
CS421: Intro to AI1 Hal Daumé III (me@hal3.name)

Markov Decision Processes

Hal Daumé III
Computer Science
University of Maryland

me@hal3.name

CS 421: Introduction to Artificial Intelligence

21 Feb 2012

Many slides courtesy of
Dan Klein, Stuart Russell,

or Andrew Moore

CS421: Intro to AI2 Hal Daumé III (me@hal3.name)

Announcements
➢ Mid-course corrections:

➢ http://u.hal3.name/ic.pl?q=midcourse

CS421: Intro to AI3 Hal Daumé III (me@hal3.name)

Reinforcement Learning
➢ Basic idea:

➢ Receive feedback in the form of rewards
➢ Agent’s utility is defined by the reward function
➢ Must learn to act so as to maximize expected rewards
➢ Change the rewards, change the learned behavior

➢ Examples:
➢ Playing a game, reward at the end for winning / losing
➢ Vacuuming a house, reward for each piece of dirt picked up
➢ Automated taxi, reward for each passenger delivered

CS421: Intro to AI4 Hal Daumé III (me@hal3.name)

Human Reinforcement Learning

CS421: Intro to AI5 Hal Daumé III (me@hal3.name)

Markov Decision Processes
➢ An MDP is defined by:

➢ A set of states s ∈ S
➢ A set of actions a ∈ A
➢ A transition function T(s,a,s’)

➢ Prob that a from s leads to s’
➢ i.e., P(s’ | s,a)
➢ Also called the model

➢ A reward function R(s, a, s’)
➢ Sometimes just R(s) or R(s’)

➢ A start state (or distribution)
➢ Maybe a terminal state

➢ MDPs are a family of non-
deterministic search
problems

➢ Reinforcement learning: MDPs
where we don’t know the
transition or reward functions

CS421: Intro to AI6 Hal Daumé III (me@hal3.name)

Map 0: Would you go across the top?
➢ Start in top-right, +$1 for top left, -$1 for red squares
➢ Costs N cents per step
➢ For what value N would you risk the “high road”?

➢ Write something between 1 cent and 12 cents

u.hal3.name/ic.pl?q=map

CS421: Intro to AI7 Hal Daumé III (me@hal3.name)

Map 1: Would you go across the top?
➢ Start in top-right, +$1 for top left, -$1 for red squares
➢ Costs N cents per step
➢ For what value N would you risk the “high road”?

➢ Write something between 1 cent and 12 cents

u.hal3.name/ic.pl?q=map

CS421: Intro to AI8 Hal Daumé III (me@hal3.name)

Solving MDPs
➢ In deterministic single-agent search problem, want an optimal

plan, or sequence of actions, from start to a goal
➢ In an MDP, we want an optimal policy π(s)

➢ A policy gives an action for each state
➢ Optimal policy maximizes expected if followed
➢ Defines a reflex agent

Optimal policy when
R(s, a, s’) = -0.04 for
all non-terminals s

CS421: Intro to AI9 Hal Daumé III (me@hal3.name)

Example Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

CS421: Intro to AI10 Hal Daumé III (me@hal3.name)

Example: High-Low
➢ Three card types: 2, 3, 4
➢ Infinite deck, twice as many

2’s
➢ Start with 3 showing
➢ After each card, you say

“high” or “low”
➢ New card is flipped
➢ If you’re right, you win the

points shown on the new
card

➢ Ties are no-ops
➢ If you’re wrong, game ends

➢ Differences from
expectimax:

➢ #1: get rewards as you go
➢ #2: you might play forever!

2

3
2

4

CS421: Intro to AI11 Hal Daumé III (me@hal3.name)

High-Low
➢ States: 2, 3, 4, done
➢ Actions: High, Low
➢ Model: T(s, a, s’):

➢ P(s’=done | 4, High) = 3/4
➢ P(s’=2 | 4, High) = 0
➢ P(s’=3 | 4, High) = 0
➢ P(s’=4 | 4, High) = 1/4
➢ P(s’=done | 4, Low) = 0
➢ P(s’=2 | 4, Low) = 1/2
➢ P(s’=3 | 4, Low) = 1/4
➢ P(s’=4 | 4, Low) = 1/4
➢ …

➢ Rewards: R(s, a, s’):
➢ Number shown on s’ if s ≠

s’
➢ 0 otherwise

➢ Start: 3 Note: could choose actions
with search. How?

