
Visualization
(Nonlinear dimensionality reduction)

Fei Sha

Yahoo! Research
feisha@yahoo-inc.com

CS294 March 18, 2008

mailto:feisha@yahoo-inc.com
mailto:feisha@yahoo-inc.com

Dimensionality reduction

• Question:

How can we detect low dimensional structure in
high dimensional data?

• Motivations:

Exploratory data analysis & visualization

Compact representation

Robust statistical modeling

• Many examples (Percy’s lecture on 2/19/2008)
Principal component analysis (PCA)
Fischer discriminant analysis (FDA)
Nonnegative matrix factorization (NMF)

• Framework

Linear dimensionality reductions

linear transformation
of original space

x ∈ "D → y ∈ "d

D ! d

y = Ux

Linear methods are not sufficient

• What if data is “nonlinear”?

• PCA results

!!" !!# !" # " !# !"
!!"

!!#

!"

#

"

!#

!"

$#

classic toy
example of
Swiss roll

!!"
!#

"
#

!"
!#

"

!"

$"

%"

!!#

!!"

!#

"

#

!"

!#

What we really want is “unrolling”

!! !"#$!" !%#$ % %#$ " "#$! !#$
!!#$

!!

!"#$

!"

!%#$

%

%#$

"

"#$

!

!#$

!!"
!#

"
#

!"
!#

"

!"

$"

%"

!!#

!!"

!#

"

#

!"

!#

distortion in local areas
faithful in global structure

Simple geometric intuition:

nonlinear
mapping

Outline

• Linear method: redux and new intuition
Multidimensional scaling (MDS)

• Graph based spectral methods
Isomap
Locally linear embedding

• Other nonlinear methods
Kernel PCA
Maximum variance unfolding (MVU)

Linear methods: redux

PCA: does the data mostly lie in a subspace? If
so, what is its dimensionality?

D = 2
d = 1

D = 3
d = 2

The framework of PCA

• Assumption:
Centered inputs
Projection into subspace

• Interpretation
maximum variance preservation

minimum reconstruction errors

∑

i

xi = 0

yi = Uxi

UUT = I

arg max
∑

i

‖yi‖2

arg min
∑

i

‖xi −UTyi‖2

(note: a small change from
Percy’s notation)

Other criteria we can think of...

How about preserve pairwise distances?

This leads to a new type of linear methods
multidimensional scaling (MDS)

Key observation: from distances to inner products

‖xi − xj‖ = ‖yi − yj‖

‖xi − xj‖2 = xT
i xi − 2xT

i xj + xT
j xj

Recipe for multidimensional scaling

• Compute Gram matrix on centered points

• Diagonalize

• Derive outputs and estimate dimensionality

G = XTX

X = (x1,x2, . . . ,xN)

G =
∑

i

λiviv
T
i

d = min arg max1

(
d∑

i=1

λi ≥ THRESHOLD

)

λ1 ≥ λ2 ≥ · · · ≥ λN

yid =
√

λivid

MDS when only distances are known

We convert distance matrix

to Gram matrix

with centering matrix

d2
ij = ‖xi − xj‖2D = {d2

ij}

G = −1
2
HDH

H = In −
1
n
11T

PCA vs MDS: is MDS really that new?

• Same set of eigenvalues

• Similar low dimensional representation

• Different computational cost
PCA scales quadratically in D
MDS scales quadratically in N

1
N

XXTv = λv →XTX
1
N

XTv = Nλ
1
N

XTv

PCA diagonalization MDS diagonalization

Big win for MDS when D is much greater than N !

How to generalize to nonlinear structures?

All we need is a simple twist on MDS

5min Break?

Nonlinear structures

• Manifolds such as

• can be approximately locally with linear
structures.
This is a key intuition that we will repeatedly

appeal to

Manifold learning

Given high dimensional data sampled from a low
dimensional nonlinear submanifold, how to
compute a faithful embedding?

Input Output
{xi ∈ "D, i = 1, 2, . . . , n} {yi ∈ "d, i = 1, 2, . . . , n}

• Linear method: redux and new intuition
Multidimensional scaling (MDS)

• Graph based spectral methods
Isomap
Locally linear embedding

• Other nonlinear methods
Kernel PCA
Maximum variance unfolding

Outline

A small jump from MDS to Isomap

• Key idea

Preserve pairwise

• Algorithm in a nutshell
Estimate geodesic distance along submanifold
Perform MDS as if the distances are Euclidean

MDS

Euclidean distances

geodesic distances

Isomap

A small jump from MDS to Isomap

• Key idea

Preserve pairwise

• Algorithm in a nutshell
Estimate geodesic distance along submanifold
Perform MDS as if the distances are Euclidean

Why geodesic distances?

Euclidean distance is not appropriate measure of
proximity between points on nonlinear manifold.

