
CS421: Intro to AI1 Hal Daumé III (me@hal3.name)

Heuristics and A* Search

Hal Daumé III
Computer Science
University of Maryland

me@hal3.name

CS 421: Introduction to Artificial Intelligence

2 Feb 2012

Many slides courtesy of
Dan Klein, Stuart Russell,

or Andrew Moore

CS421: Intro to AI2 Hal Daumé III (me@hal3.name)

Announcements
➢ Office hours:

➢ Angjoo: Tuesday 1:00-2:00
➢ Me: Thursday 1:30-3:15
➢ We will usually schedule “overload” office hours before the

week that projects are due

➢ Project 1 posted
➢ Checkpoint: by next class, you should have pacman running

without problems (see FAQ)
➢ (Ideally, also do DFS by next class)
➢ There is a lot to learn in this project
➢ The entire infrastructure will be used in all projects
➢ Start NOW!

CS421: Intro to AI3 Hal Daumé III (me@hal3.name)

Today

➢ Heuristics

➢ A* Search

➢ Heuristic Design

➢ Local Search

CS421: Intro to AI4 Hal Daumé III (me@hal3.name)

Recap: Search
➢ Search problems:

➢ States (configurations of the world)
➢ Successor functions, costs, start and goal tests

➢ Search trees:
➢ Nodes: represent paths / plans
➢ Paths have costs (sum of action costs)

➢ Strategies differ (only) in fringe management

CS421: Intro to AI5 Hal Daumé III (me@hal3.name)

General Tree Search

Expanding includes
incrementing the path cost!

CS421: Intro to AI6 Hal Daumé III (me@hal3.name)

Uniform Cost
➢ Strategy: expand lowest path cost

➢ The good: UCS is complete and optimal!

➢ The bad:
➢ Explores options in every “direction”
➢ No information about goal location

Start Goal

…

c ≤ 3

c ≤ 2

c ≤ 1

CS421: Intro to AI7 Hal Daumé III (me@hal3.name)

Heuristics

CS421: Intro to AI8 Hal Daumé III (me@hal3.name)

Best First / Greedy Search

➢ Expand the node that seems closest…

➢ What can go wrong?

CS421: Intro to AI9 Hal Daumé III (me@hal3.name)

Best First / Greedy Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

h=12

h=11

h=8

h=8

h=5 h=4

h=6

h=9

h=0

h=4

h=6h=11

CS421: Intro to AI10 Hal Daumé III (me@hal3.name)

Best First / Greedy Search

➢ A common case:
➢ Best-first takes you

straight to the (wrong)
goal

➢ Worst-case: like a badly-
guided DFS in the worst
case

➢ Can explore everything
➢ Can get stuck in loops

if no cycle checking

➢ Like DFS in
completeness (finite
states w/ cycle checking)

…
b

…
b

CS421: Intro to AI11 Hal Daumé III (me@hal3.name)

Search Gone Wrong?

CS421: Intro to AI12 Hal Daumé III (me@hal3.name)

Extra Work?

➢ Failure to detect repeated states can cause
exponentially more work. Why?

CS421: Intro to AI13 Hal Daumé III (me@hal3.name)

Graph Search

➢ In BFS, for example, we shouldn’t bother expanding
the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

CS421: Intro to AI14 Hal Daumé III (me@hal3.name)

Graph Search

➢ Very simple fix: never expand a state type twice

➢ Can this wreck completeness? Why or why not?
➢ How about optimality? Why or why not?

CS421: Intro to AI15 Hal Daumé III (me@hal3.name)

Some Hints

➢ Graph search is almost always better than tree
search (when not?)

➢ Fringes are sometimes called “closed lists” – but
don’t implement them with lists (use sets)!

➢ Nodes are conceptually paths, but better to
represent with a state, cost, and reference to parent
node

CS421: Intro to AI16 Hal Daumé III (me@hal3.name)

Best First Greedy Search

Algorithm Complete Optimal Time Space

Greedy Best-First
Search

➢ What do we need to do to make it complete?
➢ Can we make it optimal?

Y* N O(bm) O(bm)

…
b

m

 n # states
 b avg branch
 C* least cost
 s shallow goal
 m max depth

CS421: Intro to AI17 Hal Daumé III (me@hal3.name)

Example: Heuristic Function

h(x)

CS421: Intro to AI18 Hal Daumé III (me@hal3.name)

Combining UCS and Greedy

➢ Uniform-cost orders by path cost, or backward cost g(n)
➢ Best-first orders by goal proximity, or forward cost h(n)

➢ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=5

h=2

1

5

1
1

2

h=6 h=0

c

h=4

2

3

e h=1
1

Example: Teg Grenager

CS421: Intro to AI19 Hal Daumé III (me@hal3.name)

➢ Should we stop when we enqueue a goal?

➢ No: only stop when we dequeue a goal

When should A* terminate?

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0

h = 3

CS421: Intro to AI20 Hal Daumé III (me@hal3.name)

Is A* Optimal?

