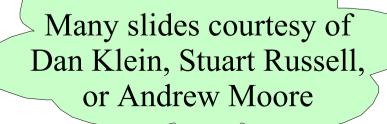
Markov Decision Processes

Hal Daumé III

- Computer Science University of Maryland
- me@hal3.name
- CS 421: Introduction to Artificial Intelligence
- 21 Feb 2012



Hal Daumé III (me@hal3.name)

CS421: Intro to AI

Announcements

- Mid-course corrections:
 - http://u.hal3.name/ic.pl?q=midcourse

Reinforcement Learning

Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must learn to act so as to maximize expected rewards
- Change the rewards, change the learned behavior

> Examples:

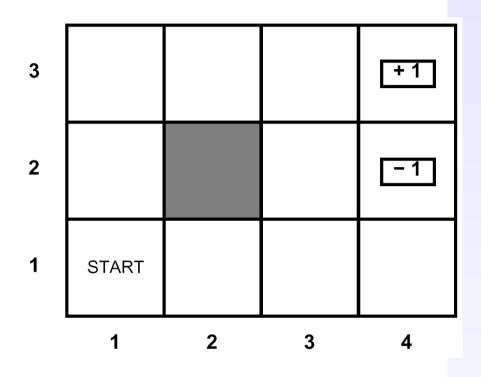
- Playing a game, reward at the end for winning / losing
- Vacuuming a house, reward for each piece of dirt picked up
- Automated taxi, reward for each passenger delivered

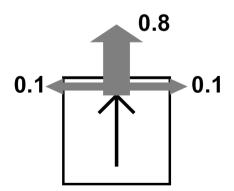
Human Reinforcement Learning

Markov Decision Processes

An MDP is defined by:

- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model
- A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
- A start state (or distribution)
- Maybe a terminal state
- MDPs are a family of nondeterministic search problems
 - Reinforcement learning: MDPs where we don't know the transition or reward functions

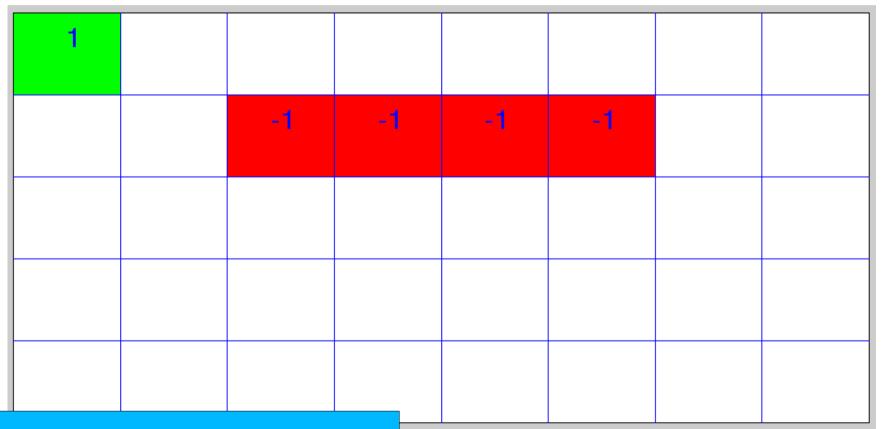




Hal Daumé III (me@hal3.name)

Map 0: Would you go across the top?

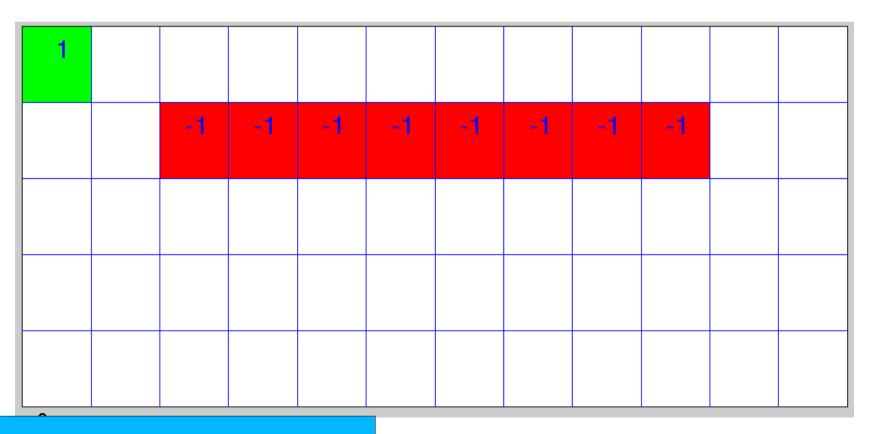
- Start in top-right, +\$1 for top left, -\$1 for red squares
- Costs N cents per step
- For what value N would you risk the "high road"?
 - Write something between 1 cent and 12 cents



u.hal3.name/ic.pl?q=map

Map 1: Would you go across the top?

