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Dimensionality reduction

• Question:

How can we detect low dimensional structure in 
high dimensional data?

• Motivations:

Exploratory data analysis & visualization

Compact representation

Robust statistical modeling



• Many examples (Percy’s lecture on 2/19/2008)
Principal component analysis (PCA)
Fischer discriminant analysis (FDA)
Nonnegative matrix factorization (NMF) 

• Framework

Linear dimensionality reductions

linear transformation 
of original space

x ∈ "D → y ∈ "d

D ! d

y = Ux



Linear methods are not sufficient

• What if data is “nonlinear”?

• PCA results
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What we really want is “unrolling”
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distortion in local areas
faithful in global structure

Simple geometric intuition:

nonlinear
mapping



Outline

• Linear method: redux and new intuition
Multidimensional scaling (MDS)

• Graph based spectral methods
Isomap
Locally linear embedding 

• Other nonlinear methods
Kernel PCA
Maximum variance unfolding (MVU)



Linear methods: redux

PCA: does the data mostly lie in a subspace? If 
so, what is its dimensionality?

D = 2
d = 1

D = 3
d = 2



The framework of PCA

• Assumption:
Centered inputs
Projection into subspace

• Interpretation
maximum variance preservation

minimum reconstruction errors

∑

i

xi = 0

yi = Uxi

UUT = I

arg max
∑

i

‖yi‖2

arg min
∑

i

‖xi −UTyi‖2

(note: a small change from 
Percy’s notation)



Other criteria we can think of...

How about preserve pairwise distances?

This leads to a new type of linear methods 
multidimensional scaling (MDS)

Key observation: from distances to inner products

‖xi − xj‖ = ‖yi − yj‖

‖xi − xj‖2 = xT
i xi − 2xT

i xj + xT
j xj



Recipe for multidimensional scaling

• Compute Gram matrix on centered points

• Diagonalize

• Derive outputs and estimate dimensionality

G = XTX

X = (x1,x2, . . . ,xN )

G =
∑

i

λiviv
T
i

d = min arg max1

(
d∑

i=1

λi ≥ THRESHOLD

)

λ1 ≥ λ2 ≥ · · · ≥ λN

yid =
√

λivid



MDS when only distances are known

We convert distance matrix

to Gram matrix

with centering matrix

d2
ij = ‖xi − xj‖2D = {d2

ij}

G = −1
2
HDH

H = In −
1
n
11T



PCA vs MDS: is MDS really that new?

• Same set of eigenvalues

• Similar low dimensional representation

• Different computational cost
PCA scales quadratically in D
MDS scales quadratically in N

1
N

XXTv = λv →XTX
1
N

XTv = Nλ
1
N

XTv

PCA diagonalization MDS diagonalization

Big win for MDS when D is much greater than N !



How to generalize to nonlinear structures?

All we need is a simple twist on MDS



5min Break?



Nonlinear structures

• Manifolds such as

• can be approximately locally with linear 
structures. 
This is a key intuition that we will repeatedly 

appeal to 



Manifold learning

Given high dimensional data sampled from a low 
dimensional nonlinear submanifold, how to 
compute a faithful embedding?

Input Output
{xi ∈ "D, i = 1, 2, . . . , n} {yi ∈ "d, i = 1, 2, . . . , n}



• Linear method: redux and new intuition
Multidimensional scaling (MDS)

• Graph based spectral methods
Isomap
Locally linear embedding

• Other nonlinear methods
Kernel PCA
Maximum variance unfolding

Outline



A small jump from MDS to Isomap

• Key idea

Preserve pairwise 

• Algorithm in a nutshell
Estimate geodesic distance along submanifold
Perform MDS as if the distances are Euclidean

MDS

Euclidean distances



geodesic distances

Isomap

A small jump from MDS to Isomap

• Key idea

Preserve pairwise 

• Algorithm in a nutshell
Estimate geodesic distance along submanifold
Perform MDS as if the distances are Euclidean



Why geodesic distances?

Euclidean distance is not appropriate measure of 
proximity between points on nonlinear manifold.

A

B

C

ABC

A closer to C in 
Euclidean distance

A closer to B in 
geodesic distance



Caveat

Without knowing the shape of the manifold, how 
to estimate the geodesic distance?

A

B

C

The tricks will unfold next....



Step 1. Build adjacency graph

• Graph from nearest neighbor
Vertices represent inputs
Edges connect nearest neighbors

• How to choose nearest neighbor
k-nearest neighbors
Epsilon-radius ball

Q: Why nearest neighbors?