A

B

C

ABC

A closer to C in
Euclidean distance

A closer to B in
geodesic distance

Caveat

Without knowing the shape of the manifold, how
to estimate the geodesic distance?

A

B

C

The tricks will unfold next....

Step 1. Build adjacency graph

• Graph from nearest neighbor
Vertices represent inputs
Edges connect nearest neighbors

• How to choose nearest neighbor
k-nearest neighbors
Epsilon-radius ball

Q: Why nearest neighbors?

A1: local information more reliable than global
information

A2: geodesic distance ≈ Euclidean distance

Building the graph

• Computation cost
kNN scales naively as O(N2D)
Faster methods exploit data structure (eg, KD-
tree)

• Assumptions
Graph is connected (if not, run algorithms on each
connected component)
No short-circuit Large k would

cause this problem

Step 2. Construct geodesic distance matrix

• Geodesic distances
Weight edges by local Euclidean distance
Approximate geodesic by shortest paths

• Computational cost
Require all pair shortest paths (Djikstra’s
algorithm: O(N2 log N + N2k))
Require dense sampling to approximate well
(very intensive for large graph)

Step 3. Apply MDS

• Convert geodesic matrix to Gram matrix
Pretend the geodesic matrix is from Euclidean
distance matrix

• Diagonalize the Gram matrix
Gram matrix is a dense matrix, ie, no sparsity
Can be intensive if the graph is big.

• Embedding
Number of significant eigenvalues yield estimate
of dimensionality
Top eigenvectors yield embedding.

Quick summary

• Build nearest neighbor graph

• Estimate geodesic distances

• Apply MDS

This would be a recurring theme for many
graph based manifold learning algorithms.

Examples

• Swiss roll

• Digit images

N = 1024
k = 12

N = 1000
r = 4.2

D = 400

Applications: Isomap for music
Embedding of
sparse music
similarity graph
(Platt, NIPS 2004)

N = 267,000
E = 3.22 million

• Linear method: redux and new intuition
Multidimensional scaling (MDS)

• Graph based spectral methods
Isomap
Locally linear embedding

• Other nonlinear methods
Kernel PCA
Maximum variance unfolding

Outline

Locally linear embedding (LLE)

• Intuition
Better off being myopic and trusting only local
information

• Steps
Define locality by nearest neighbors
Encode local information
Minimize global objective to preserve local
information

Least square fit locally

Think globally

Step 1. Build adjacency graph

• Graph from nearest neighbor
Vertices represent inputs
Edges connect nearest neighbors

• How to choose nearest neighbor
k-nearest neighbors
Epsilon-radius ball

This step is exactly the
same as in Isomap.

Step 2. Least square fits

• Characterize local geometry of each
neighborhood by a set of weights

• Compute weights by reconstructing each
input linearly from its neighbors

Φ(W) =
∑

i

‖xi −
∑

k

W ikxk‖2

∑

k

Wik = 1subject to

What are these weights for?

The head should sit in the middle
of left and right finger tips.

They are shift, rotation, scale invariant.

Step 3. Preserve local information

• The embedding should follow same local
encoding

• Minimize a global reconstruction error

yi ≈
∑

k

W ikyk

Ψ(Y) =
∑

i

‖yi −
∑

k

W ikyk‖2

∑
yi = 0

1
N

Y Y T = I

subject to

Sparse eigenvalue problem

• Quadratic form

• Rayleigh-Ritz quotient

Embedding given by bottom eigenvectors

Discard bottom eigenvector [1 1 ... 1]

Other d eigenvectors yield embedding

arg minΨ(Y) =
∑

ij

Ψijy
T
i yj

Ψ = (I −W)T(I −W)

Summary

• Build k-nearest neighbor graph

• Solve linear least square fit for each neighbor

• Solve a sparse eigenvalue problem

Every step is relatively trivial,
however the combined effect is quite

complicated.

Examples

N = 1000
k = 8
D = 3
d = 2

Examples of LLE

• Pose and expression

N = 1965
k = 12

D = 560
d = 2

Recap: Isomap vs. LLE

Isomap LLE

Preserve geodesic distance Preserve local symmetry

construct nearest neighbor
graph; formulate quadratic

form; diagonalize

construct nearest neighbor
graph; formulate quadratic

form; diagonalize

pick top eigenvector;
estimate dimensionality

pick bottom eigenvector;
does not estimate

dimensionality

more computationally
expensive

much more contractable

There are still many

• Laplacian eigenmaps

• Hessian LLE

• Local Tangent Space Analysis

• Maximum variance unfolding

• ...

Summary: graph based spectral methods

• Construct nearest neighbor graph
Vertices are data points
Edges indicate nearest neighbors

• Spectral decomposition
Formulate matrix from the graph
Diagonalize the matrix

• Derive embedding
Eigenvector as embedding
Estimate dimensionality

5min Break?