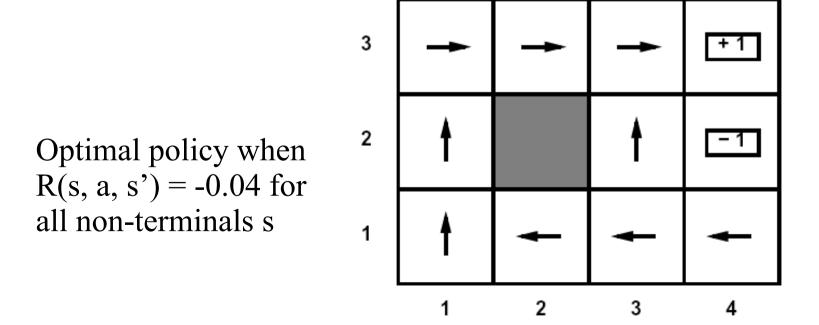
- Start in top-right, +\$1 for top left, -\$1 for red squares
- Costs N cents per step
- For what value N would you risk the "high road"?
 - Write something between 1 cent and 12 cents



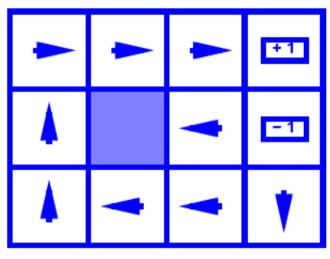
u.hal3.name/ic.pl?q=map

Solving MDPs

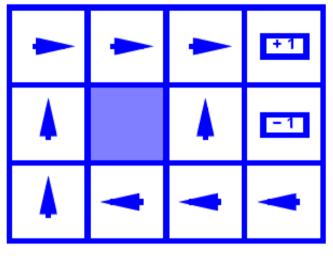
- In deterministic single-agent search problem, want an optimal plan, or sequence of actions, from start to a goal
- > In an MDP, we want an optimal policy $\pi(s)$
 - A policy gives an action for each state
 - Optimal policy maximizes expected if followed
 - Defines a reflex agent



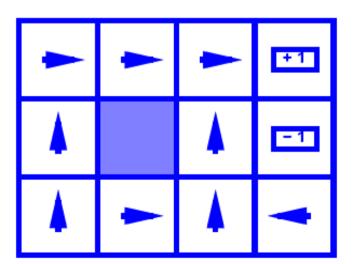
Example Optimal Policies

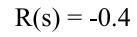


$$R(s) = -0.01$$

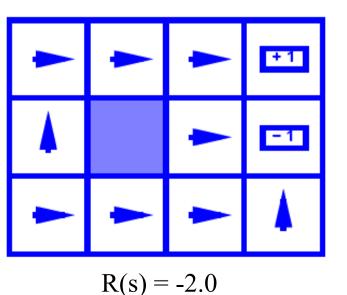


R(s) = -0.03





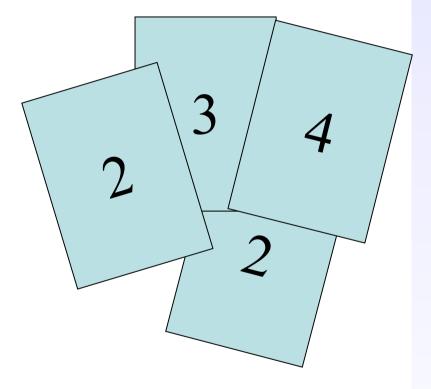
Hal Daumé III (me@hal3.name)



CS421: Intro to AI

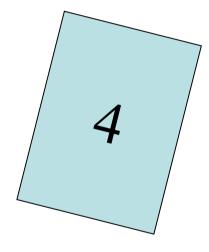
Example: High-Low

- Three card types: 2, 3, 4
- Infinite deck, twice as many 2's
- Start with 3 showing
- After each card, you say "high" or "low"
- New card is flipped
- If you're right, you win the points shown on the new card
- Ties are no-ops
- If you're wrong, game ends
- Differences from expectimax:
 - #1: get rewards as you go
 - #2: you might play forever!



