Heuristics and A* Search

Hal Daumé I11

Computer Science
University of Maryland

me@hal3.name
CS 421: Introduction to Artificial Intelligence

2 Feb 2012

Many slides courtesy of
Dan Klein, Stuart Russell,
or Andrew Moore

Announcements

> Office hours:
> Angjoo: Tuesday 1:00-2:00
> Me: Thursday 1:30-3:15

> We will usually schedule “overload” office hours before the
week that projects are due

> Project 1 posted

> Checkpoint: by next class, you should have pacman running
without problems (see FAQ)

(Ideally, also do DFS by next class)

There is a lot to learn in this project

The entire infrastructure will be used in all projects
Start NOW!

vV VY Y V

Today

> Heuristics

> A* Search

> Heuristic Design

> Local Search

Recap: Search

> Search problems:
> States (configurations of the world)
> Successor functions, costs, start and goal tests

> Search trees:
> Nodes: represent paths / plans
> Paths have costs (sum of action costs)

> Strategies diffg(;n)':" Z c()st(xﬁ?))

r—yen

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end k

Expanding includes
Arad incrementing the path cost!

Uniform Cost

> Strategy: expand lowest path cost

> The bad:

> Explores options in every “direction”
> No information about goal location

Heuristics

75

\rad

118

Timisoara

142

11 Pitesti

98

[] Mehadia

Urziceni

75
Bucharest

90

Dobreta [

=l Craiova
[] Giurgiu

1 Vaslui

Hirsova

86

Eforie

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
[asi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Best First / Greedy Search

> Expand the node that seems closest...

Arad
Sibiu
366

380

CSbiu OPEuchared

253 0

> What can go wrong?

Best First / Greedy Search

2 ° 2 @
AL o |
2
5
h=11 1 8 a
{0 ()
&
5
h=12
e o
9
h=6

h=11

h=9

Best First / Greedy Search

> A common case:

> Best-first takes you
straight to the (wrong)
goal

> Worst-case: like a badly-
guided DFS in the worst
case

> Can explore everything

» Can get stuck in loops
iIf no cycle checking

> Like DFS in
completeness (finite
states w/ cycle checking)

Search Gone Wrong?

wT
—] ARCTIC OCEAN i B MAPQVES To I

: & XL |
- 3F(g¢
o ICELAND Nt B\ g
_— " ¢p Brer | i
BT e | % "ei > g '“5
o RUSSIA \@ sl o |z
praass ATLANTIC :-:g&5 e A . s >
e ~Helsinii Tier g | B (@ §/5;
o RS ¢ /% e 3§
6 B9 smblomsr: . /2 =/ &

e T o] F S b=

=

._
=

s 5
Bist=tok (‘;{ BELARI.ISIU'
POLAHD ./~ Kiev

WTOERW: |kRAINE

s ';_;.-'
e B UHGARY o
.t ROMAHIA

rabic . o
-*h'-f?,-ﬁ ~Hucharest-

5 2005 MapQuest.com, Inc.

1000 E Zoom on map di

200 400 A00

Start: Haugesund, Rogaland, Morway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk.no/alitidmaoro

Extra Work?

> Failure to detect repeated states can cause
exponentially more work. Why?

A ,f"' __‘__"““\ .
I& ,»’T *"”fﬂ
B @ n
)
,,f
cC —e— CR C%
C)
D : EOE "f
' ™

Graph Search

> In BFS, for example, we shouldn’t bother expanding
the circled nodes (why?)

p q f q ¢ G
q

c G a

Graph Search

> Very simple fix: never expand a state type twice

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do

if fringe is empty then return failure

node — REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

if STATE['H.U(E(:] is not in closed then
add STATE['H.UJ(:] to closed ¢
fringe < INSERTALL(EXPAND(node, problem), fringe)

end

> Can this wreck completeness? Why or why not?
> How about optimality? Why or why not?

Some Hints

> Graph search is almost always better than tree
search (when not?)

> Fringes are sometimes called “closed lists™ — but
don’t implement them with lists (use sets)!

> Nodes are conceptually paths, but better to
represent with a state, cost, and reference to parent
node

- n # states

Best First Greedy Search b avg branch
C* least cost
S shallow goal
m max depth

Algorithm Complete |Optimal Time Space

Greedy Best-First

Search Y N O(bm) O(bm)

\
>

> What do we need to do to make it complete?
» Can we make it optimal?

Example: Heuristic Function

Arad

118

1 Vaslui

Timisoara

Pitesti

98
Hirsgva
1 Mehadia
75 86
Bucharest
Dobreta [] 90
=l Craiova Eforie

[] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

h(x)

Straight—line distance

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Combining UCS and Greedy

> Uniform-cost orders by path cost, or backward cost g(n)
> Best-first orders by goal proximity, or forward cost h(n)

Example: Teg Grenager

When should A* terminate?

