Adversarial Search

Hal Daumé I11

Computer Science
University of Maryland

me@hal3.name
CS 421: Introduction to Artificial Intelligence

9 Feb 2012

Many slides courtesy of
Dan Klein, Stuart Russell,
or Andrew Moore

Announcements

> None

Adversarial Search

[DEMO: mystery
pacman]

Game Playing State-of-the-Art

>

Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total of
4435,748,401,247 positions. Checkers is now solved!

Chess: Deep Blue defeated human world champion Gary Kasparov in
a six-game match in 1997. Deep Blue examined 200 million positions
per second, used very sophisticated evaluation and undisclosed
methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers,
which are too good.

Go: human champions refuse to compete against computers, which
are too bad. In go, b > 300, so most programs use pattern knowledge
bases to suggest plausible moves.

Pacman: unknown

GamesCrafters

http://gamescrafters.berkeley.edu/

GamesCrafters

games analysis members exira software

welcome The GamesCrafters research and development group was formed in 2001 as a "watering hole” to gather and engage top undergraduates as they explore the
fertile area of computational game theory. At the core of the project is GAMESMAN, an open-source Al architecture developed for solving, playing, and
ames analyzing two-person abstract strategy games (e.g., Tic-Tac-Toe or Chess). Given the description of a game as input, our system generates a command-line
e interface and Tcl/Tk graphical application that will solve it (in the strong sense), and then play it perfectly. Programmers can easily prototype a new game with
. multiple rule variants, learn the strategy via color-coded value moves (win = go = green, tie = caution = yellow, lose = stop = red), and perform extended
members analysis.

extra The group is accessible to undergraduates at all levels. Those not yet ready to dive info code can create graphics, find bugs, or research the history of games
software for our website. Programmers can easily prototype a new game with multiple rule variants, design a fun interface, and perform extended analysis. Advanced
e students are encouraged to tinker with the software core, and optimize the solvers, databases, hash functions, networking, user experience, efc.
Since this is not a class, but directed group study, students can re-register as often as they like; most stay for two or three semesters. This allows for a real
community to be formed, with veterans providing continuity and mentoring as project leads, as well as allowing for more ambitious multi-term projects. Cur

alumni have told us how valuable this experience has been for them, providing them with a nurturing environment to mature as researchers, developers, and
leaders.

Over the past six years, over two hundred undergraduates have implemented more than sixty-five games and several advanced software engineering projects.
Our future research direction is "hunting big game”; i.e., implementing, solving, and analyzing large games whose perfect strategy is yet unknown.

This semester (Fall 2008), we're meeting in 606 Soda Hall, Mondays from 6-9PM. It is a "Directed Group Study” course worth two units led by Dr. Dan Garcia.

Game Playing

> Many different kinds of

> AXes:

> Determinist
> One,two o
> Perfect info

> Want algori
which reco

Hal Daumé Il (me@hal3.name) CS421: Intro to Al

Deterministic Games

> Many possible formalizations, one is:
States: S (start at s,)

Players: P={1...N} (usually take turns)
Actions: A (may depend on player / state)

Transition Function: SxA - S
Terminal Test: S - {t,f}
Terminal Utilities: SxP - R

YV V V V VYV VY

» Solution for a player is a policy: S - A

Deterministic Single-Player?

> Deterministic, single player,
perfect information:

Know the rules

Know what actions do

Know when you win

E.g. Freecell, 8-Puzzle,

Rubik’s cube

> ... It's just search!

> Slight reinterpretation:

» Each node stores a value:
the best outcome it can
reach

> This is the maximal
outcome of its children

> Note that we don’t have
path sums as before
(utilities at end)

> After search, can pick move
that leads to best node

YV V V

Deterministic Two-Player

> E.g. tic-tac-toe, chess,
checkers

> Minimax search

>
>
>

A state-space search tree
Players alternate

Each layer, or ply,
consists of a round of
moves

Choose move to position
with highest minimax
value = best achievable
utility against best play

> Zero-sum games
> One Flayer maximizes

resul

> The other minimizes result

max

min

Tic-tac-toe Game Tree

MAX (X)

X X X
MIN (O) X X

x[o x| Tol| [x
MAX (X) o

x[o[x| [x]o x|o
MIN (O) X X

x[o[x| [xJo[X] [x[o[X
TERMINAL o|x| [o[o[X X

3 X/ X[o| [x[o]o

Utility -1 0 +1

Minimax Example

Minimax Search

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
V4 —00
for a, sin SUCCESSORS(state) do v« Max(v, MIN-VALUE(S$))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
U — 00
for a, sin SUCCESSORS(state) do v<— MIN(v, MAX-VALUE(S))
return v

Minimax Properties

> Optimal against a perfect player. Otherwise?

> Time complexity? max
> O(bM)

> Space complexity? min
> O(bm)

> For chess, b=35 m=100
> Exact solution is completely infeasible 10 10 9 100
> But, do we need to explore the whole tree?