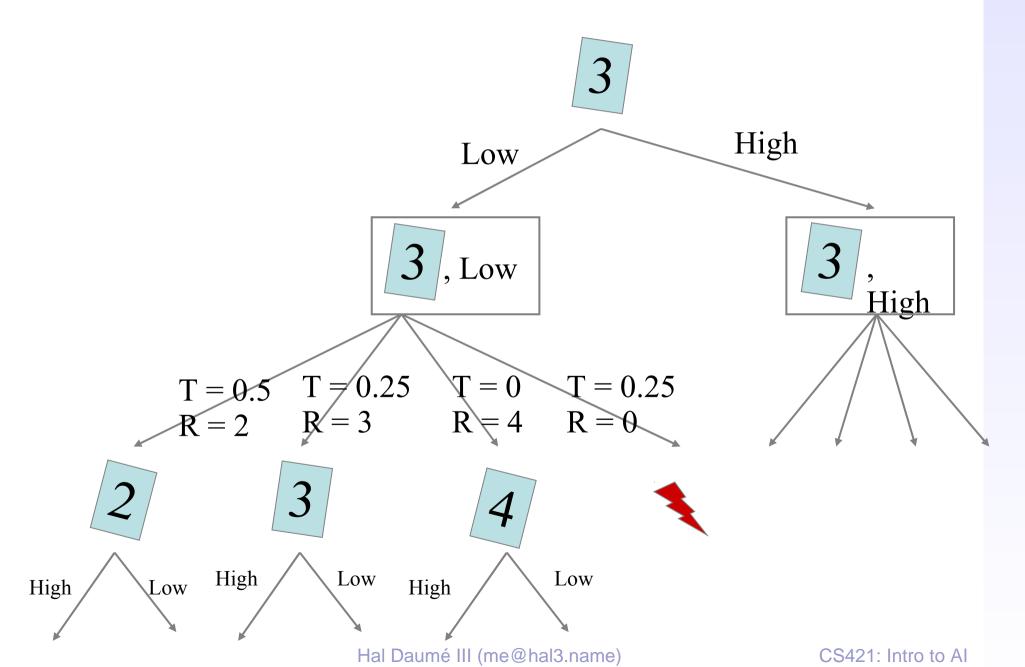
High-Low

States: 2, 3, 4, done Actions: High, Low > Model: T(s, a, s'): \blacktriangleright P(s'=done | 4, High) = 3/4 P(s'=2 | 4, High) = 0 \blacktriangleright P(s'=3 | 4, High) = 0 \blacktriangleright P(s'=4 | 4, High) = 1/4 P(s'=done | 4, Low) = 0 \blacktriangleright P(s'=2 | 4, Low) = 1/2 P(s'=3 | 4, Low) = 1/4 \blacktriangleright P(s'=4 | 4, Low) = 1/4 ▶ ... \succ Rewards: R(s, a, s'): > Number shown on s' if s \neq s' 0 otherwise \succ



