Uninformed Search

Hal Daumé I11

Computer Science
University of Maryland

me@hal3.name
CS 421: Introduction to Artificial Intelligence

31Jan 2012

Many slides courtesy of
Dan Klein, Stuart Russell,
or Andrew Moore

Announcements

> Forgot to tell you login information for web page:
> User name = “cs421” (but no quotes)
> Password =" " (still no quotes)
> (this will be used for posting solutions)

> Junkfood machines:
> You may develop at home, but must run on Junkfood

> Homework 1 has been posted
> Project 1 will be posted soon

Today
> Agents that Plan Ahead

> Search Problems

> Uniformed Search Methods
> Depth-First Search
> Breadth-First Search
> Uniform-Cost Search

Search Problems

> A search problem consists of:

- Astate space [FEH | |1 I I BB

> A successor function N7, 1.0

-
\

“E”, 1.0
> A start state and a goal test

> A solution is a sequence of actions (a Flan) which
transforms the start state to a goal state

Reflex Agents

> Reflex agents:

» Choose action based on
current percept and
memory

> May have memory or a
model of the world’s
current state

> Do not consider the
future consequences of
their actions

> Can a reflex agent be
rational”?

[demo: reflex |

Goal Based Agents

> (Goal-based agents:
> Plan ahead

> Decisions based on
(hypothesized)
consequences of
actions

> Must have a model of
how the world evolves in
response to actions

[demo: plan fast / slow]

Search Trees

“N”, 1.0 . 1.0

“g.
/ \.

> A search tree:

This is a “what if” tree of plans and outcomes
Start state at the root node

Children correspond to successors

Nodes labeled with states, correspond to PLANS to those
states

For most problems, can never build the whole tree
> S0, have to find ways to use only the important parts!

YV V V V

A\

State Space Graphs

u.hal3.name/ic.pl?q=q

> There's some big
graph in which
> Each state is a
node

» Each successor is
an outgoing arc

> Important: For most
problems we could
never actually build

this graph
Laughably tiny search
> How many states in graph for a tiny search
problem

Pacman?

Example: Romania

"] Oradea
Neamt
- 87
75
"] lasi
Arad}
T 92
L8 MVaslui
Timisoara
142
H ™ Lugoj
70 08 .
_]5 : : Hirsova
JMehadia e _— Urziceni
o ()
- - Bucharest
Dobreta [120
o 90
raiova Eforie

M Giurgiu

Another Search Tree

> Search:
> Expand out possible plans
> Maintain a fringe of unexpanded plans
> Try to expand as few tree nodes as possible

States vs. Nodes

> Problem graphs have problem states
> Represent an abstracted state of the world
> Have successors, predecessors, can be goal / non-goal

> Search trees have search nodes

Represent a plan (path) which results in the node’s state
Have 1 parent, a length and cost, point to a problem state
Expand uses successor function to create new tree nodes
The same problem state in multiple search tree nodes

YV V V V

parent, action

State 5 4 Node depth =6

g=6

= stale

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

> Important ideas:

> Fri |
> Eiggﬁsion Detailed pseudocode

> Exploration strategy is in the book!

> Main question: which fringe nodes to explore?

Example: Tree Search

State Graphs vs Search Trees

Each NODE in in
the search tree is an
entire PATH in the

problem graph.
S

d e
We almost b C e h r
always construct | - —~
both on demand a a h ¥ p q f
— and we - ! | -

G

construct as p 1 /]F\ 1 C
little as possible. q e a

Review: Depth First Search

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
stack

Review: Breadth First Search

Strategy. expand shallowest
node first

Implementation: Fringe is a
FIFO queue

4 I & I
@ © D
ah o © © OING @
Tiers | | — -~ |
@ a h r p qg f
L p q9 f g ¢ ©
g ¢ G a

Search Algorithm Properties

= Complete? Guaranteed to find a solution if one exists?
= Optimal? Guaranteed to find the least cost path?

* Time complexity?

= Space complexity?

Variables:
n Number of states in the problem
b The average branching factor B
(the average number of successors)
C* Cost of least cost solution
S Depth of the shallowest solution

m Max depth of the search tree

n # states

D FS b avg branch
C* least cost
S shallow goal
m max depth

Algorithm Complete [Optimal |[Time Space

DFS Is)epth First N N Infinite Infinite

earch

AL
(e
>

> Infinite paths make DFS incomplete...
> How can we fix this?

DFS

> With cycle checking, DFS is complete.

n
b
C*
S
m

states

avg branch
least cost
shallow goal
max depth

u.hal3.name/ic.pl? q=dfs

[1 node
b nodes
b? nodes
m tiers <
\ b™ nodes
Algorithm Complete [Optimal |Time Space
DFS w/ Path Y

Checking

BFS

S tiers

J

C

1 node

b nodes

b? nodes

bs nodes

b™ nodes

I® QTS

states

avg branch
least cost
shallow goal
max depth

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length <=1 (DFS gives up on path of length 2)

/

n # states

b avg branch

C* least cost

S shallow goal

m max depth
N

2. If “17 failed, do a DFS which only searches
paths of length 2 or less.

paths of length 3 or less.
....and so on.

