Visualization (Nonlinear dimensionality reduction)

Fei Sha

Yahoo! Research feisha@yahoo-inc.com

CS294 March 18, 2008

Dimensionality reduction

• Question:

How can we detect low dimensional structure in high dimensional data?

• Motivations:

Exploratory data analysis & visualization

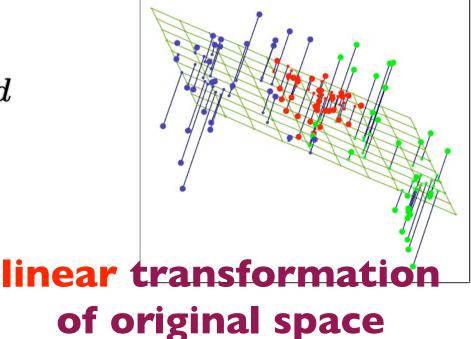
Compact representation

Robust statistical modeling

Linear dimensionality reductions

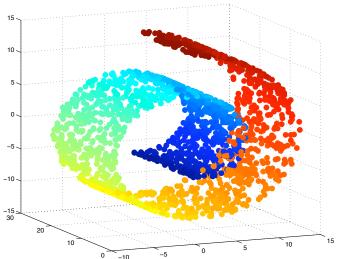
- Many examples (Percy's lecture on 2/19/2008)
 Principal component analysis (PCA)
 Fischer discriminant analysis (FDA)
 Nonnegative matrix factorization (NMF)
- Framework

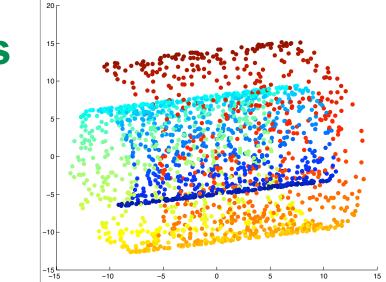
$$oldsymbol{x} \in \Re^D o oldsymbol{y} \in \Re^d$$
 $D \gg d$ $oldsymbol{y} = oldsymbol{U}oldsymbol{x}$



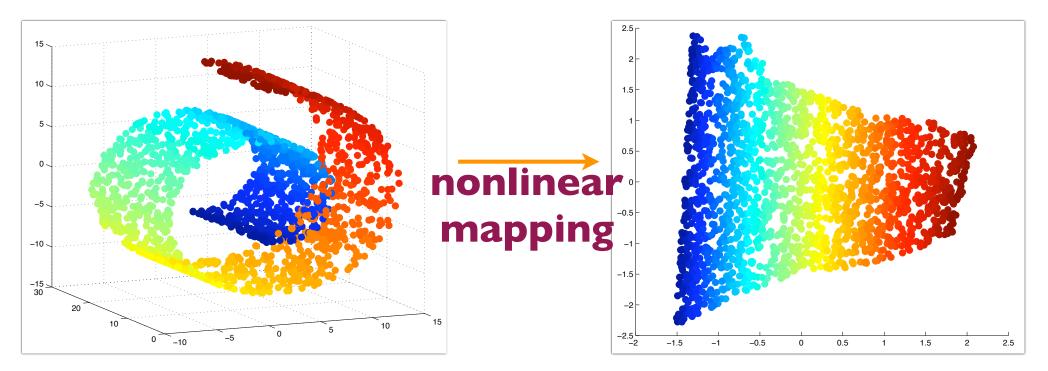
Linear methods are not sufficient

classic toy example of Swiss roll





What we really want is "unrolling"



Simple geometric intuition:

distortion in local areas faithful in global structure

Outline

- Linear method: redux and new intuition Multidimensional scaling (MDS)
- Graph based spectral methods

Isomap

Locally linear embedding

• Other nonlinear methods

Kernel PCA

Maximum variance unfolding (MVU)

Linear methods: redux

PCA: does the data mostly lie in a subspace? If so, what is its dimensionality?

D = 2 d = 1 D = 3 d = 2 D = 3 d = 2

The framework of PCA

• Assumption:

Centered inputs

Projection into subspace

$$\sum_{i} oldsymbol{x}_{i} = oldsymbol{0}$$
 $oldsymbol{y}_{i} = oldsymbol{U} oldsymbol{x}_{i}$ $oldsymbol{U} oldsymbol{U}^{\mathrm{T}} = oldsymbol{I}$

(note: a small change from Percy's notation)

Interpretation

maximum variance preservation

$$rg \max \sum_i \|oldsymbol{y}_i\|^2$$

minimum reconstruction errors

$$rgmin\sum_i \|oldsymbol{x}_i - oldsymbol{U}^{\mathrm{T}}oldsymbol{y}_i\|^2$$

How about preserve pairwise distances?