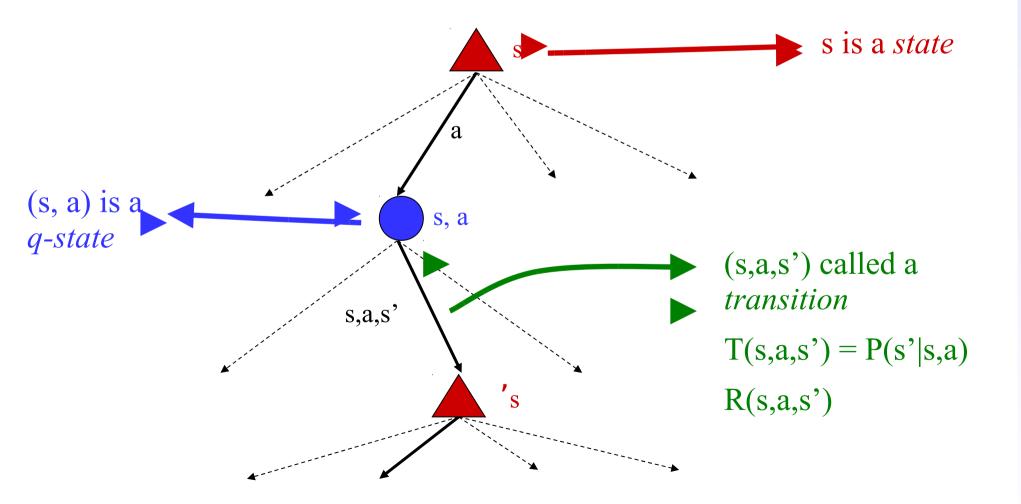
Note: could choose actions with search. How?

Example: High-Low



MDP Search Trees

Each MDP state gives an expectimax-like search tree



Utilities of Sequences

- In order to formalize optimality of a policy, need to understand utilities of sequences of rewards
- Typically consider stationary preferences:

 $[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots]$ \Leftrightarrow $[r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$ Assuming that reward depends only on state for these slides!

Theorem: only two ways to define stationary utilities
 Additive utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$$

> Discounted utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Infinite Utilities?!

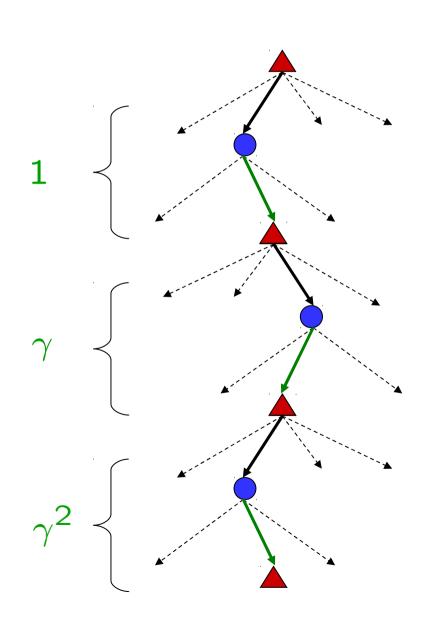
- Problem: infinite sequences with infinite rewards
- Solutions:
 - Finite horizon:
 - Terminate episodes after a fixed T steps
 - Sives nonstationary policy (π depends on time left)
 - Absorbing state(s): guarantee that for every policy, agent will eventually "die" (like "done" for High-Low)
 - > Discounting: for $0 < \gamma < 1$

$$U([r_0,\ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\max}/(1-\gamma)$$

> Smaller γ means smaller "horizon" – shorter term focus

Discounting

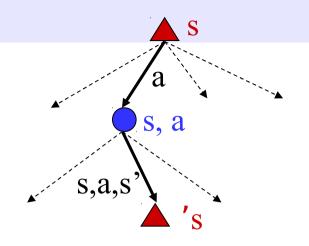
- Typically discount
 rewards by γ < 1 each
 time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge



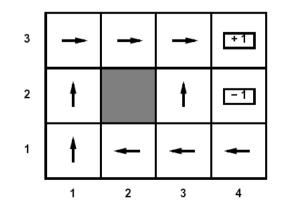
Hal Daumé III (me@hal3.name)

Optimal Utilities

- Fundamental operation: compute the optimal utilities of states s (all at once)
- Why? Optimal values define optimal policies!
- Define the utility of a state s:
 V*(s) = expected return starting in s and acting optimally
- Define the utility of a q-state (s,a):
 Q^{*}(s,a) = expected return starting in s, taking action a and thereafter acting optimally
- Define the optimal policy:
 π^{*}(s) = optimal action from state s



3	0.812	0.868	0.912	+1
2	0.762		0.660	-1
1	0.705	0.655	0.611	0.388
	1	2	3	4



Hal Daumé III (me@hal3.name)

CS421: Intro to AI

The Bellman Equations

Definition of utility leads to a simple one-step lookahead relationship amongst optimal utility values:

