
Utility

Hal Daumé III

- Computer Science University of Maryland
- me@hal3.name
- CS 421: Introduction to Artificial Intelligence
- 16 Feb 2012

Hal Daumé III (me@hal3.name)

CS421: Intro to AI

Announcements

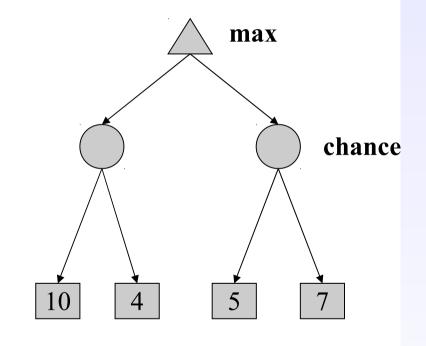
► P1

- Due Tuesday (late days until Thursday)
- Will post solution Friday morning
- P2 up
 - By end of today, you can complete it
 - Feel free to use anything from (y)our P1 or your P2

Hal's Lottery

- You pay \$M to enter my lottery
- I put \$1 in the pot
- Now, I start flipping fair coins
 - If the coin = heads, I double the pot
 - If the coin = tails, the game ends and you get the pot
- How much would you pay (\$M) to enter my lottery?

> Note, \$1 = 30 minutes on P2


http://u.hal3.name/ic.pl?lottery

Where we are and where we're going

- Where we've been:
 - Single agent, known world, known rewards
 - Multi-agent, known world, known rewards
- > Where we're going:
 - Stochastic, known world, known rewards (Markov Decision Processes)
 - Stochastic, ~known world, unknown rewards (Reinforcement Learning)

Expectimax Search Trees

- What if we don't know what the result of an action will be? E.g.,
 - In solitaire, next card is unknown
 - In minesweeper, mine locations
 - In pacman, the ghosts act randomly
- Can do expectimax search
 - Chance nodes, like min nodes, except the outcome is uncertain
 - Calculate expected utilities
 - Max nodes as in minimax search
 - Chance nodes take average (expectation) of value of children
- Later, we'll learn how to formalize the underlying problem as a Markov Decision Process

Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility: an agent should chose the action which maximizes its expected utility, given its knowledge
- General principle for decision making
- Often taken as the definition of rationality
- We'll see this idea over and over in this course!
- Let's decompress this definition...

Reminder: Probabilities

- A random variable is an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: traffic on freeway?
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20
- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one
- > As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
 - We'll talk about methods for reasoning about probabilities later

What are Probabilities?

Objectivist / frequentist answer:

- Averages over repeated experiments
- E.g. empirically estimating P(rain) from historical observation
- Assertion about how future experiments will go (in the limit)
- New evidence changes the reference class
- Makes one think of *inherently random* events, like rolling dice

Subjectivist / Bayesian answer:

- Degrees of belief about unobserved variables
- E.g. an agent's belief that it's raining, given the temperature
- E.g. pacman's belief that the ghost will turn left, given the state
- Often *learn* probabilities from past experiences (more later)
- New evidence updates beliefs (more later)

Dutch Books

Horse	Odds	Price
1	Even	\$100
2	3 to 1	\$50
3	4 to 1	\$40
4	9 to 1	\$20

- If your internal beliefs don't obey the rules of probability:
 - I can construct a Dutch book
 - ==> I can take infinite amounts of money from you!

Uncertainty Everywhere

Not just for games of chance!

