Heuristics and A* Search

Hal Daumé III

- Computer Science University of Maryland
- me@hal3.name
- CS 421: Introduction to Artificial Intelligence
- 2 Feb 2012

Hal Daumé III (me@hal3.name)

CS421: Intro to AI

Announcements

- Office hours:
 - Angjoo: Tuesday 1:00-2:00
 - Me: Thursday 1:30-3:15
 - We will usually schedule "overload" office hours before the week that projects are due
- Project 1 posted
 - Checkpoint: by next class, you should have pacman running without problems (see FAQ)
 - (Ideally, also do DFS by next class)
 - There is a lot to learn in this project
 - The entire infrastructure will be used in all projects
 - Start NOW!

Today

- Heuristics
- A* Search
- Heuristic Design
- Local Search

Recap: Search

- Search problems:
 - States (configurations of the world)
 - Successor functions, costs, start and goal tests
- Search trees:
 - Nodes: represent paths / plans
 - Paths have costs (sum of action costs)

Strategies diff
$$g(n) = \sum_{x \to y \in n} cost(x \to y)$$

General Tree Search

Hal Daumé III (me@hal3.name)

Uniform Cost

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every "direction"
 - No information about goal location

Hal Daumé III (me@hal3.name)

CS421: Intro to AI

Heuristics

Best First / Greedy Search

Expand the node that seems closest...

What can go wrong?

Best First / Greedy Search

Best First / Greedy Search

- A common case:
 - Best-first takes you straight to the (wrong) goal
- Worst-case: like a badlyguided DFS in the worst case
 - Can explore everything
 - Can get stuck in loops if no cycle checking
- Like DFS in completeness (finite states w/ cycle checking)

Search Gone Wrong?

Extra Work?

Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

Very simple fix: never expand a state type twice

```
function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed \leftarrow an empty set

fringe \leftarrow INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if fringe is empty then return failure

node \leftarrow REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node] is not in closed then

add STATE[node] to closed

fringe \leftarrow INSERTALL(EXPAND(node, problem), fringe)

end
```

- Can this wreck completeness? Why or why not?
- How about optimality? Why or why not?

Some Hints

- Graph search is almost always better than tree search (when not?)
- Fringes are sometimes called "closed lists" but don't implement them with lists (use sets)!
- Nodes are conceptually paths, but better to represent with a state, cost, and reference to parent node

Best First Greedy Search

n # states
b avg branch
C* least cost
s shallow goal
m max depth

Algorithm	Complete	Optimal	Time	Space
Greedy Best-First Search	Y*	Ν	$O(b^m)$	$O(b^m)$

- What do we need to do to make it complete?
- Can we make it optimal?

Example: Heuristic Function

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Best-first orders by goal proximity, or forward cost h(n)

Example: Teg Grenager

Hal Daumé III (me@hal3.name)

CS421: Intro to AI

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost > estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

 $h(n) \leq h^*(n)$

where $h^*(n)$ is the true cost to a nearest goal

- E.g. Euclidean distance on a map problem
- Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A*: Blocking

- Proof:
 - What could go wrong?
 - We'd have to have to pop a suboptimal goal G off the fringe before G*
 - This can't happen:
 - Imagine a suboptimal goal G is on the queue
 - Some node n which is a subpath of G* must be on the fringe (why?)
 - *n* will be popped before G

 $f(n) \le g(G^*)$ $g(G^*) < g(G)$ g(G) = f(G)f(n) < f(G)

Properties of A*

CS421: Intro to Al

UCS vs A* Contours

Uniform-cost expanded in all directions

A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[demo: position search UCS / A*]

Hal Daumé III (me@hal3.name)

CS421: Intro to Al

Admissible Heuristics

- Most of the work is in coming up with admissible heuristics
- Inadmissible heuristics are often quite effective (especially when you have no choice)
- Very common hack: use α x h(n) for admissible h, α
 > 1 to generate a faster but less optimal inadmissible
 h' from admissible h

Example: 8 Puzzle

Start State

Goal State

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

- Number of tiles misplaced?
- Why is it admissible?

Start State

Goal State

Average nodes expanded when optimal path has length... \succ h(start) = ...8 steps ...12 steps ...4 steps ID 112 6,300 3.6 x 10⁶ This is a relaxedproblem heuristic TILES 13 39 227

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why admissible?
- h(start) =

Start State

Goal	State
------	-------

	Average node path has leng	hen optimal	
	4 steps	8 steps	12 steps
TILES	13	39	227
MAN- HATTAN	12	25	73

Hal Daumé III (me@hal3.name)

CS421: Intro to AI

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

Trivial Heuristics, Dominance

> Dominance: $h_a \ge h_c$ if

 $\forall n: h_a(n) \geq h_c(n)$

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Where do heuristics come from?

