
CS421: Intro to AI1 Hal Daumé III (me@hal3.name)

Adversarial Search

Hal Daumé III
Computer Science
University of Maryland

me@hal3.name

CS 421: Introduction to Artificial Intelligence

9 Feb 2012

Many slides courtesy of
Dan Klein, Stuart Russell,

or Andrew Moore

CS421: Intro to AI2 Hal Daumé III (me@hal3.name)

Announcements
➢ None

CS421: Intro to AI3 Hal Daumé III (me@hal3.name)

Adversarial Search

[DEMO: mystery
pacman]

CS421: Intro to AI4 Hal Daumé III (me@hal3.name)

Game Playing State-of-the-Art
➢ Checkers: Chinook ended 40-year-reign of human world champion

Marion Tinsley in 1994. Used an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions. Checkers is now solved!

➢ Chess: Deep Blue defeated human world champion Gary Kasparov in
a six-game match in 1997. Deep Blue examined 200 million positions
per second, used very sophisticated evaluation and undisclosed
methods for extending some lines of search up to 40 ply.

➢ Othello: human champions refuse to compete against computers,
which are too good.

➢ Go: human champions refuse to compete against computers, which
are too bad. In go, b > 300, so most programs use pattern knowledge
bases to suggest plausible moves.

➢ Pacman: unknown

CS421: Intro to AI5 Hal Daumé III (me@hal3.name)

GamesCrafters
http://gamescrafters.berkeley.edu/

CS421: Intro to AI6 Hal Daumé III (me@hal3.name)

Game Playing
➢ Many different kinds of games!

➢ Axes:
➢ Deterministic or stochastic?
➢ One, two or more players?
➢ Perfect information (can you see the state)?

➢ Want algorithms for calculating a strategy (policy)
which recommends a move in each state

 Examples?

 Deterministic, 1 player, perfect information?
 Deterministic, 1 player, imperfect information?

 Deterministic, >1 player, perfect information?
 Deterministic, >1 player, imperfect information?

 Stochastic, 1 player, perfect information?
 Stochastic, 1 player, imperfect information?

 Stochastic, >1 player, perfect information?
 Stochastic, >1 player, imperfect information?

 http://u.hal3.name/ic.pl?q=game

CS421: Intro to AI7 Hal Daumé III (me@hal3.name)

Deterministic Games

➢ Many possible formalizations, one is:
➢ States: S (start at s0)

➢ Players: P={1...N} (usually take turns)
➢ Actions: A (may depend on player / state)
➢ Transition Function: SxA → S
➢ Terminal Test: S → {t,f}
➢ Terminal Utilities: SxP → R

➢ Solution for a player is a policy: S → A

CS421: Intro to AI8 Hal Daumé III (me@hal3.name)

Deterministic Single-Player?
➢ Deterministic, single player,

perfect information:
➢ Know the rules
➢ Know what actions do
➢ Know when you win
➢ E.g. Freecell, 8-Puzzle,

Rubik’s cube
➢ … it’s just search!
➢ Slight reinterpretation:

➢ Each node stores a value:
the best outcome it can
reach

➢ This is the maximal
outcome of its children

➢ Note that we don’t have
path sums as before
(utilities at end)

➢ After search, can pick move
that leads to best node

win loselose

CS421: Intro to AI9 Hal Daumé III (me@hal3.name)

Deterministic Two-Player
➢ E.g. tic-tac-toe, chess,

checkers
➢ Minimax search

➢ A state-space search tree
➢ Players alternate
➢ Each layer, or ply,

consists of a round of
moves

➢ Choose move to position
with highest minimax
value = best achievable
utility against best play

➢ Zero-sum games
➢ One player maximizes

result
➢ The other minimizes result

8 2 5 6

max

min

CS421: Intro to AI10 Hal Daumé III (me@hal3.name)

Tic-tac-toe Game Tree

CS421: Intro to AI11 Hal Daumé III (me@hal3.name)

Minimax Example

CS421: Intro to AI12 Hal Daumé III (me@hal3.name)

Minimax Search

CS421: Intro to AI13 Hal Daumé III (me@hal3.name)

Minimax Properties

➢ Optimal against a perfect player. Otherwise?

➢ Time complexity?
➢ O(bm)

➢ Space complexity?
➢ O(bm)

➢ For chess, b ≈ 35, m ≈ 100
➢ Exact solution is completely infeasible
➢ But, do we need to explore the whole tree?

10 10 9 100

max

min

CS421: Intro to AI14 Hal Daumé III (me@hal3.name)

Resource Limits

➢ Cannot search to leaves

➢ Depth-limited search
➢ Instead, search a limited depth of tree
➢ Replace terminal utilities with an eval function

for non-terminal positions

➢ Guarantee of optimal play is gone

➢ More plies makes a BIG difference
➢ [DEMO: limitedDepth]

➢ Example:
➢ Suppose we have 100 seconds, can explore

10K nodes / sec
➢ So can check 1M nodes per move
➢ α-β reaches about depth 8 – decent chess

program

? ? ? ?