$$\|oldsymbol{x}_i - oldsymbol{x}_j\| = \|oldsymbol{y}_i - oldsymbol{y}_j\|$$

This leads to a new type of linear methods multidimensional scaling (MDS)

Key observation: from distances to inner products

$$\|m{x}_i - m{x}_j\|^2 = m{x}_i^{ ext{T}}m{x}_i - 2m{x}_i^{ ext{T}}m{x}_j + m{x}_j^{ ext{T}}m{x}_j$$

Recipe for multidimensional scaling

Compute Gram matrix on centered points

$$G = X^{\mathrm{T}}X$$

$$oldsymbol{X} = (oldsymbol{x}_1, oldsymbol{x}_2, \dots, oldsymbol{x}_N)$$

• Diagonalize $G = \sum_{i} \lambda_{i} v_{i} v_{i}^{T} \quad \lambda_{1} \ge \lambda_{2} \ge \cdots \ge \lambda_{N}$ • Derive outputs and estimate dimensionality $d = \min \arg \max \mathbb{1} \left(\sum_{i=1}^{d} \lambda_{i} \ge \text{THRESHOLD} \right)$ $y_{id} = \sqrt{\lambda_{i}} v_{id}$

MDS when only distances are known

We convert distance matrix

$$m{D} = \{d_{ij}^2\}$$
 $d_{ij}^2 = \|m{x}_i - m{x}_j\|^2$

to Gram matrix

$$G = -\frac{1}{2}HDH$$

with centering matrix

$$oldsymbol{H} = oldsymbol{I}_n - rac{1}{n} oldsymbol{1} oldsymbol{1}^{\mathrm{T}}$$

PCA vs MDS: is MDS really that new?

Same set of eigenvalues

$$\frac{1}{N} \boldsymbol{X} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{v} = \lambda \boldsymbol{v} \rightarrow \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \frac{1}{N} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{v} = N \lambda \frac{1}{N} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{v}$$

PCA diagonalization

MDS diagonalization

- Similar low dimensional representation
- Different computational cost

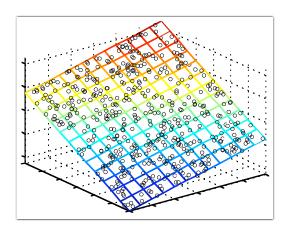
PCA scales quadratically in D

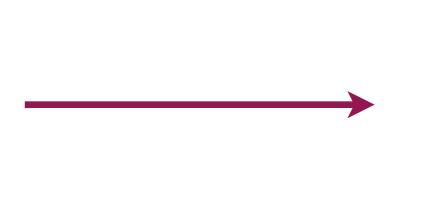
MDS scales quadratically in N

Big win for MDS when D is much greater than N !

How to generalize to nonlinear structures?

All we need is a simple twist on MDS

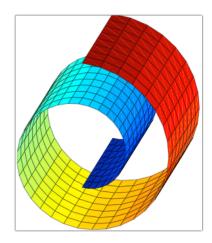


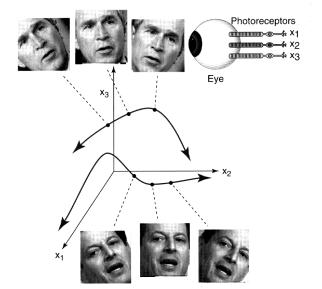


5min Break?

Nonlinear structures

• Manifolds such as



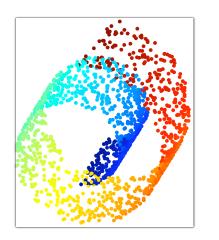


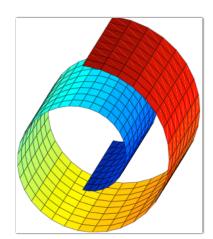
• can be approximately locally with linear structures.

This is a key intuition that we will repeatedly appeal to

Manifold learning

Given high dimensional data sampled from a low dimensional nonlinear submanifold, how to compute a faithful embedding?





