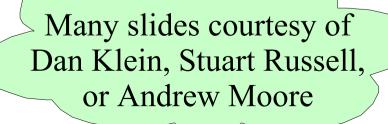
Adversarial Search

Hal Daumé III

- Computer Science University of Maryland
- me@hal3.name
- CS 421: Introduction to Artificial Intelligence
- 9 Feb 2012



Hal Daumé III (me@hal3.name)

CS421: Intro to AI

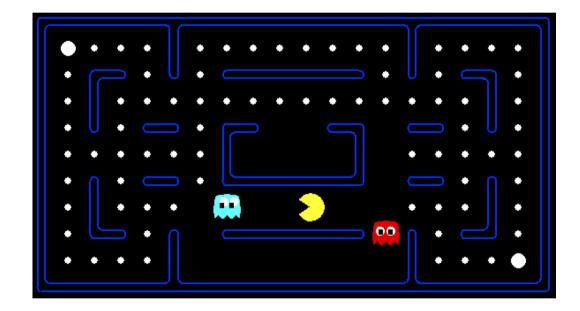
Announcements

None

Hal Daumé III (me@hal3.name)

CS421: Intro to AI

Adversarial Search



[DEMO: mystery pacman]

Hal Daumé III (me@hal3.name)

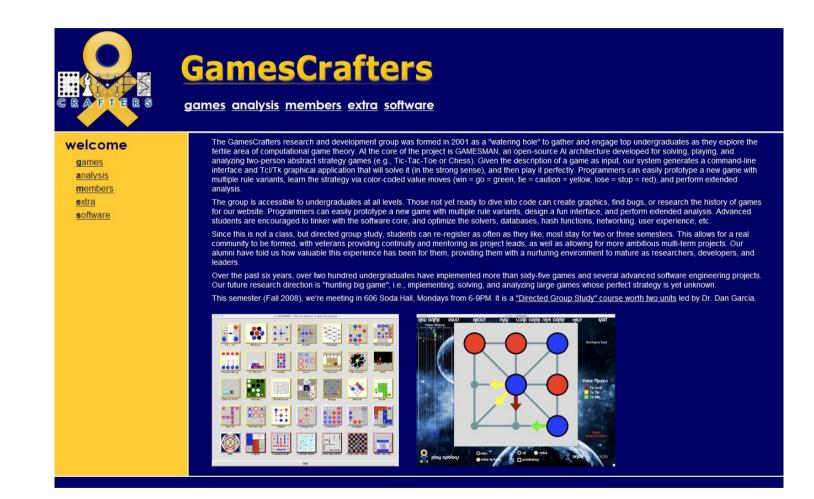
CS421: Intro to Al

Game Playing State-of-the-Art

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions. Checkers is now solved!
- Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue examined 200 million positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers, which are too good.
- Go: human champions refuse to compete against computers, which are too bad. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.
- Pacman: unknown

GamesCrafters

http://gamescrafters.berkeley.edu/



Game Playing

Many different kinds of games!

Examples?

- Axes:
 - Deterministic, 1 player, perfect information?
 Deterministic, 1 player, imperfect information?
 - One, two or
 - Perfect info Deterministic, >1 player, perfect information? Deterministic, >1 player, imperfect information?
- Want algorit which recon Stochastic, 1 player, perfect information? Stochastic, 1 player, imperfect information?

Stochastic, >1 player, perfect information? Stochastic, >1 player, imperfect information?

http://u.hal3.name/ic.pl?q=game

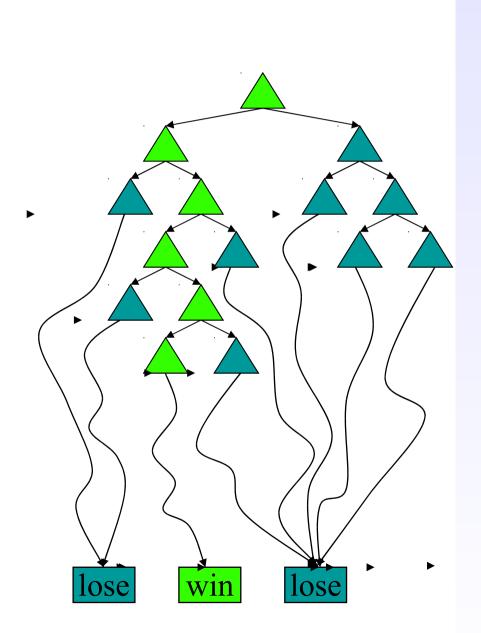
Deterministic Games

- Many possible formalizations, one is:
 - > States: S (start at s_0)
 - Players: P={1...N} (usually take turns)
 - Actions: A (may depend on player / state)
 - ► Transition Function: $SxA \rightarrow S$
 - ▶ Terminal Test: $S \rightarrow \{t, f\}$
 - ► Terminal Utilities: $SxP \rightarrow R$