A1: local information more reliable than global 
information

A2: geodesic distance  ≈   Euclidean distance 



Building the graph

• Computation cost
kNN scales naively as O(N2D)
Faster methods exploit data structure (eg, KD-
tree)

• Assumptions
Graph is connected (if not, run algorithms on each 
connected component)
No short-circuit Large k would 

cause this problem



Step 2. Construct geodesic distance matrix

• Geodesic distances
Weight edges by local Euclidean distance
Approximate geodesic by shortest paths

• Computational cost
Require all pair shortest paths (Djikstra’s 
algorithm: O(N2 log N + N2k))
Require dense sampling to approximate well
(very intensive for large graph)



Step 3. Apply MDS

• Convert geodesic matrix to Gram matrix
Pretend the geodesic matrix is from Euclidean 
distance matrix

• Diagonalize the Gram matrix
Gram matrix is a dense matrix, ie, no sparsity
Can be intensive if the graph is big.

• Embedding
Number of significant eigenvalues yield estimate 
of dimensionality
Top eigenvectors yield embedding.



Quick summary

• Build nearest neighbor graph

• Estimate geodesic distances

• Apply MDS

This would be a recurring theme for many
graph based manifold learning algorithms.



Examples

• Swiss roll

• Digit images

N = 1024
k = 12      

N = 1000
r = 4.2

D = 400     



Applications: Isomap for music 
Embedding of 
sparse music 
similarity graph 
(Platt, NIPS 2004)

N = 267,000
E = 3.22 million



• Linear method: redux and new intuition
Multidimensional scaling (MDS)

• Graph based spectral methods
Isomap
Locally linear embedding

• Other nonlinear methods
Kernel PCA
Maximum variance unfolding

Outline



Locally linear embedding (LLE)

• Intuition
Better off being myopic and trusting only local 
information

• Steps
Define locality by nearest neighbors
Encode local information 
Minimize global objective to preserve local 
information

Least square fit locally

Think globally



Step 1. Build adjacency graph

• Graph from nearest neighbor
Vertices represent inputs
Edges connect nearest neighbors

• How to choose nearest neighbor
k-nearest neighbors
Epsilon-radius ball

This step is exactly the 
same as in Isomap.



Step 2. Least square fits

• Characterize local geometry of each 
neighborhood by  a set of weights

• Compute weights by reconstructing each 
input linearly from its neighbors

Φ(W ) =
∑

i

‖xi −
∑

k

W ikxk‖2

∑

k

Wik = 1subject to 



What are these weights for?

The head should sit in the middle 
of left and right finger tips.

They are shift, rotation, scale invariant.



Step 3. Preserve local information

• The embedding should follow same local 
encoding

• Minimize a global reconstruction error

yi ≈
∑

k

W ikyk

Ψ(Y ) =
∑

i

‖yi −
∑

k

W ikyk‖2

∑
yi = 0

1
N

Y Y T = I

subject to 



Sparse eigenvalue problem

• Quadratic form

• Rayleigh-Ritz quotient

Embedding given by bottom eigenvectors

Discard bottom eigenvector [1 1 ... 1]

Other d eigenvectors yield embedding

arg minΨ(Y ) =
∑

ij

Ψijy
T
i yj

Ψ = (I −W )T(I −W )



Summary

• Build k-nearest neighbor graph

• Solve linear least square fit for each neighbor

• Solve a sparse eigenvalue problem

Every step is relatively trivial, 
however the combined effect is quite 

complicated.



Examples

N = 1000
k = 8
D = 3
d = 2



Examples of LLE

• Pose and expression

N = 1965
k = 12

D = 560
d  = 2



Recap:  Isomap vs. LLE

Isomap LLE

Preserve geodesic distance Preserve local symmetry

construct nearest neighbor 
graph; formulate quadratic 

form; diagonalize

construct nearest neighbor 
graph; formulate quadratic 

form; diagonalize

pick top eigenvector; 
estimate dimensionality

pick bottom eigenvector; 
does not estimate 

dimensionality

more computationally 
expensive

much more contractable



There are still many

• Laplacian eigenmaps

• Hessian LLE

• Local Tangent Space Analysis

• Maximum variance unfolding

• ...



Summary: graph based spectral methods

• Construct nearest neighbor graph
Vertices are data points
Edges indicate nearest neighbors

• Spectral decomposition
Formulate matrix from the graph
Diagonalize the matrix

• Derive embedding
Eigenvector as embedding
Estimate dimensionality



5min Break?