Input $\{oldsymbol{x}_i\in\Re^D,i=1,2,\ldots,n\}$

 $\begin{array}{l} \textbf{Output} \\ \{ \boldsymbol{y}_i \in \Re^d, i=1,2,\ldots,n \} \end{array}$

Outline

- Linear method: redux and new intuition
 Multidimensional scaling (MDS)
- Graph based spectral methods
 Isomap
 - Locally linear embedding
- Other nonlinear methods
 - **Kernel PCA**
 - Maximum variance unfolding

A small jump from MDS to Isomap

• Key idea

MDS

Preserve pairwise **Euclidean distances**

A small jump from MDS to Isomap

Key idea

Isomap

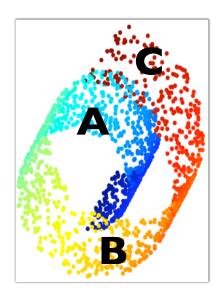
Preserve pairwise geodesic distances

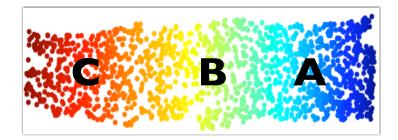
• Algorithm in a nutshell

Estimate geodesic distance along submanifold Perform MDS as if the distances are Euclidean

Why geodesic distances?

Euclidean distance is not appropriate measure of proximity between points on nonlinear manifold.



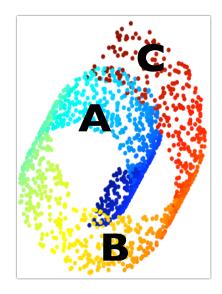


A closer to C in Euclidean distance

A closer to B in geodesic distance

Caveat

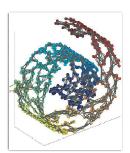
Without knowing the shape of the manifold, how to estimate the geodesic distance?



The tricks will unfold next....

Step 1. Build adjacency graph

- Graph from nearest neighbor
 - **Vertices represent inputs**
 - Edges connect nearest neighbors
- How to choose nearest neighbor
 - k-nearest neighbors
 - **Epsilon-radius ball**
 - Q: Why nearest neighbors?
 - Al: local information more reliable than global information A2: geodesic distance \approx Euclidean distance



Building the graph

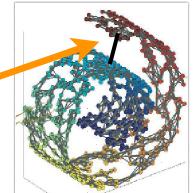
Computation cost

kNN scales naively as O(N²D)

Faster methods exploit data structure (eg, KDtree)

• Assumptions

Graph is connected (if not, run algorithms on each connected component)



Step 2. Construct geodesic distance matrix

Geodesic distances

Weight edges by local Euclidean distance Approximate geodesic by shortest paths

Computational cost

Require all pair shortest paths (Djikstra's algorithm: O(N² log N + N²k))

Require dense sampling to approximate well

(very intensive for large graph)

• Convert geodesic matrix to Gram matrix

Pretend the geodesic matrix is from Euclidean distance matrix

• Diagonalize the Gram matrix

Gram matrix is a dense matrix, ie, no sparsity

Can be intensive if the graph is big.

Embedding

Number of significant eigenvalues yield estimate of dimensionality

Top eigenvectors yield embedding.

Quick summary

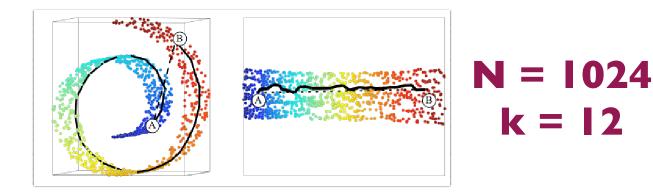
• Build nearest neighbor graph

• Estimate geodesic distances

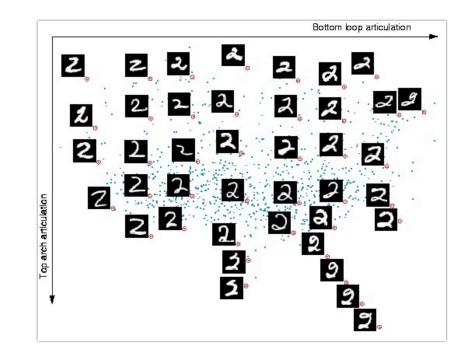
Apply MDS

This would be a recurring theme for many graph based manifold learning algorithms.

Examples



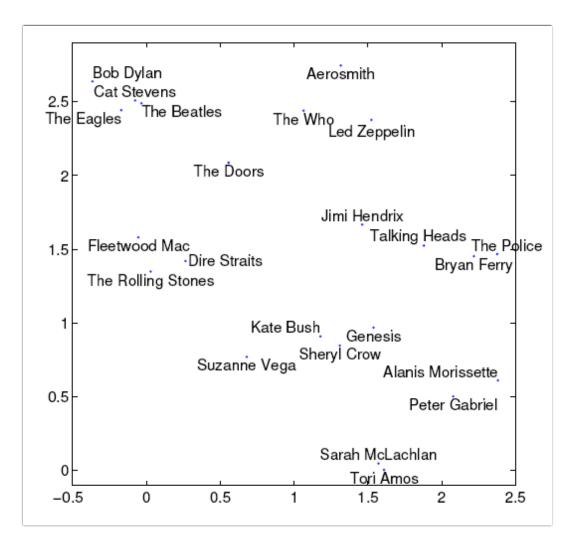
Digit images N = 1000 r = 4.2 D = 400



Applications: Isomap for music

Embedding of sparse music similarity graph (Platt, NIPS 2004)