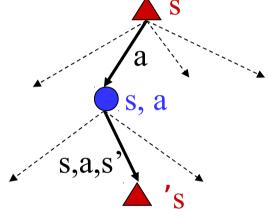
Optimal rewards = maximize over first action and then follow optimal policy

Formally:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



Solving MDPs

- > We want to find the optimal policy π^*
- Proposal 1: modified expectimax search, starting from each state s:

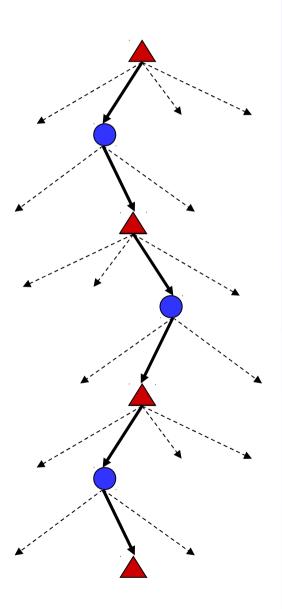
$$\pi^{*}(s) = \arg \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

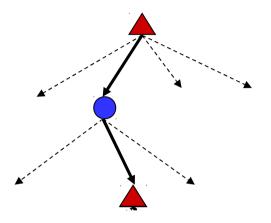
Why Not Search Trees?

- Why not solve with expectimax?
- Problems:
 - This tree is usually infinite (why?)
 - Same states appear over and over (why?)
 - We would search once per state (why?)
- Idea: Value iteration
 - Compute optimal values for all states all at once using successive approximations
 - Will be a bottom-up dynamic program similar in cost to memoization
 - Do all planning offline, no replanning needed!



Value Estimates

- > Calculate estimates $V_k^*(s)$
 - Not the optimal value of s!
 - The optimal value considering only next k time steps (k rewards)
 - As $k \to \infty$, it approaches the optimal value
 - > Why:
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and then this approach actually won't work



Memoized Recursion?

Recurrences:

$$V_0^*(s) = 0$$

$$V_i^*(s) = \max_a Q_i^*(s, a)$$

$$Q_i^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_{i-1}^*(s') \right]$$

$$\pi_i(s) = \arg\max_a Q_i^*(s, a)$$

- Cache all function call results so you never repeat work
- What happened to the evaluation function?

Value Iteration

- Problems with the recursive computation:
 - > Have to keep all the $V_k^*(s)$ around all the time
 - > Don't know which depth $\pi_k(s)$ to ask for when planning
- Solution: value iteration
 - Calculate values for all states, bottom-up
 - Keep increasing k until convergence

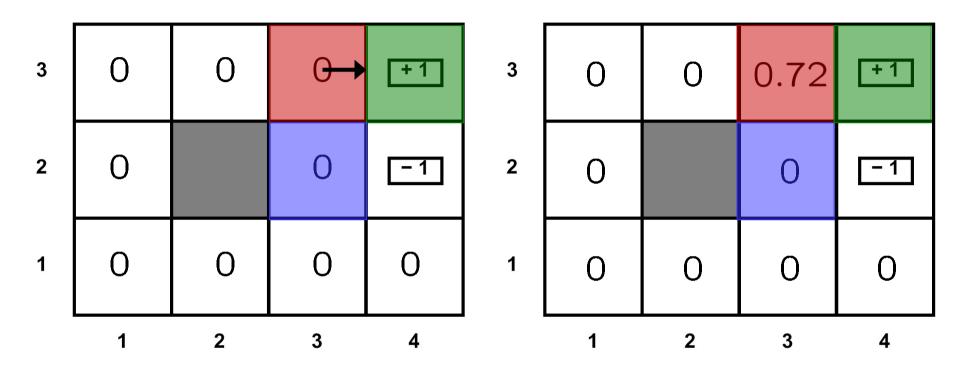
Value Iteration

- Idea:
 - > Start with $V_0^*(s) = 0$, which we know is right (why?)
 - > Given V_i^* , calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Bellman Updates