- Classically designed by hand (and still...)
- Alternatively, can you watch a person (or "optimal" agent) and try to *learn* heuristics from their demonstrations?

Examples of demonstrations

Hal Daumé III (me@hal3.name)

Examples of demonstrations

Hal Daumé III (me@hal3.name)

SP/LBD @ CS 297

Course Scheduling

- From the university's perspective:
 - > Set of courses { $c_1, c_2, ..., c_n$ }
 - > Set of room / times { $r_1, r_2, ..., r_n$ }
 - > Each pairing (c_k, r_m) has a cost w_{km}
 - What's the best assignment of courses to rooms?
- States: list of pairings
- Actions: add a legal pairing
- Costs: cost of the new pairing
- Admissible heuristics?
- Who can think of a *algorithms* answer to this problem?)

Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

. . .

Graph Search

Very simple fix: never expand a state twice

Optimality of A* Graph Search

- Consider what A* does:
 - Expands nodes in increasing total f value (f-contours)
 - Proof idea: optimal goals have lower f value, so get expanded first

Consistency

- Wait, how do we know we expand in increasing f value?
- Couldn't we pop some node n, and find its child n' to have lower f value?

- What can we require to prevent these inversions?
- > Consistency: $c(n, a, n') \ge h(n) h(n')$
- Real cost must always exceed reduction in heuristic

Optimality

- Tree search:
 - A* optimal if heuristic is admissible (and nonnegative)
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- In general, natural admissible heuristics tend to be consistent

Summary: A*

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible heuristics
- Heuristic design is key: often use relaxed problems

Limited Memory Options

- Bottleneck: not enough memory to store entire fringe
- Hill-Climbing Search:
 - Only "best" node kept around, no fringe!
 - Usually prioritize successor choice by h (greedy hill climbing)
 - Compare to greedy backtracking, which still has fringe
- Beam Search (Limited Memory Search)
 - In between: keep K nodes in fringe
 - Dump lowest priority nodes as needed
 - Can prioritize by h alone (greedy beam search), or h+g (limited memory A*)
 - Why not applied to UCS?
 - We'll return to beam search later...

No guarantees once you limit the fringe size!

Types of Problems

- Planning problems:
 - We want a path to a solution (examples?)
 - Usually want an optimal path
 - Incremental formulations
- Identification problems:
 - We actually just want to know what the goal is (examples?)
 - Usually want an optimal goal
 - Complete-state formulations
 - Iterative improvement algorithms

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Why can this be a terrible idea?
 - Complete?
 - Optimal?
- What's good about it?

Hill Climbing Diagram

- Random restarts?
- Random sideways steps?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

function SIMULATED-ANNEALING (problem, schedule) returns a solution state **inputs**: *problem*, a problem schedule, a mapping from time to "temperature" local variables: *current*, a node *next*, a node T, a "temperature" controlling prob. of downward steps $current \leftarrow MAKE-NODE(INITIAL-STATE[problem])$ for $t \leftarrow 1$ to ∞ do $T \leftarrow schedule[t]$ if T = 0 then return current $next \leftarrow a$ randomly selected successor of current $\Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]$ if $\Delta E > 0$ then $current \leftarrow next$ else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

Simulated Annealing

- Theoretical guarantee:
 - Stationary distribution: $p(x) \propto e^{\frac{E(x)}{kT}}$
 - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways

Beam Search

Like greedy search, but keep K states at all times:

Greedy Search

Beam Search

Variables: beam size, encourage diversity?

- The best choice in MANY practical settings
- Complete? Optimal?
- Why do we still need optimal methods?

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Like beam search (selection), but also have pairwise crossover operators, with optional mutation
- Probably the most misunderstood, misapplied (and even maligned) technique around!

Example: N-Queens

- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?

Continuous Problems

- Placing airports in Romania \succ
 - States: $(x_1, y_1, x_2, y_2, x_3, y_3)$ >
 - Cost: sum of squared distances to closest city \geq

Gradient Methods

- How to deal with continuous (therefore infinite) state spaces?
- Discretization: bucket ranges of values
 - E.g. force integral coordinates
- Continuous optimization
 - E.g. gradient ascent

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$$
$$x \leftarrow x + \alpha \nabla f(x)$$

Hal Daumé III (me@hal3.name)

SP3

Image from vias org

▲ SP2

SP1

51