• Linear method: redux and new intuition
Multidimensional scaling (MDS)

• Graph based spectral methods
Isomap
Locally linear embedding

• Other nonlinear methods
Kernel PCA
Maximum variance unfolding

Outline



Another twist on MDS to get nonlinearity

• Key idea
Map data points with nonlinear functions

Perform PCA/MDS in the new space

φ : x→ φ(x)

φ(X)Tφ(X)v = λv

(MDS: diagonlizing Gram matrix)



The kernel trick

The inner product

is more interesting  than the exact form of the 
mapping function.
For certain mapping function, we can find a kernel 
function 

φ(xi)Tφ(xj)

K(xi,xj) = φ(xi)Tφ(xj)

Therefore, all we need to do is to specify a kernel 
function to find the projections!



Kernel PCA

• Algorithm
Select a kernel: Gaussian kernel, string kernel
Construct kernel matrix
Diagonalize the kernel matrix 

• Caveat
Kernel PCA does not always reduce dimensions.
Very important in choosing appropriate kernel
Heavy computation for large data sets 

K = [Kij ] = [K(xi,xj)]



Why would we would want to use kernels?

• Handle complex data types.
Kernels for numerican data (eg., CPU load)

“String” kernels for text data (eg. URL/http 
request)

• Building blocks
Multiple kernels can be combined into a single 
kernel

K(xi,xj) = exp
(
−‖xi − xj‖2/σ

)

K(si, sj) = # of common substrings



• Linear method: redux and new intuition
Multidimensional scaling (MDS)

• Graph based spectral methods
Isomap
Locally linear embedding

• Other nonlinear methods
Kernel PCA
Maximum variance unfolding

Outline



• Quadratic programming

• Intuition
Nearby points are connected with rigid rods
Unfold inputs without breaking apart rods.

Enforcing distance constraints explicitly

Rotation allowed

max
∑

i

‖yi‖2

∑

i

yi = 0

‖yi − yj‖2 = ‖xi − xj‖2

unfolding

only if i and j are 
nearest neighbor!

centering



Convex optimization

• Change of variables

• Semidefinite programming (SDP) 

Gram matrix needs to be 
positive semidefinite

max
∑

ii

Kii

∑

ij

Kij = 0

Kii + Kjj − 2Kij = ‖xi − xj‖2

K # 0

See this trick 
before?

unfolding objective

Kij = yT
i yj



Outline of the MVU algorithm

• Compute nearest neighbors & local distances

• Solve SDP
Convex optimization
Use off-shelf SDP solver

• Analyze the SDP solution 
Apply MDS to the kernel matrix
Yield embedding and dimensionality

Implementation: complicated and non-trivial; 
best bet to use others’ package



Images of rotating teapot

• Full rotation 

• Half rotation

N = 400
k = 4

D = 23028

Images are ordered by d=1 
embedding according to view 

angle



MVU vs. Isomap

• Similarities
Both motivated by isometry
Based on constructing Gram matrix
Eigenvalues reveal dimensionality

• Differences
Semidefinite vs. dynamic programing to find Gram 
matrix
Finite vs. asymptotic guarantee
MVU works for manifolds with “holes”



Application: sensor localization

sensors distributed in US cities.
Infer coordinates from limited measurement of 

distances
(Weinberger, Sha & Saul, NIPS 2006)





0 d12 ? d14

d21 0 d23 ?
? d32 0 d34

d41 ? d43 0





cities

cities



Embedding in 2D while ignoring distances

Turn distance matrix into adjacency matrix
Compute 2D embedding with Laplacian 

eigenmaps
Assumption: measurements exist only if sensors 

are close to each other



Adding distance constraints

Start from Lapalcian eigenmap results
Enforce known distances constraints

Find embedding using maximum variance unfolding

Recover almost perfectly!



Conclusion

• Big picture
Large-scale high dimensional data everywhere.
Many of them have intrinsic low dimension 
representation.
Nonlinear techniques can be very helpful for 
exploratory data analysis and visualization.

• Techniques we sampled today
Manifold learning techniques.
Kernel methods.



Resources

• Manifold learning tutorials by Lawrence K. 
Saul (UCSD)

• A bookmark page for manifold learning 

http://www.cs.ucsd.edu/~saul/tutorials.html

http://www.cse.msu.edu/~lawhiu/manifold/

http://www.cs.ucsd.edu/~saul/tutorials.html
http://www.cs.ucsd.edu/~saul/tutorials.html
http://www.cse.msu.edu/~lawhiu/manifold/
http://www.cse.msu.edu/~lawhiu/manifold/


Software

• Matlab learning demo

• Manifold learning toolbox

http://www.math.umn.edu/~wittman/mani/

http://www.cs.unimaas.nl/l.vandermaaten/
Laurens_van_der_Maaten/
Matlab_Toolbox_for_Dimensionality_Reduction.html

http://www.math.umn.edu/~wittman/mani/
http://www.math.umn.edu/~wittman/mani/
http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten/Matlab_Toolbox_for_Dimensionality_Reduction.html
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