• Linear method: redux and new intuition
Multidimensional scaling (MDS)

• Graph based spectral methods
Isomap
Locally linear embedding

• Other nonlinear methods
Kernel PCA
Maximum variance unfolding

Outline

Another twist on MDS to get nonlinearity

• Key idea
Map data points with nonlinear functions

Perform PCA/MDS in the new space

φ : x→ φ(x)

φ(X)Tφ(X)v = λv

(MDS: diagonlizing Gram matrix)

The kernel trick

The inner product

is more interesting than the exact form of the
mapping function.
For certain mapping function, we can find a kernel
function

φ(xi)Tφ(xj)

K(xi,xj) = φ(xi)Tφ(xj)

Therefore, all we need to do is to specify a kernel
function to find the projections!

Kernel PCA

• Algorithm
Select a kernel: Gaussian kernel, string kernel
Construct kernel matrix
Diagonalize the kernel matrix

• Caveat
Kernel PCA does not always reduce dimensions.
Very important in choosing appropriate kernel
Heavy computation for large data sets

K = [Kij] = [K(xi,xj)]

Why would we would want to use kernels?

• Handle complex data types.
Kernels for numerican data (eg., CPU load)

“String” kernels for text data (eg. URL/http
request)

• Building blocks
Multiple kernels can be combined into a single
kernel

K(xi,xj) = exp
(
−‖xi − xj‖2/σ

)

K(si, sj) = # of common substrings

• Linear method: redux and new intuition
Multidimensional scaling (MDS)

• Graph based spectral methods
Isomap
Locally linear embedding

• Other nonlinear methods
Kernel PCA
Maximum variance unfolding

Outline

• Quadratic programming

• Intuition
Nearby points are connected with rigid rods
Unfold inputs without breaking apart rods.

Enforcing distance constraints explicitly

Rotation allowed

max
∑

i

‖yi‖2

∑

i

yi = 0

‖yi − yj‖2 = ‖xi − xj‖2

unfolding

only if i and j are
nearest neighbor!

centering

Convex optimization

• Change of variables

• Semidefinite programming (SDP)

Gram matrix needs to be
positive semidefinite

max
∑

ii

Kii

∑

ij

Kij = 0

Kii + Kjj − 2Kij = ‖xi − xj‖2

K # 0

See this trick
before?

unfolding objective

Kij = yT
i yj

Outline of the MVU algorithm

• Compute nearest neighbors & local distances

• Solve SDP
Convex optimization
Use off-shelf SDP solver

• Analyze the SDP solution
Apply MDS to the kernel matrix
Yield embedding and dimensionality

Implementation: complicated and non-trivial;
best bet to use others’ package

Images of rotating teapot

• Full rotation

• Half rotation

N = 400
k = 4

D = 23028

Images are ordered by d=1
embedding according to view

angle

MVU vs. Isomap

• Similarities
Both motivated by isometry
Based on constructing Gram matrix
Eigenvalues reveal dimensionality

• Differences
Semidefinite vs. dynamic programing to find Gram
matrix
Finite vs. asymptotic guarantee
MVU works for manifolds with “holes”

Application: sensor localization

sensors distributed in US cities.
Infer coordinates from limited measurement of

distances
(Weinberger, Sha & Saul, NIPS 2006)

0 d12 ? d14

d21 0 d23 ?
? d32 0 d34

d41 ? d43 0

cities

cities

Embedding in 2D while ignoring distances

Turn distance matrix into adjacency matrix
Compute 2D embedding with Laplacian

eigenmaps
Assumption: measurements exist only if sensors

are close to each other

Adding distance constraints

Start from Lapalcian eigenmap results
Enforce known distances constraints

Find embedding using maximum variance unfolding

Recover almost perfectly!

Conclusion

• Big picture
Large-scale high dimensional data everywhere.
Many of them have intrinsic low dimension
representation.
Nonlinear techniques can be very helpful for
exploratory data analysis and visualization.

• Techniques we sampled today
Manifold learning techniques.
Kernel methods.

Resources

• Manifold learning tutorials by Lawrence K.
Saul (UCSD)

• A bookmark page for manifold learning

http://www.cs.ucsd.edu/~saul/tutorials.html

http://www.cse.msu.edu/~lawhiu/manifold/

http://www.cs.ucsd.edu/~saul/tutorials.html
http://www.cs.ucsd.edu/~saul/tutorials.html
http://www.cse.msu.edu/~lawhiu/manifold/
http://www.cse.msu.edu/~lawhiu/manifold/

Software

• Matlab learning demo

• Manifold learning toolbox

http://www.math.umn.edu/~wittman/mani/

http://www.cs.unimaas.nl/l.vandermaaten/
Laurens_van_der_Maaten/
Matlab_Toolbox_for_Dimensionality_Reduction.html

http://www.math.umn.edu/~wittman/mani/
http://www.math.umn.edu/~wittman/mani/
http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten/Matlab_Toolbox_for_Dimensionality_Reduction.html