-1 -2 4 9

4

min min

max

-2 4

CS421: Intro to AI15 Hal Daumé III (me@hal3.name)

Evaluation Functions

➢ Function which scores non-terminals

➢ Ideal function: returns the utility of the position
➢ In practice: typically weighted linear sum of features:

➢ e.g. f1(s) = (num white queens – num black queens), etc.

CS421: Intro to AI16 Hal Daumé III (me@hal3.name)

Evaluation for Pacman

[DEMO: thrashing, smart
ghosts]

CS421: Intro to AI17 Hal Daumé III (me@hal3.name)

Iterative Deepening

Iterative deepening uses DFS as a
subroutine:

1. Do a DFS which only searches for paths
of length 1 or less. (DFS gives up on
any path of length 2)

2. If “1” failed, do a DFS which only
searches paths of length 2 or less.

3. If “2” failed, do a DFS which only
searches paths of length 3 or less.

….and so on.

This works for single-agent search as well!
Why do we want to do this for multiplayer

games?

…
b

CS421: Intro to AI18 Hal Daumé III (me@hal3.name)

Pruning in Minimax Search

[-∞,+∞]

3 12 8 2 14 5 2

[-∞,3] [-∞,2] [-∞,14][3,3] [-∞,5][2,2]

[3,+∞][3,14][3,5][3,3]

CS421: Intro to AI19 Hal Daumé III (me@hal3.name)

α-β Pruning Example

CS421: Intro to AI20 Hal Daumé III (me@hal3.name)

α-β Pruning

➢ General configuration
➢ α is the best value that MAX

can get at any choice point
along the current path

➢ If n becomes worse than α,
MAX will avoid it, so can stop
considering n’s other children

➢ Define β similarly for MIN

Player

Opponent

Player

Opponent

α

n

CS421: Intro to AI21 Hal Daumé III (me@hal3.name)

α-β Pruning Pseudocode

β

v

CS421: Intro to AI22 Hal Daumé III (me@hal3.name)

α-β Pruning Properties

➢ Pruning has no effect on final result

➢ Good move ordering improves effectiveness of pruning

➢ With “perfect ordering”:
➢ Time complexity drops to O(bm/2)
➢ Doubles solvable depth
➢ Full search of, e.g. chess, is still hopeless!

➢ A simple example of metareasoning, here reasoning about
which computations are relevant

CS421: Intro to AI23 Hal Daumé III (me@hal3.name)

Non-Zero-Sum Games

➢ Similar to
minimax:

➢ Utilities are
now tuples

➢ Each player
maximizes
their own
entry at each
node

➢ Propagate (or
back up)
nodes from
children

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5

CS421: Intro to AI24 Hal Daumé III (me@hal3.name)

Stochastic Single-Player

➢ What if we don’t know what the
result of an action will be? E.g.,

➢ In solitaire, shuffle is unknown
➢ In minesweeper, mine locations
➢ In pacman, ghosts!

➢ Can do expectimax search
➢ Chance nodes, like actions

except the environment controls
the action chosen

➢ Calculate utility for each node
➢ Max nodes as in search
➢ Chance nodes take average

(expectation) of value of children

➢ Later, we’ll learn how to formalize
this as a Markov Decision
Process

10 4 5 7

max

average

CS421: Intro to AI25 Hal Daumé III (me@hal3.name)

Stochastic Two-Player

➢ E.g. backgammon
➢ Expectiminimax (!)

➢ Environment is an extra
player that moves after
each agent

➢ Chance nodes take
expectations, otherwise
like minimax

CS421: Intro to AI26 Hal Daumé III (me@hal3.name)

Stochastic Two-Player

➢ Dice rolls increase b: 21 possible rolls
with 2 dice

➢ Backgammon ≈ 20 legal moves
➢ Depth 4 = 20 x (21 x 20)3 1.2 x 109

➢ As depth increases, probability of
reaching a given node shrinks

➢ So value of lookahead is diminished
➢ So limiting depth is less damaging
➢ But pruning is less possible…

➢ TDGammon uses depth-2 search +
very good eval function +
reinforcement learning: world-
champion level play

CS421: Intro to AI27 Hal Daumé III (me@hal3.name)

What’s Next?

➢ Make sure you know what:
➢ Probabilities are
➢ Expectations are
➢ You should be able to do any exercise from:

➢ http://www.cs.umd.edu/class/fall2011/cmsc250-0x0x/hw/HW11.pdf
➢ Username and password are both “250”

➢ If you can't, review your probability discrete math!
➢ http://www.cs.umd.edu/class/fall2011/cmsc250-

0x0x/notes/CRASH.pdf

➢ Next topics:
➢ Dealing with uncertainty
➢ How to learn evaluation functions
➢ Markov Decision Processes

http://www.cs.umd.edu/class/fall2011/cmsc250-0x0x/hw/HW11.pdf