- I'm sniffling: am I sick?
- Email contains "FREE!": is it spam?
- Tooth hurts: have cavity?
- 60 min enough to get to the airport?
- Robot rotated wheel three times, how far did it advance?
- Safe to cross street? (Look both ways!)
- Why can a random variable have uncertainty?
 - Inherently random process (dice, etc)
 - Insufficient or weak evidence
 - Ignorance of underlying processes
 - Unmodeled variables
 - The world's just noisy!
- Compare to fuzzy logic, which has degrees of truth, or rather than just degrees of belief

Reminder: Expectations

- Often a quantity of interest depends on a random variable
- The expected value of a function is its average output, weighted by a given distribution over inputs
- Example: How late if I leave 60 min before my flight?
 - Lateness is a function of traffic: L(none) = -10, L(light) = -5, L(heavy) = 15
 - What is my expected lateness?
 - Need to specify some belief over T to weight the outcomes
 - Say P(T) = {none: 2/5, light: 2/5, heavy: 1/5}
 - The expected lateness:

$$E_{P(T)}[L(T)] = \frac{2}{5} \times (-10) + \frac{2}{5} \times (-5) + \frac{1}{5} \times (15)$$

P(none)L(none)+P(light)L(light)+P(heavy)L(heavy)

Reminder: Expectations

Real valued functions of random variables:

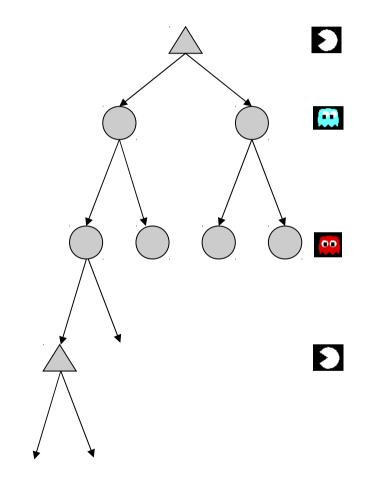
$$f: X \to R$$

Expectation of a function of a random variable

$$E_{P(X)}[f(X)] = \sum_{x} f(x)P(x)$$

Example: Expected value of a fair die roll

Two Envelopes Problem


- One envelope contains \$100, the other \$200
- Pick an envelope, then I'll let you switch if you want
- Pick an envelope A
- ▶ p(A is \$100) = p(A is \$200) = 0.5
- if A is \$100, then other contains \$200
 if A is \$200, then other contains \$100
- So other contains 2*A with p=0.5 and A/2 with p=0.5
- E[money in other] =
- So you should swap...
- ➤ and swap...
- and swap...

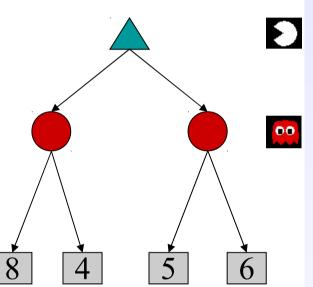
Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent's goals
 - Theorem: any set of preferences between outcomes can be summarized as a utility function (provided the preferences meet certain conditions)
- In general, we hard-wire utilities and let actions emerge (why don't we let agents decide their own utilities?)
- More on utilities soon…

Expectimax Search

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a node for every outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume for any state we magically have a distribution to assign probabilities to opponent actions / environment outcomes

Having a probabilistic belief about an agent's action does not mean that agent is flipping any coins!

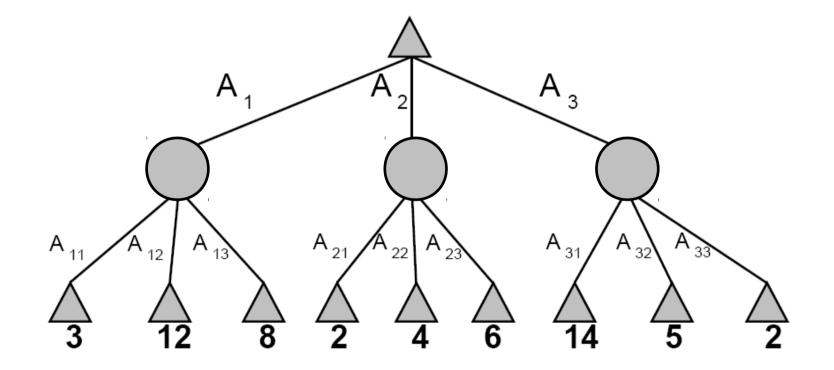

Hal Daumé III (me@hal3.name)

