Reinforcement Learning ll:
Q-learning

Hal Daumé II1

Computer Science
University of Maryland

me@hal3.name

CS 421: Introduction to Artificial Intelligence

28 Feb 2012

Many slides courtesy of
Dan Klein, Stuart Russell,
or Andrew Moore

H\H":-F;‘L_

;:'% %

15 56
3

) S

Rm.?ﬁl

Midcourse survey, quantitative

apeed Readings Haomewark,
30 13 30
20 20
10 10
0 0
1 2 3 4 5 1 ‘
Froject 1 Froject 2
13
20
10
10
2
0 0

Midcourse survey, qualitative

Vv VYV VY Y VY

Vv V V V V V

(3) Too much class time on minutiae of homeworks

(2) Project 1 not discussed much: made heuristics hard
(2) More motivating examples (products or research)
(2) Practice problems for exams, more HW examples

(2) Reduce overall number of topics, or point toward
Important ones

(2) Handin link should be at the top of the web page
(1) Textbook too wordy with too few visuals

(1) Talk about (dis)advantages of approaches in class
(1) More time going over algos in class

(1) Make sure exam stuff is on slides

(1) Tweak homeworks toward readings

Example: TD Policy Evaluation

Vi(s) «— (1 —-a)VT(s) + « [R(s, a,s) + ’)/VW(S’)]

(1,1) up -1 (1,1)up -1
(1,2) up -1 (1,2) up -1 =]
(1,2) up -1 (1,3) right -1 bl =]~
(1,3) right -1 (2,3) right -1 T 2 s

(2,3) right -1 (3,3) right -1

(3.3) right -1 (3.2) up -1 ’

(3,2) up -1 (4,2) exit -100

(3,3) right -1 (done) 2

(4,3) exit +100

(done) 1

Takey=1,a=0.5

Problems with TD Value Learning

> TD value leaning is model-free for policy
evaluation

> However, if we want to turn our value
estimates into a policy, we're sunk:

w(s) = argmaxQ*(s,a)
Q*(s,a) = ZT(S, a,s) {R(s, a,s’) + ’)/V*(S,)]

> ldea: learn Q-values directly
> Makes action selection model-free too!

Active Learning

> Full reinforcement learning
You don’t know the transitions T(s,a,s’) ’
You don’t know the rewards R(s,a,s’) |

!

B

You can choose any actions you like
Goal: learn the optimal policy (maybe values)

YV V VYV VY

> |In this case:
> Learner makes choices!
> Fundamental tradeoff: exploration vs. exploitation
> This is NOT offline planning!

Model-Based Learning

> In general, want to learn the optimal policy, not
evaluate a fixed policy

> ldea: adaptive dynamic programming
> Learn an initial model of the environment:

> Solve for the optimal policy for this model (value or policy
iteration)
> Refine model through experience and repeat

> Crucial: we have to make sure we actually learn about all of
the model

Example: Greedy ADP

>

Imagine we find the lower
path to the good exit first

Some states will never be
visited following this policy
from (1,1)

We'll keep re-using this policy
because following it never
collects the regions of the
model we need to learn the
optimal policy

+ 1

What Went Wrong?

>

>

>

>

Problem with foIIowindg optimal
policy for current model:

Never learn about better regions of
me space if current policy neglects
em

Fundamental tradeoff:
exploration vs. exploitation

Exploration: must take actions with
suboptimal estimates to discover new
rewards and increase eventual utility

Exploitation: once the true optimal
policy is learned, exploration reduces
utility

Systems must explore in the
beginning and exploit in the limit

2

1

+ 1

Q-Value Iteration

> Value iteration: find successive approx optimal values
> Start with V' (s) = 0, which we know is right (why?)
» Given V/, calculate the values for all states for depth i+1:

Vig1(s) — max > T(s,a,s") |R(s,a,s") 4+ V(s

> But Q-values are more useful!
> Start with Q,(s,a) = 0, which we know is right (why?)
» Given Q/, calculate the g-values for all g-states for depth i+1:

Qut1(5:0) = LT (0.) |R(s 0,8+ maxQi(s',)

[DEMO — Grid Q’s]

Q-Learning

> Learn Q*(s,a) values
> Receive a sample (s,a,s’,r)
» Consider your old estimate: (4)
> Consider your new sample estimate:

Q"(s,0) = ¥ T(s,a,8) | Rs,0,5) +7maxQ*(s',)

sample = R(s,a,s’) +~ max Q(s', a")

a

> |Incorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (a) [sample]

[DEMO — Grid Q’s]

Q-Learning Properties

> Wil converge to optimal policy
> If you explore enough
> If you make the learning rate small enough
> But not decrease it too quickly!
> Basically doesn’t matter how you select actions (!)
> Neat property: learns optimal g-values regardless of action
selection noise (some caveats)

S :

[DEMO — RL Pacman]

Exploration / Exploitation

> Several schemes for forcing exploration
» Simplest: random actions (€ greedy)
> Every time step, flip a coin
> With probability €, act randomly
> With probability 1-¢, act according to current policy

> Problems with random actions?