4

CS421: Intro to AI12 Hal Daumé III (me@hal3.name)

Example: High-Low

3
Low High

2 43

High Low High Low High Low

3 , Low ,
High

3

T = 0.5
R = 2

T = 0.25
R = 3

T = 0
R = 4

T = 0.25
R = 0

CS421: Intro to AI13 Hal Daumé III (me@hal3.name)

MDP Search Trees

➢ Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a
transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a
q-state

CS421: Intro to AI14 Hal Daumé III (me@hal3.name)

Utilities of Sequences
➢ In order to formalize optimality of a policy, need to understand

utilities of sequences of rewards
➢ Typically consider stationary preferences:

➢ Theorem: only two ways to define stationary utilities
➢ Additive utility:

➢ Discounted utility:

Assuming
that reward

depends
only on state

for these
slides!

CS421: Intro to AI15 Hal Daumé III (me@hal3.name)

Infinite Utilities?!
➢ Problem: infinite sequences with infinite rewards

➢ Solutions:
➢ Finite horizon:

➢ Terminate episodes after a fixed T steps
➢ Gives nonstationary policy (π depends on time left)

➢ Absorbing state(s): guarantee that for every policy, agent
will eventually “die” (like “done” for High-Low)

➢ Discounting: for 0 < γ < 1

➢ Smaller γ means smaller “horizon” – shorter term focus

CS421: Intro to AI16 Hal Daumé III (me@hal3.name)

Discounting
➢ Typically discount

rewards by γ < 1 each
time step

➢ Sooner rewards have
higher utility than later
rewards

➢ Also helps the algorithms
converge

CS421: Intro to AI17 Hal Daumé III (me@hal3.name)

Optimal Utilities
➢ Fundamental operation: compute

the optimal utilities of states s (all
at once)

➢ Why? Optimal values define
optimal policies!

➢ Define the utility of a state s:
V*(s) = expected return starting in

s and acting optimally

➢ Define the utility of a q-state (s,a):
Q*(s,a) = expected return starting

in s, taking action a and
thereafter acting optimally

➢ Define the optimal policy:
π*(s) = optimal action from state s

a

s

s, a

s,a,s’
s’

CS421: Intro to AI18 Hal Daumé III (me@hal3.name)

The Bellman Equations
➢ Definition of utility leads to a simple one-step

lookahead relationship amongst optimal utility
values:

Optimal rewards = maximize over first
action and then follow optimal policy

➢ Formally:

a

s

s, a

s,a,s’
s’

CS421: Intro to AI19 Hal Daumé III (me@hal3.name)

Solving MDPs

➢ We want to find the optimal policy π*

➢ Proposal 1: modified expectimax search, starting from each
state s:

a

s

s, a

s,a,s’
s’

CS421: Intro to AI20 Hal Daumé III (me@hal3.name)

Why Not Search Trees?

➢ Why not solve with expectimax?

➢ Problems:
➢ This tree is usually infinite (why?)
➢ Same states appear over and over

(why?)
➢ We would search once per state (why?)

➢ Idea: Value iteration
➢ Compute optimal values for all states all

at once using successive
approximations

➢ Will be a bottom-up dynamic program
similar in cost to memoization

➢ Do all planning offline, no replanning
needed!

CS421: Intro to AI21 Hal Daumé III (me@hal3.name)

Value Estimates

➢ Calculate estimates Vk
*(s)

➢ Not the optimal value of s!
➢ The optimal value considering only

next k time steps (k rewards)
➢ As k → ∞, it approaches the

optimal value
➢ Why:

➢ If discounting, distant rewards
become negligible

➢ If terminal states reachable from
everywhere, fraction of episodes
not ending becomes negligible

➢ Otherwise, can get infinite
expected utility and then this
approach actually won’t work

CS421: Intro to AI22 Hal Daumé III (me@hal3.name)

Memoized Recursion?

➢ Recurrences:

➢ Cache all function call results so you never repeat work
➢ What happened to the evaluation function?