N = 267,000 E = 3.22 million



Outline

- Linear method: redux and new intuition Multidimensional scaling (MDS)
- Graph based spectral methods
 Isomap
 - Locally linear embedding
- Other nonlinear methods
 - **Kernel PCA**
 - Maximum variance unfolding

Locally linear embedding (LLE)

Intuition

Better off being myopic and trusting only local information

• Steps

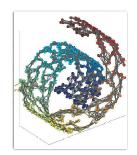
Define locality by nearest neighbors

Encode local information Least square fit locally

Minimize global objective to preserve local information Think globally

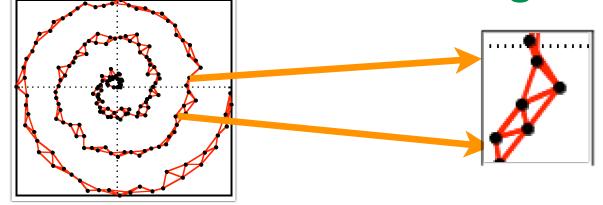
Step 1. Build adjacency graph

- Graph from nearest neighbor
 Vertices represent inputs
 Edges connect nearest neighbors
- How to choose nearest neighbor
 - k-nearest neighbors
 - **Epsilon-radius ball**
 - This step is exactly the same as in Isomap.



Step 2. Least square fits

 Characterize local geometry of each neighborhood by a set of weights



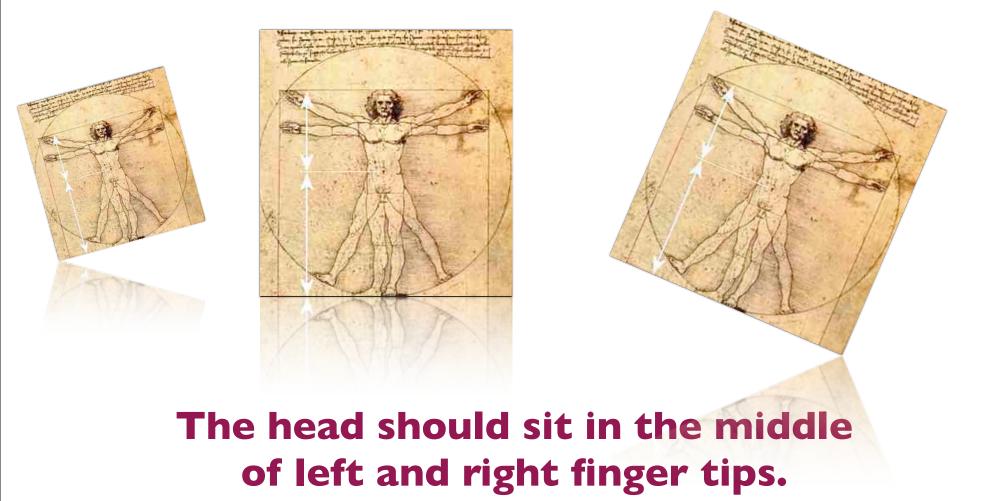
 Compute weights by reconstructing each input linearly from its neighbors

$$\Phi(oldsymbol{W}) = \sum_i \|oldsymbol{x}_i - \sum_k oldsymbol{W}_{ik} oldsymbol{x}_k \|^2$$

subject to $\sum_k W_{ik} = 1$

What are these weights for?

They are shift, rotation, scale invariant.



Step 3. Preserve local information

 The embedding should follow same local encoding

$$oldsymbol{y}_i pprox \sum_k oldsymbol{W}_{ik} oldsymbol{y}_k$$

• Minimize a global reconstruction error

$$\begin{split} \Psi(\boldsymbol{Y}) &= \sum_{i} \|\boldsymbol{y}_{i} - \sum_{k} \boldsymbol{W}_{ik} \boldsymbol{y}_{k}\|^{2} \\ \text{subject to} & \sum_{i} \boldsymbol{y}_{i} = \boldsymbol{0} \\ \frac{1}{N} \boldsymbol{Y} \boldsymbol{Y}^{\mathrm{T}} = \boldsymbol{I} \end{split}$$

