
CS421: Intro to AI1 Hal Daumé III (me@hal3.name)

Uninformed Search

Hal Daumé III
Computer Science
University of Maryland

me@hal3.name

CS 421: Introduction to Artificial Intelligence

31 Jan 2012

Many slides courtesy of
Dan Klein, Stuart Russell,

or Andrew Moore



CS421: Intro to AI2 Hal Daumé III (me@hal3.name)

Announcements
➢ Forgot to tell you login information for web page:

➢ User name = “cs421” (but no quotes)
➢ Password = “________” (still no quotes)
➢ (this will be used for posting solutions)

➢ Junkfood machines:
➢ You may develop at home, but must run on Junkfood

➢ Homework 1 has been posted
➢ Project 1 will be posted soon



CS421: Intro to AI3 Hal Daumé III (me@hal3.name)

Today
➢ Agents that Plan Ahead

➢ Search Problems

➢ Uniformed Search Methods
➢ Depth-First Search
➢ Breadth-First Search
➢ Uniform-Cost Search



CS421: Intro to AI4 Hal Daumé III (me@hal3.name)

Search Problems

➢ A search problem consists of:

➢ A state space

➢ A successor function

➢ A start state and a goal test

➢ A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0



CS421: Intro to AI5 Hal Daumé III (me@hal3.name)

Reflex Agents
➢ Reflex agents:

➢ Choose action based on 
current percept and 
memory

➢ May have memory or a 
model of the world’s 
current state

➢ Do not consider the 
future consequences of 
their actions

➢ Can a reflex agent be 
rational?

[demo: reflex ]



CS421: Intro to AI6 Hal Daumé III (me@hal3.name)

Goal Based Agents
➢ Goal-based agents:

➢ Plan ahead

➢ Decisions based on 
(hypothesized) 
consequences of 
actions

➢ Must have a model of 
how the world evolves in 
response to actions

[demo: plan fast / slow ]



CS421: Intro to AI7 Hal Daumé III (me@hal3.name)

Search Trees

➢ A search tree:
➢ This is a “what if” tree of plans and outcomes
➢ Start state at the root node
➢ Children correspond to successors
➢ Nodes labeled with states, correspond to PLANS to those 

states
➢ For most problems, can never build the whole tree

➢ So, have to find ways to use only the important parts!

“E”, 1.0“N”, 1.0



CS421: Intro to AI8 Hal Daumé III (me@hal3.name)

State Space Graphs

➢ There’s some big 
graph in which

➢ Each state is a 
node

➢ Each successor is 
an outgoing arc

➢ Important: For most 
problems we could 
never actually build 
this graph

➢ How many states in 
Pacman?

S

G

d

b

p q

c

e

h

a

f

r

Laughably tiny search 
graph for a tiny search 

problem

u.hal3.name/ic.pl?q=q



CS421: Intro to AI9 Hal Daumé III (me@hal3.name)

Example: Romania



CS421: Intro to AI10 Hal Daumé III (me@hal3.name)

Another Search Tree

➢ Search:
➢ Expand out possible plans
➢ Maintain a fringe of unexpanded plans
➢ Try to expand as few tree nodes as possible



CS421: Intro to AI11 Hal Daumé III (me@hal3.name)

States vs. Nodes

➢ Problem graphs have problem states
➢ Represent an abstracted state of the world
➢ Have successors, predecessors, can be goal / non-goal

➢ Search trees have search nodes
➢ Represent a plan (path) which results in the node’s state
➢ Have 1 parent, a length and cost, point to a problem state
➢ Expand uses successor function to create new tree nodes
➢ The same problem state in multiple search tree nodes



CS421: Intro to AI12 Hal Daumé III (me@hal3.name)

General Tree Search

➢ Important ideas:
➢ Fringe
➢ Expansion
➢ Exploration strategy

➢ Main question: which fringe nodes to explore?

Detailed pseudocode 
is in the book!



CS421: Intro to AI13 Hal Daumé III (me@hal3.name)

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r



CS421: Intro to AI14 Hal Daumé III (me@hal3.name)

State Graphs vs Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r

We almost 
always construct 
both on demand 
– and we 
construct as 
little as possible.

Each NODE in in 
the search tree is an 
entire PATH in the 
problem graph.



CS421: Intro to AI15 Hal Daumé III (me@hal3.name)

Review: Depth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand 
deepest node first

Implementation: 
Fringe is a LIFO 
stack



CS421: Intro to AI16 Hal Daumé III (me@hal3.name)

Review: Breadth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand shallowest 
node first

Implementation: Fringe is a 
FIFO queue



CS421: Intro to AI17 Hal Daumé III (me@hal3.name)

Search Algorithm Properties

 Complete? Guaranteed to find a solution if one exists?
 Optimal?  Guaranteed to find the least cost path?
 Time complexity?
 Space complexity?

Variables:

n Number of states in the problem

b The average branching factor B
(the average number of successors)

C* Cost of least cost solution

s Depth of the shallowest solution

m Max depth of the search tree



CS421: Intro to AI18 Hal Daumé III (me@hal3.name)

DFS

➢ Infinite paths make DFS incomplete…
➢ How can we fix this?

Algorithm Complete Optimal Time Space

DFS Depth First 
Search

N N O(BLMAX) O(LMAX)

START

GOAL

a

b

N N Infinite Infinite

 n # states
 b avg branch
 C* least cost
 s shallow goal
 m max depth



CS421: Intro to AI19 Hal Daumé III (me@hal3.name)

DFS

➢ With cycle checking, DFS is complete. 