► Solution for a player is a policy: $S \rightarrow A$

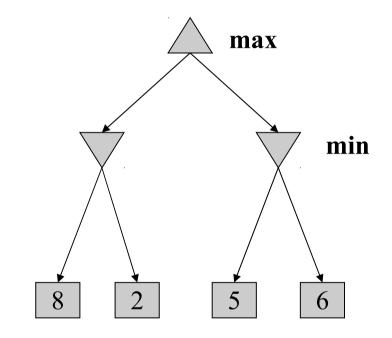
Deterministic Single-Player?

- Deterministic, single player, perfect information:
 - Know the rules
 - Know what actions do
 - Know when you win
 - E.g. Freecell, 8-Puzzle, Rubik's cube
- … it's just search!
- Slight reinterpretation:
 Each node stores a value:
 - Each node stores a value: the best outcome it can reach
 - This is the maximal outcome of its children
 - Note that we don't have path sums as before (utilities at end)
- After search, can pick move that leads to best node

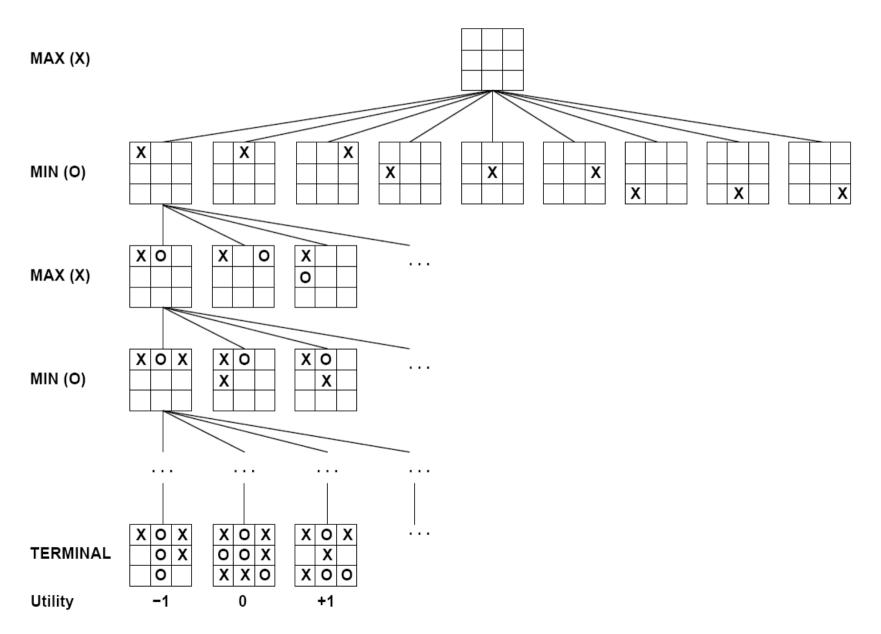


Deterministic Two-Player

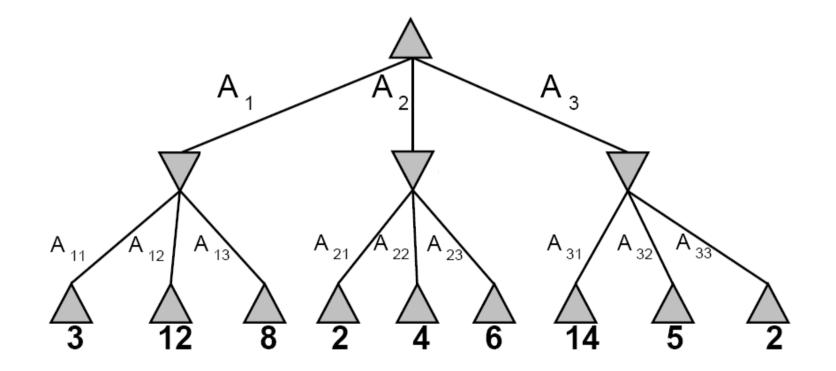
- E.g. tic-tac-toe, chess, checkers
- Minimax search
 - A state-space search tree
 - Players alternate
 - Each layer, or ply, consists of a round of moves
 - Choose move to position with highest minimax value = best achievable utility against best play
- Zero-sum games
 - One player maximizes result
 - The other minimizes result