A

GS

1

3
h = 6

h = 0

5

h = 7

➢ What went wrong?
➢ Actual bad goal cost > estimated good goal cost
➢ We need estimates to be less than actual costs!

CS421: Intro to AI21 Hal Daumé III (me@hal3.name)

Admissible Heuristics

➢ A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

➢ E.g. Euclidean distance on a map problem

➢ Coming up with admissible heuristics is most
of what’s involved in using A* in practice.

CS421: Intro to AI22 Hal Daumé III (me@hal3.name)

Optimality of A*: Blocking

➢ Proof:
➢ What could go wrong?
➢ We’d have to have to

pop a suboptimal goal G
off the fringe before G*

➢ This can’t happen:
➢ Imagine a suboptimal

goal G is on the queue
➢ Some node n which is

a subpath of G* must
be on the fringe
(why?)

➢ n will be popped
before G

…

CS421: Intro to AI23 Hal Daumé III (me@hal3.name)

Properties of A*

…
b

…
b

Uniform-Cost A*

CS421: Intro to AI24 Hal Daumé III (me@hal3.name)

UCS vs A* Contours

➢ Uniform-cost expanded in all
directions

➢ A* expands mainly toward
the goal, but does hedge its
bets to ensure optimality

Start Goal

Start Goal

[demo: position search UCS / A*]

CS421: Intro to AI25 Hal Daumé III (me@hal3.name)

Admissible Heuristics

➢ Most of the work is in coming up with admissible
heuristics

➢ Inadmissible heuristics are often quite effective
(especially when you have no choice)

➢ Very common hack: use α x h(n) for admissible h, α
> 1 to generate a faster but less optimal inadmissible
h’ from admissible h

CS421: Intro to AI26 Hal Daumé III (me@hal3.name)

Example: 8 Puzzle

➢ What are the states?
➢ How many states?
➢ What are the actions?
➢ What states can I reach from the start state?
➢ What should the costs be?

CS421: Intro to AI27 Hal Daumé III (me@hal3.name)

8 Puzzle I

➢ Number of tiles
misplaced?

➢ Why is it
admissible?

➢ h(start) =

➢ This is a relaxed-
problem heuristic

Average nodes expanded when optimal
path has length…

…4 steps …8 steps …12 steps

ID 112 6,300 3.6 x 106

TILES 13 39 227

CS421: Intro to AI28 Hal Daumé III (me@hal3.name)

8 Puzzle II

➢ What if we had an
easier 8-puzzle where
any tile could slide any
direction at any time,
ignoring other tiles?

➢ Total Manhattan
distance

➢ Why admissible?

➢ h(start) =

Average nodes expanded when optimal
path has length…

…4 steps …8 steps …12 steps

TILES 13 39 227

MAN-
HATTAN

12 25 73

CS421: Intro to AI29 Hal Daumé III (me@hal3.name)

8 Puzzle III

➢ How about using the actual cost as a heuristic?
➢ Would it be admissible?
➢ Would we save on nodes expanded?
➢ What’s wrong with it?

CS421: Intro to AI30 Hal Daumé III (me@hal3.name)

Trivial Heuristics, Dominance

➢ Dominance: ha ≥ hc if

➢ Heuristics form a semi-lattice:
➢ Max of admissible heuristics is

admissible

➢ Trivial heuristics
➢ Bottom of lattice is the zero heuristic

(what does this give us?)
➢ Top of lattice is the exact heuristic

CS421: Intro to AI31 Hal Daumé III (me@hal3.name)

Where do heuristics come from?
➢ Classically designed by hand (and still...)

➢ Alternatively, can you watch a person (or “optimal”
agent) and try to learn heuristics from their
demonstrations?

SP/LBD @ CS 29732 Hal Daumé III (me@hal3.name)

Examples of demonstrations

SP/LBD @ CS 29733 Hal Daumé III (me@hal3.name)

Examples of demonstrations

CS421: Intro to AI34 Hal Daumé III (me@hal3.name)

Course Scheduling
➢ From the university’s perspective:

➢ Set of courses {c1, c2, … cn}
➢ Set of room / times {r1, r2, … rn}
➢ Each pairing (ck, rm) has a cost wkm

➢ What’s the best assignment of courses to rooms?
➢ States: list of pairings
➢ Actions: add a legal pairing
➢ Costs: cost of the new pairing

➢ Admissible heuristics?

➢ (Who can think of a algorithms answer to this problem?)

CS421: Intro to AI35 Hal Daumé III (me@hal3.name)

Other A* Applications

➢ Pathing / routing problems
➢ Resource planning problems
➢ Robot motion planning
➢ Language analysis
➢ Machine translation
➢ Speech recognition
➢ …

CS421: Intro to AI36 Hal Daumé III (me@hal3.name)

Graph Search

➢ Very simple fix: never expand a state twice

➢ Can this wreck completeness? Optimality?