…

b 1 node

b nodes

b2 nodes

bm nodes

m tiers

 n # states
 b avg branch
 C* least cost
 s shallow goal
 m max depth

Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

N N O(BLMAX) O(LMAX)Y

u.hal3.name/ic.pl?q=dfs



CS421: Intro to AI20 Hal Daumé III (me@hal3.name)

BFS

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

 n # states
 b avg branch
 C* least cost
 s shallow goal
 m max depth



CS421: Intro to AI21 Hal Daumé III (me@hal3.name)

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of 
length <=1 (DFS gives up on path of length 2)

2. If “1” failed, do a DFS which only searches 
paths of length 2 or less.

3. If “2” failed, do a DFS which only searches 
paths of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

ID

Y

Y

Y

…
b

 n # states
 b avg branch
 C* least cost
 s shallow goal
 m max depth



CS421: Intro to AI22 Hal Daumé III (me@hal3.name)

Comparisons

➢ When will BFS outperform DFS?

➢ When will DFS outperform BFS?

 n # states
 b avg branch
 C* least cost
 s shallow goal
 m max depth



CS421: Intro to AI23 Hal Daumé III (me@hal3.name)

Costs on Actions

Notice that BFS finds the shortest path in terms of number of 
transitions.  It does not find the least-cost path.
We will quickly cover an algorithm which does find the least-cost 
path.  

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2



CS421: Intro to AI24 Hal Daumé III (me@hal3.name)

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Expand cheapest node first:

Fringe is a priority queue S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 1

15

1

2

Cost 
contours

2



CS421: Intro to AI25 Hal Daumé III (me@hal3.name)

         Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq.pop() returns the key with the lowest value, 
and removes it from the queue.

➢ A priority queue is a data structure in which you can 
insert and retrieve (key, value) pairs with the 
following operations:

➢ You can promote or demote keys by resetting their 
priorities

➢ Unlike a regular queue, insertions into a priority 
queue are not constant time, usually O(log n)

➢ We’ll need priority queues for most cost-sensitive 
search methods.



CS421: Intro to AI26 Hal Daumé III (me@hal3.name)

Uniform Cost Search

➢ What will UCS do for this graph?

➢ What does this mean for completeness?

START

GOAL

a

b

1

1

0

0



CS421: Intro to AI27 Hal Daumé III (me@hal3.name)

Uniform Cost Search

Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

UCS

…
b

C*/ε tiers

Y* Y O(C* bC*/ε) O(bC*/ε)

We’ll talk more 
about uniform cost 
search’s failure 
cases later…

 n # states
 b avg branch
 C* least cost
 s shallow goal
 m max depth



CS421: Intro to AI28 Hal Daumé III (me@hal3.name)

Uniform Cost Problems

➢ Remember: explores 
increasing cost contours

➢ The good: UCS is complete 
and optimal!

➢ The bad:
➢ Explores options in every 

“direction”
➢ No information about goal 

location

Start Goal

…

c ≤ 3

c ≤ 2

c ≤ 1

[demo: ucs contours ]



CS421: Intro to AI29 Hal Daumé III (me@hal3.name)

Heuristics



CS421: Intro to AI30 Hal Daumé III (me@hal3.name)

Best First / Greedy Search

➢ Expand the node that seems closest…

➢ What can go wrong?



CS421: Intro to AI31 Hal Daumé III (me@hal3.name)

Best First / Greedy Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 9

81

1

2

3

5

34

4

15

1

2
5

2

h=12

h=11

h=8

h=8

h=5 h=4

h=6

h=9

h=0

h=4

h=6h=11



CS421: Intro to AI32 Hal Daumé III (me@hal3.name)

Best First / Greedy Search

➢ A common case:
➢ Best-first takes you 

straight to the (wrong) 
goal

➢ Worst-case: like a badly-
guided DFS in the worst 
case

➢ Can explore everything
➢ Can get stuck in loops 

if no cycle checking

➢ Like DFS in 
completeness (finite 
states w/ cycle checking)

…
b

…
b



CS421: Intro to AI33 Hal Daumé III (me@hal3.name)

Search Gone Wrong?



CS421: Intro to AI34 Hal Daumé III (me@hal3.name)

Extra Work?

➢ Failure to detect repeated states can cause 
exponentially more work.  Why?



CS421: Intro to AI35 Hal Daumé III (me@hal3.name)

Graph Search

➢ In BFS, for example, we shouldn’t bother expanding 
the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a



CS421: Intro to AI36 Hal Daumé III (me@hal3.name)

Graph Search

➢ Very simple fix: never expand a state type twice

➢ Can this wreck completeness?  Why or why not?
➢ How about optimality?  Why or why not?



CS421: Intro to AI37 Hal Daumé III (me@hal3.name)

Some Hints

➢ Graph search is almost always better than tree 
search (when not?)

➢ Fringes are sometimes called “closed lists” – but 
don’t implement them with lists (use sets)!

➢ Nodes are conceptually paths, but better to 
represent with a state, cost, and reference to parent 
node



CS421: Intro to AI38 Hal Daumé III (me@hal3.name)

Best First Greedy Search

Algorithm Complete Optimal Time Space

Greedy Best-First 
Search

➢ What do we need to do to make it complete?
➢ Can we make it optimal?  Next class!

Y* N O(bm) O(bm)

…
b

m

 n # states
 b avg branch
 C* least cost
 s shallow goal
 m max depth