Tic-tac-toe Game Tree



Minimax Example



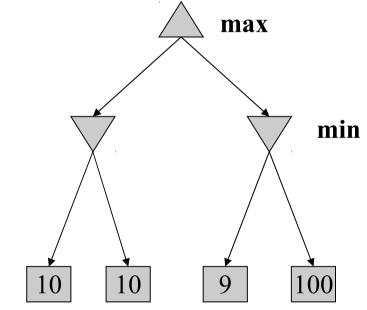
function MAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) $v \leftarrow -\infty$ for a, s in SUCCESSORS(state) do $v \leftarrow MAX(v, MIN-VALUE(s))$ return v

function MIN-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) $v \leftarrow \infty$ for a, s in SUCCESSORS(state) do $v \leftarrow MIN(v, MAX-VALUE(s))$ return v

Minimax Properties

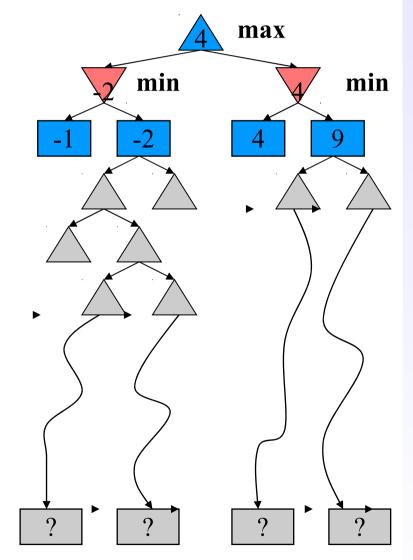
Optimal against a perfect player. Otherwise?

- Time complexity?
 O(b^m)
- Space complexity?
 - O(bm)
- For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?



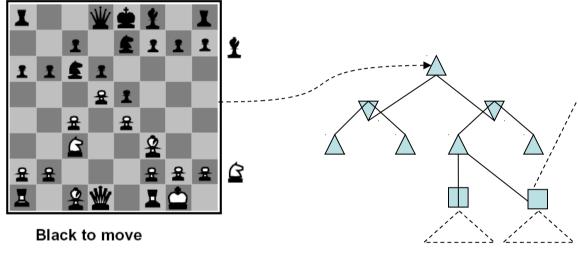
Resource Limits

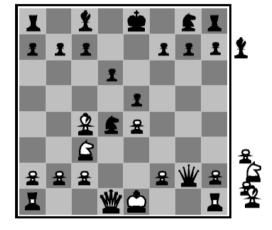
- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with an eval function for non-terminal positions
- Guarantee of optimal play is gone
- More plies makes a BIG difference
 - [DEMO: limitedDepth]
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α-β reaches about depth 8 decent chess program



Evaluation Functions

Function which scores non-terminals





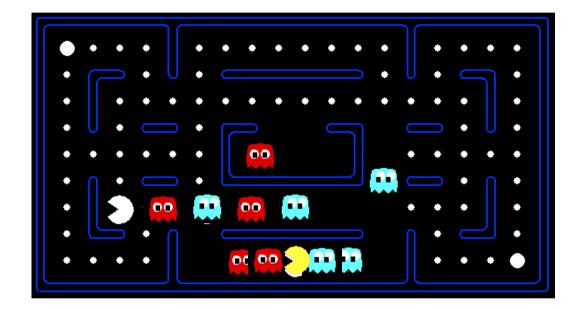
White to move Black winning

- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

> e.g. $f_1(s)$ = (num white queens – num black queens), etc.