Resource Limits

> Cannot search to leaves

> Depth-limited search
> Instead, search a limited depth of tree

> Replace terminal utilities with an eval function
for non-terminal positions

> Guarantee of optimal play is gone

> More plies makes a BIG difference
> [DEMO: limitedDepth]

> Example:

> Sulgpose we have 100 seconds, can explore
10K nodes / sec

» So can check 1M nodes per move

> a-3 reaches about depth 8 — decent chess
program

Evaluation Functions

> Function which scores non-terminals

White to move

Black to move

White slightly better Black winning

> ldeal function: returns the utility of the position
> In practice: typically weighted linear sum of features:

Eval(s) = w1 f1(8) +wafo(s) + ... + wnfn(s)

> e.d. f,(s) = (hum white queens — num black queens), etc.

Evaluation for Pacman

[DEMO: thrashing, smart
ghosts]

Eval(s) = w1 f1(s) +wafa(s) + ... + wnfn(s)

Iterative Deepening

lterative deepening uses DFS as a
subroutine:

1. Do a DFS which only searches for paths
of length 1 or less. (DFS gives up on
any path of length 2)

2. If “17 failed, do a DFS which only
searches paths of length 2 or less.

3. If “2” failed, do a DFS which only
searches paths of length 3 or less.

....and so on.

This works for single-agent search as well!

Why do we want to do this for multiplayer
games?

Pruning in Minimax Search

a-3 Pruning Example

a- Pruning

> General configuration

> o Is the best value that MAX Player
can get at any choice point
along the current path

Opponent
> If n becomes worse than q, :
MAX will avoid it, so can stop
considering n’'s other children :
> Define 3 similarly for MIN Player

Opponent

a -3 Pruning Pseudocode

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V— —00
for a, sin SUCCESSORS(state) do v+ MAX(v, MIN-VALUE(s))
return v

function MAX-VALUE(state, v, 3) returns a utility value
inputs: state, current state in game
v, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)

V4 —00 g
for a, sin SUCCESSORS(state) do B N

v— Max(v, MIN-VALUE(s, a, 5))
if U@ﬁ then return v
a— MAX(a, v)

return v

a -3 Pruning Properties

> Pruning has no effect on final result
» (Good move ordering improves effectiveness of pruning

> With “perfect ordering”:
> Time complexity drops to O(b™?)
> Doubles solvable depth
> Full search of, e.g. chess, is still hopeless!

> A simple example of metareasoning, here reasoning about
which computations are relevant

Non-Zero-Sum Games

> Similar to

minimax:
> Utilities are
now tuples

> Each player
maximizes
their own
entry at each
node

> Propagate (or
1,2,6 43,2 6,1,2 7,4,1 5,1,1 1,5,2 1,7,1 5,4,5

back up)
nodes from
children

Stochastic Single-Player

> What if we don’t know what the

>
>
>

result of an action will be? E.g.,
In solitaire, shuffle is unknown
In minesweeper, mine locations
In pacman, ghosts!

» Can do expectimax search

>

Y VYV V

>

Chance nodes, like actions
except the environment controls
the action chosen

Calculate utility for each node
Max nodes as in search

Chance nodes take average
(expectation) of value of children

Later, we'll learn how to formalize

this as a Markov Decision

Process

10

max

average

Stochastic Two-Player

> E.g. backgammon
> Expectiminimax (!)
> Environment is an extra

player that moves after CHANCE
each agent

» (Chance nodes take
expectations, otherwise MIN
like minimax

MAX

if state is a MAX node then

return the highest EXPECTIMINIMAX- VALUE of SUCCESSORS(state)
if state is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Stochastic Two-Player

> Dice rolls increase b: 21 possible rolls
with 2 dice

0 1 2 3 4 5 6 7 8 9 1011 12
[N [

» Backgammon = 20 legal moves
> Depth4=20x(21x20)* 1.2x10°

> As depth increases, probability of
reaching a given node shrinks

> 3o value of lookahead is diminished
> 3o limiting depth is less damaging

> But pruning is less possible...

25 24 23 22 21 20 19 18 17 16 15 14 13

» TDGammon uses depth-2 search +
very good eval function +
reinforcement learning: world-
champion level play

What’s Next?

> Make sure you know what:
> Probabilities are
> Expectations are

> You should be able to do any exercise from:
> http://www.cs.umd.edu/class/fall2011/cmsc250-0x0x/hw/HW11.pdf
> Username and password are both “250”

> If you can't, review your probability discrete math!

> http://www.cs.umd.edu/class/fall2011/cmsc250-
0x0x/notes/CRASH.pdf

> Next topics:
> Dealing with uncertainty
> How to learn evaluation functions
» Markov Decision Processes

http://www.cs.umd.edu/class/fall2011/cmsc250-0x0x/hw/HW11.pdf