> Should we stop when we enqueue a goal?

/ \
\/‘H

> No: only stop when we dequeue a goal

Is A* Optimal?

> What went wrong?
> Actual bad goal cost > estimated good goal cost
> We need estimates to be less than actual costs!

Admissible Heuristics

> A heuristic % is admissible (optimistic) if:
h(n) < h*(n)

where 1*(n) Is the true cost to a nearest goal
> E.g. Euclidean distance on a map problem

» Coming up with admissible heuristics is most
of what's involved in using A* in practice.

Optimality of A*: Blocking

> Proof:
> What could go wrong?

> We’'d have to have to
pop a suboptimal goal G
off the fringe before G*

> This can’'t happen:

> Imagine a suboptimal
goal G is on the queue

> Some node n which is
a subpath of G* must
be on the fringe
(why?)

> n will be popped
before G

f(n) < g(G¥)
g(G*) < g(G)
9(@) = f(G)

f(n) < f(G)

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

> Uniform-cost expanded in all

directions
Goal

> A* expands mainly toward
the goal, but does hedge its
bets to ensure optimality

@Goal

[demo: position search UCS / A*]

Admissible Heuristics

> Most of the work is in coming up with admissible
heuristics

> |Inadmissible heuristics are often quite effective
(especially when you have no choice)

> Very common hack: use a x h(n) for admissible h, a
> 1 to generate a faster but less optimal inadmissible
h’ from admissible h

Example: 8 Puzzle

7 2 4 l 2

S 6 3 4 S

8 3 l 6 7 8
Start State Goal State

What are the states?
How many states?
What are the actions?

What states can | reach from the start state?
What should the costs be?

YV V V VYV V

8 Puzzle |

> Number of tiles
misplaced?

> Why is it
admissible?

> h(start) =

> This is a relaxed-
problem heuristic

§)

S 3

l 2
3 4 5
6 7 8

Start State

Goal State

Average nodes expanded when optimal

path has length...

...4 steps ...8 steps ... 12 steps
ID 112 6,300 3.6 x 10°
TILES |13 39 227

8 Puzzie li

> What if we had an

easlier 8-puzzle where
any tile could slide any
direction at any time,

§)

ignoring other tiles?

S 3

l 2
3 4 5
6 7 8

> Total Manhattan
distance

> Why admissible?

Start State

Goal State

Average nodes expanded when optimal

path has length...
> h(start) - ...4 steps ...8 steps ... 12 steps
TILES 13 39 227
MAN- 12 25 73
HATTAN

8 Puzzle Il

> How about using the actual cost as a heuristic?
> Would it be admissible?
> Would we save on nodes expanded?
> What's wrong with it”?

Trivial Heuristics, Dominance

» Dominance: h, 2 h_if

exact
Vn : hg(n) > he(n) |
> Heuristics f -lattice: maz(ha, p)
euristics orm q seml-allcle. | o~
> Max of admissible heuristics is n n
admissible a b
h(n) = maz(ha(n),hy(n)))
C
> Trivial heuristics N
> Bottom of lattice is the zero heuristic <€To

(what does this give us?)
> Top of lattice is the exact heuristic

Where do heuristics come from?
> Classically designed by hand (and still...)

> Alternatively, can you watch a person (or “optimal”
agent) and try to learn heuristics from their
demonstrations?

Examples of demonstrations

Examples of demonstrations

Course Scheduling

> From the university’'s perspective:
» Set of courses {c,, C,, ... C}

» Setof room/times{r,r,, ... r}

» Each pairing (c,, r) has a cost w,

> What's the best assignment of courses to rooms?
> States: list of pairings
> Actions: add a legal pairing
> Costs: cost of the new pairing

> Admissible heuristics?

> (Who can think of a algorithms answer to this problem?)

Other A* Applications

vV VYV VY VY VY VY V

Pathing / routing problems
Resource planning problems
Robot motion planning
Language analysis

Machine translation

Speech recognition

Graph Search

> Very simple fix: never expand a state twice

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed — an empty set
fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure

node— REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

if STATE['H..EHE(:] is not in closed then
add STATE[HUJ(:] to closed ¢
fringe — INSERTA LL(EXPAND(node, problem), fringe)

end

Optimality of A* Graph Search

> Consider what A* does:
> Expands nodes in increasing total f value (f-contours)

> Proof idea: optimal goals have lower f value, so get
expanded first

We’re making a stronger

assumption than in the last
proof... What?

Consistency

> Wait, how do we know we expand in increasing f value?

> Couldn’'t we pop some node n, and find its child n’ to
have lower f value?

> YES: h=0 h=38

IO
/ \\
— -»
P//\\—; >

h=10
> What can we require to prevent these inversions?