Evaluation for Pacman



[DEMO: thrashing, smart ghosts]

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

Hal Daumé III (me@hal3.name)

CS421: Intro to AI

Iterative Deepening

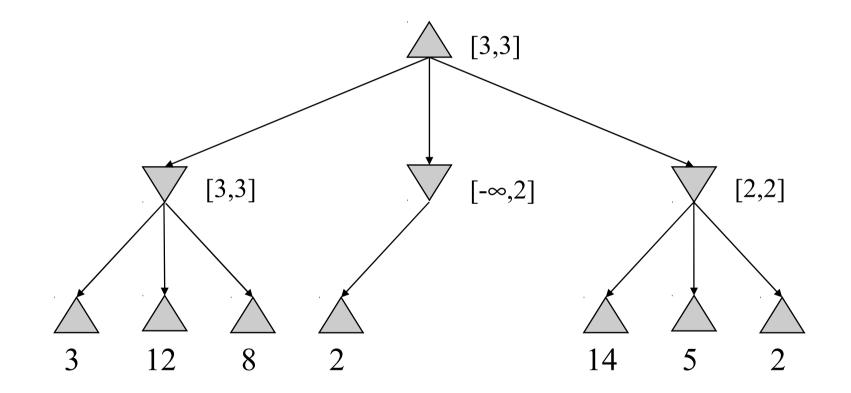
Iterative deepening uses DFS as a subroutine:

- Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
- 2. If "1" failed, do a DFS which only searches paths of length 2 or less.
- 3. If "2" failed, do a DFS which only searches paths of length 3 or less.and so on.

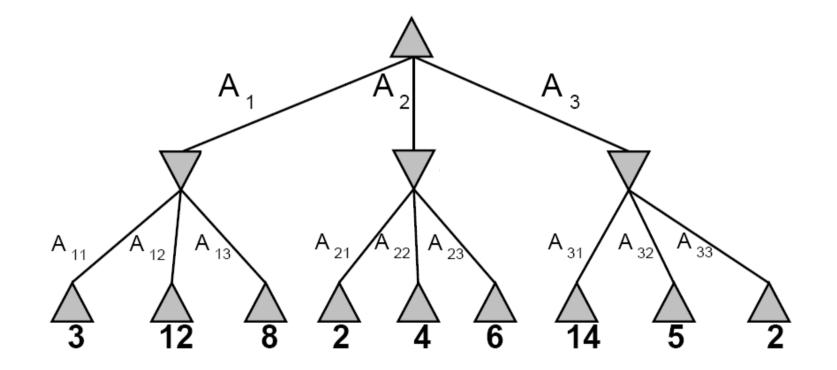
This works for single-agent search as well! Why do we want to do this for multiplayer games?

b	

Pruning in Minimax Search



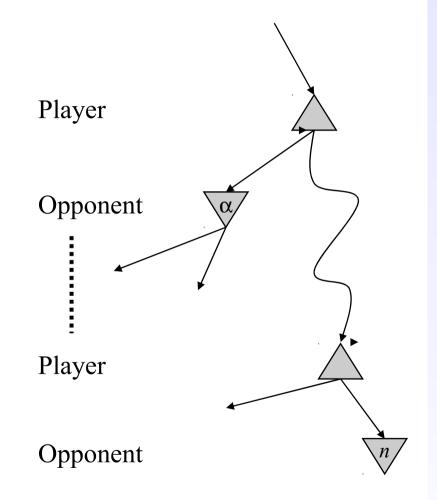
α - β Pruning Example



α - β Pruning

General configuration

- α is the best value that MAX can get at any choice point along the current path
- If *n* becomes worse than α,
 MAX will avoid it, so can stop considering *n*'s other children
- > Define β similarly for MIN



α-β Pruning Pseudocode

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)

 $v \leftarrow -\infty$

for a, s in SUCCESSORS(state) do $v \leftarrow Max(v, MIN-VALUE(s))$ return v

function MAX-VALUE(state, α , β) returns a utility value

inputs: *state*, current state in game

 α , the value of the best alternative for MAX along the path to state

 $\beta,$ the value of the best alternative for $_{\rm MIN}$ along the path to state

if TERMINAL-TEST(*state*) then return UTILITY(*state*)