> You do explore the space, but keep thrashing around
once learning is done

» One solution: lower € over time
> Another solution: exploration functions

Exploration Functions

> When to explore
> Random actions: explore a fixed amount
> Better idea: explore areas whose badness is not (yet) established

> Exploration function

> Takes a value estimate and a count, and returns an optimistic utility,
e.g. flu,n) = u -+ k/n(exact form not important)
: —

Qi+1(s,a) «a R(s,a,8) + max Qi(s',a’)
Qit+1(s,a) «—a R(s,a,s") +~ max f(Qi(s',a"), N(s',a"))

Q-Learning

> Q-learning produces tables of g-values:

Q-Learning

> |In realistic situations, we cannot possibly learn about
every single state!
> Too many states to visit them all in training
> Too many states to hold the g-tables in memory

> Instead, we want to generalize:

> Learn about some small number of training states from
experience

> (Generalize that experience to new, similar states

> This is a fundamental idea in machine learning, and we’'ll
see it over and over again

Example: Pacman

> Let's say we discover
through experience that
this state is bad:

> In naive q learning, we
know nothing about this
state or its g states:

> Or even this one!

Feature-Based Representations

> Solution: describe a state using a
vector of features

> Features are functions from states
to real numbers (often 0/1) that
c?gtture important properties of the
state

> Example features:

Distance to closest ghost
Distance to closest dot
Number of ghosts

1/ (dist to dot)?

Is Pacman in a tunnel? (0/1)
...... etc.

» Can also describe a g-state (s, a)
with features (e.g. action moves
closer to food

YV VYV V VYV V

Linear Feature Functions

> Using a feature representation, we can write a q
function (or value function) for any state using a
few weights:

V(s) = wif1(s) +wafa(s) + ...+ wnfn(s)

Q(Sv CL) — wlf1(37 a’)+w2f2(87 CL)"— - °+wnfn(87 CL)
> Advantage: our experience is summed up in a few
powerful numbers

> Disadvantage: states may share features but be
very different in value!

Function Approximation

Q(Sv CL) — ’UJ]_f]_(S, CL)—|—UJ2f2(S, a’)_l_ . °+wnfn(87 CL)

> Q-learning with linear g-functions:

Q(s,a) — Q(s,a) + o [error]
w; «— w; + aerror] f;(s,a)

> Intuitive interpretation:
> Adjust weights of active features

> E.g. if something unexpectedly bad happens, disprefer all states with
that state’s features

> Formal justification: online least squares

Example: Q-Pacman

Q(s,a) =4.0fpor(s,a) — 1.0fqgg7(s,a)
fpor(s, NORTH) = 0.5
fasr(s, NORTH) = 1.0

Q(s,a) = +1
R(Sa a, S,) = —500

error = —501
wpor — 4.0+ a[-501]0.5
wasT +— —1.0 4+ a[-501] 1.0

Q(s,a) = 3.0fpor(s,a) —3.0fgsT(s,a)

Linear regression

40
o0

26 008 . n

| 00 | .

20r ° °

e =
10 S 20

Given examples (372'7 yi)i: 1..n

Predict vy, 11 given a new point Tpdq

Linear regression

Prediction Prediction

y; = wo + wizx; Yi = wo + wWix; 1 + Wrx; 2

Ordinary Least Squares (OLS)

, Error or “residual”
Observation y

Prediction 77 °
|

2
Z (Z fk(ajz)wk — yz)

ZE

Minimizing Error

>
E(w) = %Sj (Sj fr.(z;)wg — yi)
C \ &

1

0 k

a'LUm -

E — E + ayj (S: fr.(x;))wi, — yz> fm(x;)
0 k

Value update explained:

w; — w; + aerror] fi(s,a)

Overfitting

25

20

15

10

-10

-15

I

I

Degree 15 polynomial

