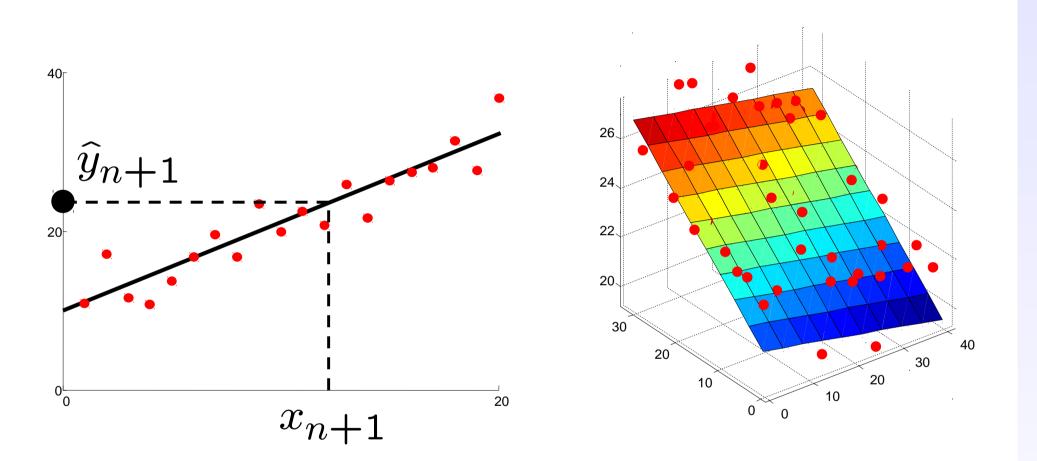
Linear regression



Given examples $(x_i, y_i)_{i=1...n}$ Predict y_{n+1} given a new point x_{n+1}

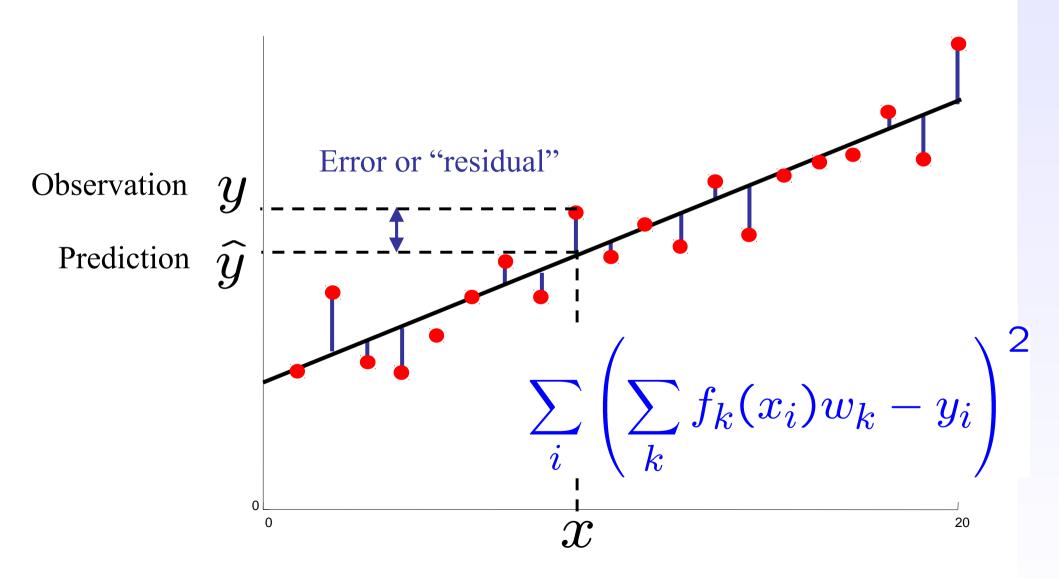
Hal Daumé III (me@hal3.name)

Linear regression





Ordinary Least Squares (OLS)



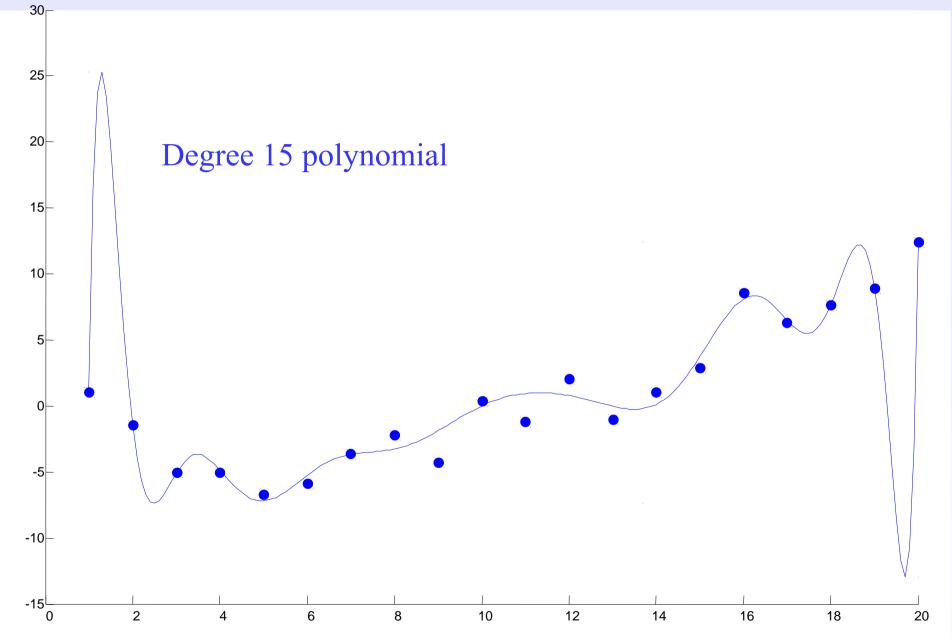
Minimizing Error

$$E(w) = \frac{1}{2} \sum_{i} \left(\sum_{k} f_{k}(x_{i})w_{k} - y_{i} \right)^{2}$$
$$\frac{\partial E}{\partial w_{m}} = \sum_{i} \left(\sum_{k} f_{k}(x_{i})w_{k} - y_{i} \right) f_{m}(x_{i})$$
$$E \leftarrow E + \alpha \sum_{i} \left(\sum_{k} f_{k}(x_{i})w_{k} - y_{i} \right) f_{m}(x_{i})$$

Value update explained:

$$w_i \leftarrow w_i + \alpha [error] f_i(s, a)$$

Overfitting



Hal Daumé III (me@hal3.name)