CS421: Intro to Al

Expectimax Pseudocode

def value(s)
 if s is a max node return maxValue(s)
 if s is an exp node return expValue(s)
 if s is a terminal node return evaluation(s)

```
def maxValue(s)
  values = [value(s') for s' in successors(s)]
  return max(values)
```



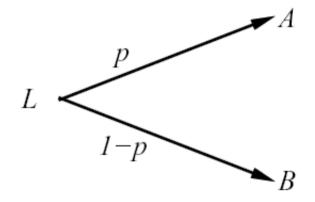
def expValue(s)
 values = [value(s') for s' in successors(s)]
 weights = [probability(s, s') for s' in successors(s)]
 return expectation(values, weights)

Expectimax for Pacman

- Notice that we've gotten away from thinking that the ghosts are trying to minimize pacman's score
- Instead, they are now a part of the environment
- Pacman has a belief (distribution) over how they will act
- Quiz: Can we see minimax as a special case of expectimax?
- Quiz: what would pacman's computation look like if we assumed that the ghosts were doing 1-ply minimax and taking the result 80% of the time, otherwise moving randomly?
- If you take this further, you end up calculating belief distributions over your opponents' belief distributions over your belief distributions, etc...
 - Can get unmanageable very quickly!

Expectimax Pruning?

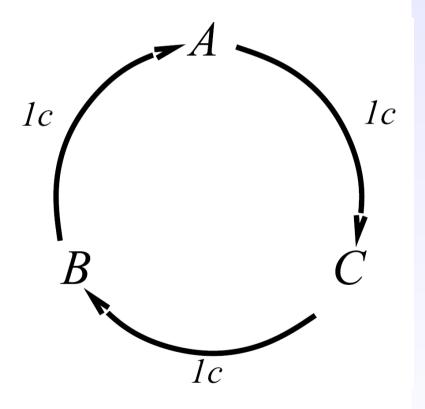
Expectimax Evaluation


- For minimax search, evaluation function insensitive to monotonic transformations
 - We just want better states to have higher evaluations (get the ordering right)
- For expectimax, we need the magnitudes to be meaningful as well
 - E.g. must know whether a 50% / 50% lottery between A and B is better than 100% chance of C
 - 100 or -10 vs 0 is different than 10 or -100 vs 0

Preferences

- An agent chooses among:
 - > Prizes: A, B, etc.
 - Lotteries: situations with uncertain prizes

$$L = [p, A; (1 - p), B]$$


Notation:

- $A \succ B$ A preferred over B
- $A \sim B$ indifference between A and B
- $A \succeq B$ B not preferred over A

Rational Preferences

- We want some constraints on preferences before we call them rational
- For example: an agent with intransitive preferences can be induced to give away all its money
 - If B > C, then an agent with C would pay (say) 1 cent to get B
 - If A > B, then an agent with B would pay (say) 1 cent to get A
 - If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

Preferences of a rational agent must obey constraints.

The axioms of rationality:

Orderability $(A \succ B) \lor (B \succ A) \lor (A \sim B)$ Transitivity $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$ Continuity $A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$ Substitutability $A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$ Monotonicity $A \succ B \Rightarrow$ $(p \ge q \Leftrightarrow [p, A; 1-p, B] \succeq [q, A; 1-q, B])$

Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

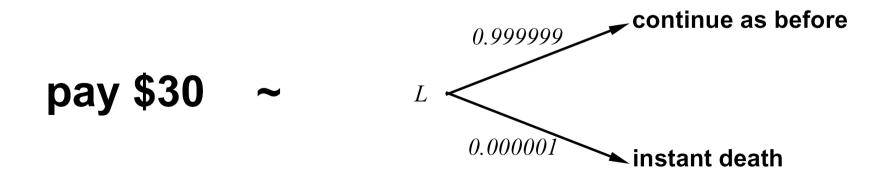
- > Theorem:
 - [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function U such that:

 $U(A) \ge U(B) \iff A \succeq B$ $U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$

Maximum expected likelihood (MEU) principle:

- Choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner

Pascal's Wager (d 1662)


A "proof" that it is a good idea to believe in God

	God	God Doesn't
	Exists	Exist
Believe	+infinity	-10
Don't Believe	-infinity	0

- Problems with this argument (mathematically)?
- Problems with this argument (theologically)?
- Exists in many cultures:
 - Islam: al-Juwayni (d 1085)
 - Sanskrit: Sarasamuccaya

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
 - Compare a state A to a standard lottery L_p between
 - ``best possible prize" u₊ with probability p
 - ``worst possible catastrophe" u_ with probability 1-p
 - Adjust lottery probability p until A ~ L_p
 - Resulting p is a utility in [0,1]

Utility Scales

- > Normalized utilities: $u_{+} = 1.0$, $u_{-} = 0.0$
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation $U'(x) = k_1 U(x) + k_2 \quad \text{where } k_1 > 0$

With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Example: Insurance

- Consider the lottery [0.5,\$1000; 0.5,\$0]
 - What is its expected monetary value? (\$500)
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - http://u.hal3.name/ic.pl?q=insurance
 - Difference is the insurance premium

Hal's Lottery, revisited

Friendly game	\$100	\$4.28	
Millionaire	\$1,000,000	\$10.95	
Billionaire	\$1,000,000,000	\$15.93	
Bill Gates (2008)	\$58,000,000,000	\$18.84	
US GDP (2007)	\$13.8 trillion	\$22.79	
World GDP (2007)	\$54.3 trillion	\$23.77	
Googolaire	\$10^100	\$166.50 ^e	p

- How much would you pay (\$M) to enter? E[payoff] = (1/2) 1 + (1/4) 2 + (1/8) 4 + (1/16) 8 + ... = (1/2) + (1/2) + (1/2) + (1/2) + ... = infinity!
- > Why weren't we willing to pay \$1m to enter?

Money

- Money does not behave as a utility function
- Given a lottery L:
 - Define expected monetary value EMV(L)
 - Usually U(L) < U(EMV(L))</p>
 - I.e., people are risk-averse
- Utility curve: for what probability p am I indifferent between:
 - A prize x
 - A lottery [p,\$M; (1-p),\$0] for large M?
- Typical empirical data, extrapolated with risk-prone behavior:

Example: Human Rationality?

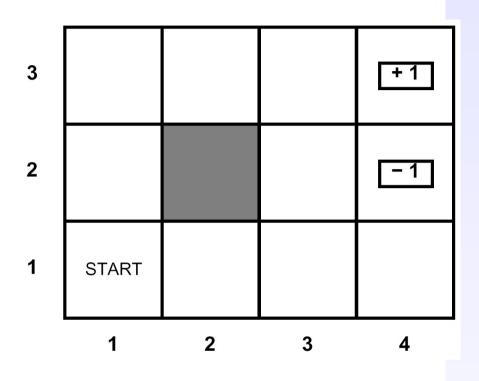
- Famous example of Allais (1953)
 - A: [0.8,\$4k; 0.2,\$0]
 B: [1.0,\$3k; 0.0,\$0]
 - C: [0.2,\$4k; 0.8,\$0]
 - D: [0.25,\$3k; 0.75,\$0]

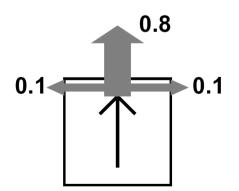
http://u.hal3.name/ic.pl?q=allais

Reinforcement Learning

> [DEMOS]

Basic idea:


- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must learn to act so as to maximize expected rewards
- Change the rewards, change the learned behavior


Examples:

- Playing a game, reward at the end for winning / losing
- Vacuuming a house, reward for each piece of dirt picked up
- Automated taxi, reward for each passenger delivered

Markov Decision Processes

- An MDP is defined by:
 - > A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - Maybe a terminal state
- MDPs are a family of nondeterministic search problems
 - Reinforcement learning: MDPs where we don't know the transition or reward functions

CS421: Intro to Al