CS421: Intro to AI23 Hal Daumé III (me@hal3.name)

Value Iteration
➢ Problems with the recursive computation:

➢ Have to keep all the Vk
*(s) around all the time

➢ Don’t know which depth πk(s) to ask for when planning

➢ Solution: value iteration
➢ Calculate values for all states, bottom-up
➢ Keep increasing k until convergence

CS421: Intro to AI24 Hal Daumé III (me@hal3.name)

Value Iteration
➢ Idea:

➢ Start with V0
*(s) = 0, which we know is right (why?)

➢ Given Vi
*, calculate the values for all states for depth i+1:

➢ This is called a value update or Bellman update
➢ Repeat until convergence

➢ Theorem: will converge to unique optimal values
➢ Basic idea: approximations get refined towards optimal values
➢ Policy may converge long before values do

CS421: Intro to AI25 Hal Daumé III (me@hal3.name)

Example: Bellman Updates

CS421: Intro to AI26 Hal Daumé III (me@hal3.name)

Example: Value Iteration

➢ Information propagates outward from terminal states
and eventually all states have correct value
estimates

V2 V3

CS421: Intro to AI27 Hal Daumé III (me@hal3.name)

Convergence*

➢ Define the max-norm:

➢ Theorem: For any two approximations U and V

➢ I.e. any distinct approximations must get closer to each other, so,
in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

➢ Theorem:

➢ I.e. once the change in our approximation is small, it must also
be close to correct

CS421: Intro to AI28 Hal Daumé III (me@hal3.name)

Practice: Computing Actions

➢ Which action should we chose from state s:
➢ Given optimal values V?

➢ Given optimal q-values Q?

➢ Lesson: actions are easier to select from Q’s!

CS421: Intro to AI29 Hal Daumé III (me@hal3.name)

Recap: MDPs

➢ Markov decision processes:
➢ States S
➢ Actions A
➢ Transitions P(s’|s,a) (or T(s,a,s’))
➢ Rewards R(s,a,s’) (and discount γ)
➢ Start state s0

➢ Quantities:
➢ Returns = sum of discounted rewards
➢ Values = expected future returns from a state (optimal, or

for a fixed policy)
➢ Q-Values = expected future returns from a q-state (optimal,

or for a fixed policy)

a

s

s, a

s,a,s’
s’

CS421: Intro to AI30 Hal Daumé III (me@hal3.name)

Utilities for Fixed Policies

➢ Another basic operation:
compute the utility of a state s
under a fix (general non-optimal)
policy

➢ Define the utility of a state s,
under a fixed policy π:

Vπ(s) = expected total discounted
rewards (return) starting in s
and following π

➢ Recursive relation (one-step
look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s’

CS421: Intro to AI31 Hal Daumé III (me@hal3.name)

Policy Evaluation

➢ How do we calculate the V’s for a fixed policy?

➢ Idea one: turn recursive equations into updates

➢ Idea two: it’s just a linear system, solve with Matlab
(or whatever)

CS421: Intro to AI32 Hal Daumé III (me@hal3.name)

Policy Iteration

➢ Alternative approach:
➢ Step 1: Policy evaluation: calculate utilities for a fixed policy

(not optimal utilities!) until convergence
➢ Step 2: Policy improvement: update policy using one-step

lookahead with resulting converged (but not optimal!)
utilities

➢ Repeat steps until policy converges

➢ This is policy iteration
➢ It’s still optimal!
➢ Can converge faster under some conditions

CS421: Intro to AI33 Hal Daumé III (me@hal3.name)

Policy Iteration

➢ Policy evaluation: with fixed current policy π, find values with
simplified Bellman updates:

➢ Iterate until values converge

➢ Policy improvement: with fixed utilities, find the best action
according to one-step look-ahead

CS421: Intro to AI34 Hal Daumé III (me@hal3.name)

Comparison

➢ In value iteration:
➢ Every pass (or “backup”) updates both utilities (explicitly,

based on current utilities) and policy (possibly implicitly,
based on current policy)

➢ In policy iteration:
➢ Several passes to update utilities with frozen policy
➢ Occasional passes to update policies

➢ Hybrid approaches (asynchronous policy iteration):
➢ Any sequences of partial updates to either policy entries or

utilities will converge if every state is visited infinitely often