> Consistency: c(n,a,n’) > h(n) — h(n)

> Real cost must always exceed reduction in heuristic

Optimality

> Tree search:
> A* optimal if heuristic is admissible (and non-
negative)
> UCS is a special case (h = 0)

> Graph search:
> A* optimal if heuristic is consistent
> UCS optimal (h = 0 is consistent)

> |In general, natural admissible heuristics tend to
be consistent

Summary: A*
> A* uses both backward costs and (estimates of)
forward costs

> A* is optimal with admissible heuristics

> Heuristic design is key: often use relaxed problems

Limited Memory Options

> Bottleneck: not enough memory to store entire fringe
> Hill-Climbing Search:

>
>
>

Only “best” node kept around, no fringe!
Usually prioritize successor choice by h (greedy hill climbing)
Compare to greedy backtracking, which still has fringe

> Beam Search (Limited Memory Search)

>
>
>

>
>

In between: keep K nodes in fringe
Dump lowest priority nodes as needed

Can prioritize by h alone (greedy beam search), or h+g
(limited memory A*)

Why not applied to UCS?
We'll return to beam search later...

> No guarantees once you limit the fringe size!

Types of Problems

> Planning problems:
> We want a path to a solution (examples?)

> Usually want an optimal path

> [ncremental formulations

> ldentification problems:

» We actually just want to know what
the goal is (examples?)

> Usually want an optimal goal

> Complete-state formulations

> lterative improvement algorithms

Hill Climbing

> Simple, general idea:
> Start wherever
> Always choose the best neighbor
> If no neighbors have better scores than current, quit

> Why can this be a terrible idea”
> Complete?
> Optimal?

> What's good about it?

Hill Climbing Diagram

objectixe function lobal maximum

shoulder

N

local maximum

"flat” local maximum

»state space
current

state

> Random restarts?
> Random sideways steps?

Simulated Annealing

> |dea: Escape local maxima by allowing downhill moves
> But make them rarer as time goes on

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature’
local variables: current, a node
next, a node
1, a “temperature’ controlling prob. of downward steps

current «<— MAKE-NODE(INITIAL-STATE[problem])
for t— 1 to oo do
T'— schedule|{]
if 7= 0 then return current
nexrt < a randomly selected successor of current
AFE+— VALUE[next] = VALUE[currend]
if AE > 0 then current < next

. A / i
else current«— next only with probability e® £/1

Simulated Annealing

> Theoretical guarantee:
E(x)
> Stationary distribution: p(ac) X e kT

> If T decreased slowly enough,
will converge to optimal state!

> Is this an interesting guarantee?

> Sounds like magic, but reality is reality:

> The more downhill steps you need to escape, the less
likely you are to every make them all in a row

> People think hard about ridge operators which let you
jump around the space in better ways

Beam Search

> Like greedy search, but keep K states at all
times:
O 00

Greedy Search Beam Search

> Variables: beam size, encourage diversity?
> The best choice in MANY practical settings
> Complete? Optimal?

> Why do we still need optimal methods?

Genetic Algorithms

24748552

24 31%

32752411

23 29%

24415124

32543213

k!

20 26%

11 14%

Fithess Selection

32752411

24@48552

>~

32752411

24415124

>~

Pairs

32748552

247752411

32752124

24415411

Cross—Over

| 327482

247752411

|
| 3222124

|
| 2441541[7]

> (Genetic algorithms use a natural selection metaphor
> Like beam search (selection), but also have pairwise

crossover operators, with optional mutation

> Probably the most misunderstood, misapplied (and
even maligned) techniqgue around!

Example: N-Queens

> Why does crossover make sense here?
> When wouldn’t it make sense?

> What would mutation be?

> What would a good fithess function be?

49 Hal Daumé Il (me@hal3.name) CS421: Intro to Al

Continuous Problems

> Placing airports in Romania
> States: (X,¥4,X5,Y2,X3,Ys3)
> Cost: sum of squared distances to closest city

] Vaslui

Hirsova

X)
T Quadea 1V
__:ﬂ Neamt
-7 |\
- [|
n -~ I N
| \
\
[\] lasi
Arad I \
o \
Sibiu €agaras
- - #X }-‘?".3
Tlmlsoara O
] Lugoj
-
X 2};2 "] Mehadia Urziceni
™
Bucharest
Dobreta []

- Craiova
] Giurgiu

Eforie

Gradient Methods

> How to deal with continuous (therefore infinite) state
spaces?

> Discretization: bucket ranges of values
> E.qg. force integral coordinates

> Continuous optimization

> E.g. gradient ascent __ /
Gp (2F f of of of of | /
Ox1’ Oyy Oxp Oyo Ox3 Oy3 / | - '-

xr— x+ aVf(x) '

i Sp2

Image from yias,org

