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Midcourse survey, quantitative
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Midcourse survey, qualitative
➢ (3) Too much class time on minutiae of homeworks
➢ (2) Project 1 not discussed much: made heuristics hard
➢ (2) More motivating examples (products or research)
➢ (2) Practice problems for exams, more HW examples
➢ (2) Reduce overall number of topics, or point toward

 important ones
➢ (2) Handin link should be at the top of the web page
➢ (1) Textbook too wordy with too few visuals
➢ (1) Talk about (dis)advantages of approaches in class
➢ (1) More time going over algos in class
➢ (1) Make sure exam stuff is on slides
➢ (1) Tweak homeworks toward readings
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Example: TD Policy Evaluation

Take γ = 1, α = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)
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Problems with TD Value Learning

➢ TD value leaning is model-free for policy 
evaluation

➢ However, if we want to turn our value 
estimates into a policy, we’re sunk:

➢ Idea: learn Q-values directly
➢ Makes action selection model-free too!

a

s

s, a

s,a,s’
s’
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Active Learning

➢ Full reinforcement learning
➢ You don’t know the transitions T(s,a,s’)
➢ You don’t know the rewards R(s,a,s’)
➢ You can choose any actions you like
➢ Goal: learn the optimal policy (maybe values)

➢ In this case:
➢ Learner makes choices!
➢ Fundamental tradeoff: exploration vs. exploitation
➢ This is NOT offline planning!
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Model-Based Learning

➢ In general, want to learn the optimal policy, not 
evaluate a fixed policy

➢ Idea: adaptive dynamic programming
➢ Learn an initial model of the environment:
➢ Solve for the optimal policy for this model (value or policy 

iteration)
➢ Refine model through experience and repeat
➢ Crucial: we have to make sure we actually learn about all of 

the model
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Example: Greedy ADP

➢ Imagine we find the lower 
path to the good exit first

➢ Some states will never be 
visited following this policy 
from (1,1)

➢ We’ll keep re-using this policy 
because following it never 
collects the regions of the 
model we need to learn the 
optimal policy 

? ?
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What Went Wrong?

➢ Problem with following optimal 
policy for current model:

➢ Never learn about better regions of 
the space if current policy neglects 
them

➢ Fundamental tradeoff: 
exploration vs. exploitation

➢ Exploration: must take actions with 
suboptimal estimates to discover new 
rewards and increase eventual utility

➢ Exploitation: once the true optimal 
policy is learned, exploration reduces 
utility

➢ Systems must explore in the 
beginning and exploit in the limit

? ?
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Q-Value Iteration

➢ Value iteration: find successive approx optimal values
➢ Start with V0

*(s) = 0, which we know is right (why?)
➢ Given Vi

*, calculate the values for all states for depth i+1:

➢ But Q-values are more useful!
➢ Start with Q0

*(s,a) = 0, which we know is right (why?)
➢ Given Qi

*, calculate the q-values for all q-states for depth i+1:
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Q-Learning

➢ Learn Q*(s,a) values
➢ Receive a sample (s,a,s’,r)
➢ Consider your old estimate:
➢ Consider your new sample estimate:

➢ Incorporate the new estimate into a running average:

[DEMO – Grid Q’s]
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Q-Learning Properties

➢ Will converge to optimal policy
➢ If you explore enough
➢ If you make the learning rate small enough
➢ But not decrease it too quickly!
➢ Basically doesn’t matter how you select actions (!)

➢ Neat property: learns optimal q-values regardless of action 
selection noise (some caveats)

S E S E

[DEMO – Grid Q’s]
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Exploration / Exploitation

➢ Several schemes for forcing exploration
➢ Simplest: random actions (ε greedy)

➢ Every time step, flip a coin
➢ With probability ε, act randomly
➢ With probability 1-ε, act according to current policy

➢ Problems with random actions?
➢ You do explore the space, but keep thrashing around 

once learning is done
➢ One solution: lower ε over time
➢ Another solution: exploration functions

[DEMO – RL Pacman]
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Exploration Functions

➢ When to explore
➢ Random actions: explore a fixed amount
➢ Better idea: explore areas whose badness is not (yet) established

➢ Exploration function
➢ Takes a value estimate and a count, and returns an optimistic utility, 

e.g.                                    (exact form not important)



CS421: Intro to AI15 Hal Daumé III (me@hal3.name)

Q-Learning

➢ Q-learning produces tables of q-values:

[DEMO – Crawler Q’s]
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Q-Learning

➢ In realistic situations, we cannot possibly learn about 
every single state!

➢ Too many states to visit them all in training
➢ Too many states to hold the q-tables in memory

➢ Instead, we want to generalize:
➢ Learn about some small number of training states from 

experience
➢ Generalize that experience to new, similar states
➢ This is a fundamental idea in machine learning, and we’ll 

see it over and over again
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Example: Pacman

➢ Let’s say we discover 
through experience that 
this state is bad:

➢ In naïve q learning, we 
know nothing about this 
state or its q states:

➢ Or even this one!
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Feature-Based Representations

➢ Solution: describe a state using a 
vector of features

➢ Features are functions from states 
to real numbers (often 0/1) that 
capture important properties of the 
state

➢ Example features:
➢ Distance to closest ghost
➢ Distance to closest dot
➢ Number of ghosts
➢ 1 / (dist to dot)2

➢ Is Pacman in a tunnel? (0/1)
➢ …… etc.

➢ Can also describe a q-state (s, a) 
with features (e.g. action moves 
closer to food)
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Linear Feature Functions

➢ Using a feature representation, we can write a q 
function (or value function) for any state using a 
few weights:

➢ Advantage: our experience is summed up in a few 
powerful numbers

➢ Disadvantage: states may share features but be 
very different in value!
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Function Approximation

➢ Q-learning with linear q-functions:

➢ Intuitive interpretation:
➢ Adjust weights of active features
➢ E.g. if something unexpectedly bad happens, disprefer all states with 

that state’s features

➢ Formal justification: online least squares



CS421: Intro to AI21 Hal Daumé III (me@hal3.name)

Example: Q-Pacman
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Linear regression
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Ordinary Least Squares (OLS)
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Minimizing Error

Value update explained:
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