/
3. If “27 failed, do a DFS which only searches /

A\
\\

Algorithm Complete|Optimal |Time Space
DFS |w/ Path Y

Checking
BFS Y

ID Y

Comparisons

> When will BFS outperform DFS?

> When will DFS outperform BFS?

IS0 OTS

states

avg branch
least cost
shallow goal
max depth

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.
We will quickly cover an algorithm which does find the least-cost

path.

Uniform Cost Search

Expand cheapest node first:

Fringe is a priority queue

-
@ 3
B 4 @11 (e 5 W17)1l @ 16
@0 BB@T p g
p g @8 a4 ¢ ©
;1 11@/\@10 a

- a

Priority Queue Refresher

> A priority queue is a data structure in which you can
insert and retrieve (key, value) pairs with the
following operations:

pq.push(key, value) inserts (key, value) into the queue.
pq.pop() returns the key with the lowest value,
and removes it from the queue.

> You can promote or demote keys by resetting their
priorities

> Unlike a regular queue, insertions into a priority
queue are not constant time, usually O(log n)

> We’'ll need priority queues for most cost-sensitive
search methods.

Uniform Cost Search

> What will UCS do for this graph?

> What does this mean for completeness?

. n # states

Uniform Cost Search b avg branch
C* least cost
S shallow goal
m max depth

Algorithm Complete|Optimal |Time Space

DES (Ziciie

BFS

UCS Y* Y O(C* bCe) O(hC™)

4

C*/etiers <

We’ll talk more
about uniform cost
search’s failure
cases later ...

Uniform Cost Problems

> Remember: explores
Increasing cost contours

> The good: UCS is complete
and optimal!

> The bad:

> Explores options in every

“direction”
> No information about goal
location
Goal

[demo: ucs contours]

Heuristics

75

Arad

118

[Vaslui

Timisoara

142
11

Pitesti

98
Hirsova
1 Mehadia Urziceni
75 86
Bucharest
Dobreta [90
=l Craiova Eforie

[] Giurgiu

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Best First / Greedy Search

> Expand the node that seems closest...

Arad
Sibiu
366

380

CSbiu OPEuchared

253 0

> What can go wrong?

Best First / Greedy Search

2 ° 2 @
AL o |
2
5
h=11 1 8 a
{0 ()
&
5
h=12
e o
9
h=6

h=11

h=9

Best First / Greedy Search

> A common case:

> Best-first takes you
straight to the (wrong)
goal

> Worst-case: like a badly-
guided DFS in the worst
case

> Can explore everything

» Can get stuck in loops
iIf no cycle checking

> Like DFS in
completeness (finite
states w/ cycle checking)

Search Gone Wrong?

wT
—] ARCTIC OCEAN i B MAPQVES To I

: & XL |
- 3F(g¢
o ICELAND Nt B\ g
_— " ¢p Brer | i
BT e | % "ei > g '“5
o RUSSIA \@ sl o |z
praass ATLANTIC :-:g&5 e A . s >
e ~Helsinii Tier g | B (@ §/5;
o RS ¢ /% e 3§
6 B9 smblomsr: . /2 =/ &

e T o] F S b=

=

._
=

s 5
Bist=tok (‘;{ BELARI.ISIU'
POLAHD ./~ Kiev

WTOERW: |kRAINE

s ';_;.-'
e B UHGARY o
.t ROMAHIA

rabic . o
-*h'-f?,-ﬁ ~Hucharest-

5 2005 MapQuest.com, Inc.

1000 E Zoom on map di

200 400 A00

Start: Haugesund, Rogaland, Morway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk.no/alitidmaoro

Extra Work?

> Failure to detect repeated states can cause
exponentially more work. Why?

A ,f"' __‘__"““\ .
I& ,»’T *"”fﬂ
B @ n
)
,,f
cC —e— CR C%
C)
D : EOE "f
' ™

Graph Search

> In BFS, for example, we shouldn’t bother expanding
the circled nodes (why?)

p q f q ¢ G
q

c G a

Graph Search

> Very simple fix: never expand a state type twice

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do

if fringe is empty then return failure

node — REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

if STATE['H.U(E(:] is not in closed then
add STATE['H.UJ(:] to closed ¢
fringe < INSERTALL(EXPAND(node, problem), fringe)

end

> Can this wreck completeness? Why or why not?
> How about optimality? Why or why not?

Some Hints

> Graph search is almost always better than tree
search (when not?)

> Fringes are sometimes called “closed lists™ — but
don’t implement them with lists (use sets)!

> Nodes are conceptually paths, but better to
represent with a state, cost, and reference to parent
node

g n # states

Best First Greedy Search b avg branch
C* least cost
S shallow goal
m max depth

Algorithm Complete |Optimal Time Space

Greedy Best-First

Search Y N O(bm) O(bm)

)

> What do we need to do to make it complete?
> Can we make it optimal? Next class!