CS421: Intro to AI37 Hal Daumé III (me@hal3.name)

Optimality of A* Graph Search
➢ Consider what A* does:

➢ Expands nodes in increasing total f value (f-contours)
➢ Proof idea: optimal goals have lower f value, so get

expanded first

We’re making a stronger
assumption than in the last
proof… What?

CS421: Intro to AI38 Hal Daumé III (me@hal3.name)

Consistency

➢ Wait, how do we know we expand in increasing f value?
➢ Couldn’t we pop some node n, and find its child n’ to

have lower f value?
➢ YES:

➢ What can we require to prevent these inversions?

➢ Consistency:

➢ Real cost must always exceed reduction in heuristic

A

B

G

3
h = 0

h = 10

g = 10

h = 8

CS421: Intro to AI39 Hal Daumé III (me@hal3.name)

Optimality
➢ Tree search:
➢ A* optimal if heuristic is admissible (and non-

negative)
➢ UCS is a special case (h = 0)

➢ Graph search:
➢ A* optimal if heuristic is consistent
➢ UCS optimal (h = 0 is consistent)

➢ In general, natural admissible heuristics tend to
be consistent

CS421: Intro to AI40 Hal Daumé III (me@hal3.name)

Summary: A*
➢ A* uses both backward costs and (estimates of)

forward costs

➢ A* is optimal with admissible heuristics

➢ Heuristic design is key: often use relaxed problems

CS421: Intro to AI41 Hal Daumé III (me@hal3.name)

Limited Memory Options
➢ Bottleneck: not enough memory to store entire fringe
➢ Hill-Climbing Search:

➢ Only “best” node kept around, no fringe!
➢ Usually prioritize successor choice by h (greedy hill climbing)
➢ Compare to greedy backtracking, which still has fringe

➢ Beam Search (Limited Memory Search)
➢ In between: keep K nodes in fringe
➢ Dump lowest priority nodes as needed
➢ Can prioritize by h alone (greedy beam search), or h+g

(limited memory A*)
➢ Why not applied to UCS?
➢ We’ll return to beam search later…

➢ No guarantees once you limit the fringe size!

CS421: Intro to AI42 Hal Daumé III (me@hal3.name)

Types of Problems
➢ Planning problems:

➢ We want a path to a solution (examples?)

➢ Usually want an optimal path

➢ Incremental formulations

➢ Identification problems:
➢ We actually just want to know what

the goal is (examples?)

➢ Usually want an optimal goal

➢ Complete-state formulations

➢ Iterative improvement algorithms

CS421: Intro to AI43 Hal Daumé III (me@hal3.name)

Hill Climbing
➢ Simple, general idea:

➢ Start wherever
➢ Always choose the best neighbor
➢ If no neighbors have better scores than current, quit

➢ Why can this be a terrible idea?
➢ Complete?
➢ Optimal?

➢ What’s good about it?

CS421: Intro to AI44 Hal Daumé III (me@hal3.name)

Hill Climbing Diagram

➢ Random restarts?
➢ Random sideways steps?

CS421: Intro to AI45 Hal Daumé III (me@hal3.name)

Simulated Annealing
➢ Idea: Escape local maxima by allowing downhill moves

➢ But make them rarer as time goes on

CS421: Intro to AI46 Hal Daumé III (me@hal3.name)

Simulated Annealing
➢ Theoretical guarantee:

➢ Stationary distribution:

➢ If T decreased slowly enough,
will converge to optimal state!

➢ Is this an interesting guarantee?

➢ Sounds like magic, but reality is reality:
➢ The more downhill steps you need to escape, the less

likely you are to every make them all in a row
➢ People think hard about ridge operators which let you

jump around the space in better ways

CS421: Intro to AI47 Hal Daumé III (me@hal3.name)

Beam Search

➢ Like greedy search, but keep K states at all
times:

➢ Variables: beam size, encourage diversity?
➢ The best choice in MANY practical settings
➢ Complete? Optimal?
➢ Why do we still need optimal methods?

Greedy Search Beam Search

CS421: Intro to AI48 Hal Daumé III (me@hal3.name)

Genetic Algorithms

➢ Genetic algorithms use a natural selection metaphor
➢ Like beam search (selection), but also have pairwise

crossover operators, with optional mutation
➢ Probably the most misunderstood, misapplied (and

even maligned) technique around!

CS421: Intro to AI49 Hal Daumé III (me@hal3.name)

Example: N-Queens

➢ Why does crossover make sense here?
➢ When wouldn’t it make sense?
➢ What would mutation be?
➢ What would a good fitness function be?

CS421: Intro to AI50 Hal Daumé III (me@hal3.name)

Continuous Problems
➢ Placing airports in Romania

➢ States: (x1,y1,x2,y2,x3,y3)

➢ Cost: sum of squared distances to closest city

CS421: Intro to AI51 Hal Daumé III (me@hal3.name)

Gradient Methods
➢ How to deal with continuous (therefore infinite) state

spaces?
➢ Discretization: bucket ranges of values

➢ E.g. force integral coordinates

➢ Continuous optimization
➢ E.g. gradient ascent

Image from vias.org