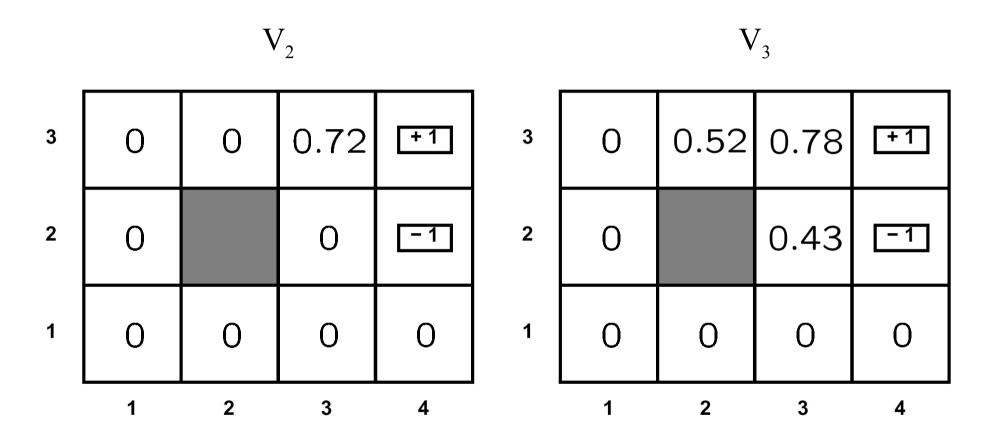


 $V_{i+1}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$ $V_2(\langle 3, 3 \rangle) = \sum_{s'} T(\langle 3, 3 \rangle, \text{right}, s') \left[R(\langle 3, 3 \rangle) + 0.9 V_1(s') \right]$ $= 0.9 \left[0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0 \right]$

Hal Daumé III (me@hal3.name)

CS421: Intro to Al

Example: Value Iteration



Information propagates outward from terminal states and eventually all states have correct value estimates

Convergence*

- > Define the max-norm: $||U|| = \max_s |U(s)|$
- > Theorem: For any two approximations U and V $||U^{t+1} - V^{t+1}|| < \gamma ||U^t - V^t||$
 - I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution
- > Theorem:
 - $||U^{t+1} U^t|| < \epsilon, \Rightarrow ||U^{t+1} U|| < 2\epsilon\gamma/(1-\gamma)$ I.e. once the change in our approximation is small, it must also

Practice: Computing Actions

- Which action should we chose from state s:
 - Given optimal values V?

$$\arg\max_{a}\sum_{s'}T(s,a,s')[R(s,a,s')+\gamma V^*(s')]$$

Given optimal q-values Q?

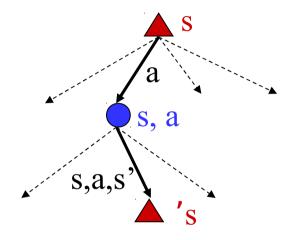
 $\arg\max_{a} Q^*(s,a)$

Lesson: actions are easier to select from Q's!

Recap: MDPs

Markov decision processes:

- States S
- Actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- > Rewards R(s,a,s') (and discount γ)
- > Start state s_0



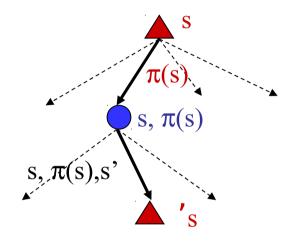
Quantities:

- Returns = sum of discounted rewards
- Values = expected future returns from a state (optimal, or for a fixed policy)
- Q-Values = expected future returns from a q-state (optimal, or for a fixed policy)

Utilities for Fixed Policies

- Another basic operation: compute the utility of a state s under a fix (general non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 V^π(s) = expected total discounted rewards (return) starting in s and following π





$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Hal Daumé III (me@hal3.name)

Policy Evaluation

- How do we calculate the V's for a fixed policy?
- Idea one: turn recursive equations into updates

 $V_0^{\pi}(s) = 0$

 $V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$

Idea two: it's just a linear system, solve with Matlab (or whatever)

Policy Iteration

Alternative approach:

- Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilities!) until convergence
- Step 2: Policy improvement: update policy using one-step lookahead with resulting converged (but not optimal!) utilities
- Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge faster under some conditions

Policy Iteration

- Policy evaluation: with fixed current policy π , find values with simplified Bellman updates:
 - Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

Comparison

In value iteration:

- Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)
- In policy iteration:
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies
- Hybrid approaches (asynchronous policy iteration):
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often