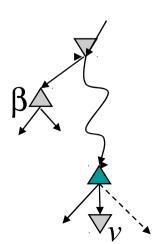
 $v \leftarrow -\infty$

for a, s in SUCCESSORS(state) do

 $v \leftarrow MAX(v, MIN-VALUE(s, \alpha, \beta))$ if $v > \beta$ then return v

at
$$v \geq \beta$$
 then return $i \alpha \leftarrow MAX(\alpha, v)$

return v

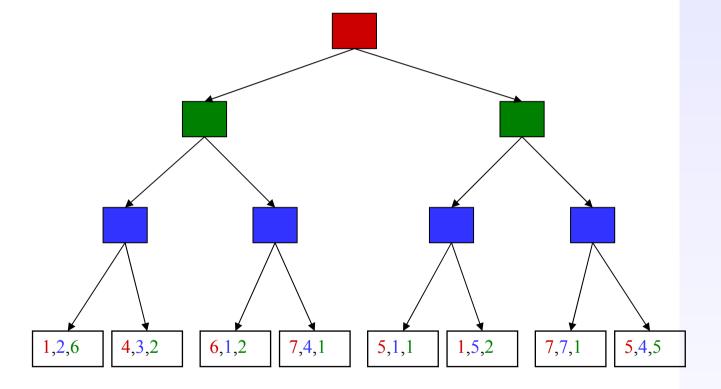


α-β Pruning Properties

- Pruning has no effect on final result
- Good move ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth
 - > Full search of, e.g. chess, is still hopeless!
- A simple example of metareasoning, here reasoning about which computations are relevant

Non-Zero-Sum Games

- Similar to minimax:
 - Utilities are now tuples
 - Each player maximizes their own entry at each node
 - Propagate (or back up) nodes from children

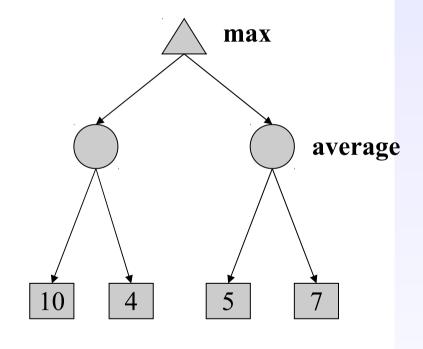


Stochastic Single-Player

- What if we don't know what the result of an action will be? E.g.,
 - In solitaire, shuffle is unknown
 - In minesweeper, mine locations
 - In pacman, ghosts!

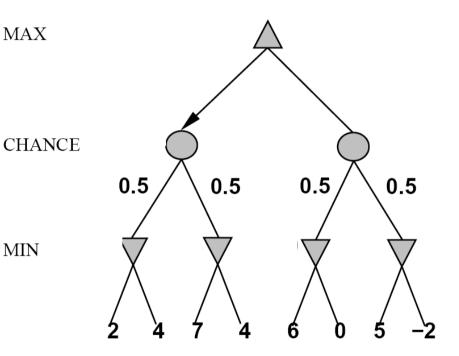
Can do expectimax search

- Chance nodes, like actions except the environment controls the action chosen
- Calculate utility for each node
- Max nodes as in search
- Chance nodes take average (expectation) of value of children
- Later, we'll learn how to formalize this as a Markov Decision Process



Stochastic Two-Player

- E.g. backgammon
- Expectiminimax (!)
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax



 $\mathbf{if}\ state\ \mathbf{is}\ \mathbf{a}\ \mathrm{MAX}\ \mathbf{node}\ \mathbf{then}$

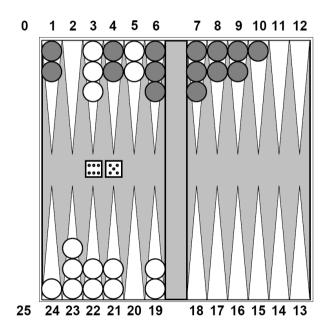
return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*) if *state* is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*) **if** *state* is a chance node **then**

 ${f return}$ average of ${f Expect}MINIMAX$ -VALUE of ${f Successors}({\it state})$

Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth 4 = 20 x (21 x 20)³ 1.2 x 10⁹
- As depth increases, probability of reaching a given node shrinks
 - So value of lookahead is diminished
 - So limiting depth is less damaging
 - But pruning is less possible...
- TDGammon uses depth-2 search + very good eval function + reinforcement learning: worldchampion level play



What's Next?

Make sure you know what:

- Probabilities are
- Expectations are
- You should be able to do any exercise from:
 - http://www.cs.umd.edu/class/fall2011/cmsc250-0x0x/hw/HW11.pdf
 - Username and password are both "250"
- If you can't, review your probability discrete math!
 - http://www.cs.umd.edu/class/fall2011/cmsc250-0x0x/notes/CRASH.pdf

> Next topics:

- Dealing with uncertainty
- How to learn evaluation functions
- Markov Decision Processes