Sparse eigenvalue problem

• Quadratic form

$$rg \min \Psi(oldsymbol{Y}) = \sum_{ij} \Psi_{ij} oldsymbol{y}_i^{\mathrm{T}} oldsymbol{y}_j$$
 $oldsymbol{\Psi} = (oldsymbol{I} - oldsymbol{W})^{\mathrm{T}} (oldsymbol{I} - oldsymbol{W})$

• Rayleigh-Ritz quotient

Embedding given by **bottom** eigenvectors **Discard** bottom eigenvector [1 1 ... 1] Other d eigenvectors yield embedding

Summary

Build k-nearest neighbor graph

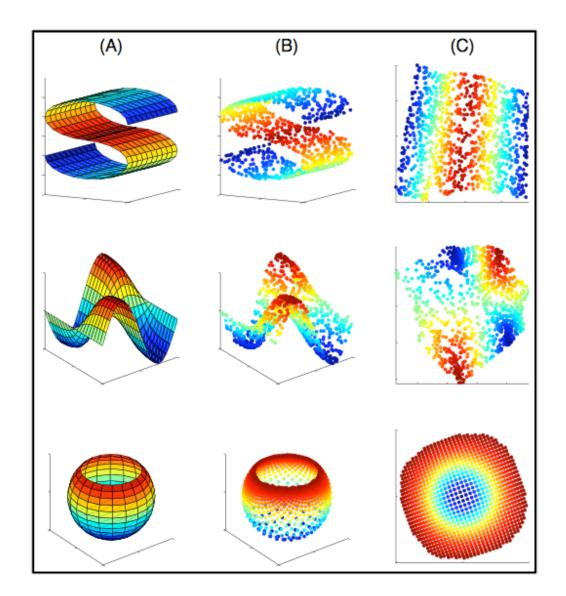
• Solve linear least square fit for each neighbor

• Solve a sparse eigenvalue problem

Every step is relatively trivial, however the combined effect is quite complicated.

Examples

N = 1000 k = 8 D = 3 d = 2



Examples of LLE

• Pose and expression

N = 1965 k = 12 D = 560 d = 2



Recap: Isomap vs. LLE

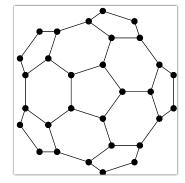
Isomap	LLE
Preserve geodesic distance	Preserve local symmetry
construct nearest neighbor graph; formulate quadratic form: diagonalize	construct nearest neighbor graph; formulate quadratic form: diagonalize
pick top eigenvector; estimate dimensionality	pick bottom eigenvector; does not estimate dimensionality
more computationally expensive	much more contractable

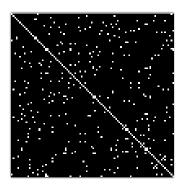
There are still many

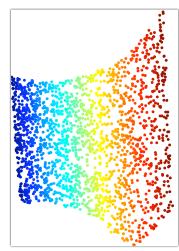
- Laplacian eigenmaps
- Hessian LLE
- Local Tangent Space Analysis
- Maximum variance unfolding

Summary: graph based spectral methods

- Construct nearest neighbor graph
 Vertices are data points
 Edges indicate nearest neighbors
- Spectral decomposition
 - Formulate matrix from the graph
 - **Diagonalize the matrix**
- Derive embedding
 - **Eigenvector as embedding**
 - **Estimate dimensionality**







5min Break?

Outline

- Linear method: redux and new intuition
 Multidimensional scaling (MDS)
- Graph based spectral methods
 Isomap
 - Locally linear embedding
- Other nonlinear methods
 Kernel PCA

Maximum variance unfolding

Another twist on MDS to get nonlinearity

• Key idea

Map data points with nonlinear functions

$$\phi: \boldsymbol{x} \to \phi(\boldsymbol{x})$$

Perform PCA/MDS in the new space

$$\phi(oldsymbol{X})^{\mathrm{T}} \phi(oldsymbol{X}) oldsymbol{v} = \lambda oldsymbol{v}$$
 (MDS: diagonlizing Gram matrix)

The kernel trick

The inner product

$$\phi(oldsymbol{x}_i)^{\mathrm{T}}\phi(oldsymbol{x}_j)$$

is more interesting than the exact form of the mapping function.

For certain mapping function, we can find a kernel function

$$oldsymbol{K}(oldsymbol{x}_i,oldsymbol{x}_j) = \phi(oldsymbol{x}_i)^{\mathrm{T}} \phi(oldsymbol{x}_j)$$

Therefore, all we need to do is to specify a kernel function to find the projections!

Kernel PCA

Algorithm

Select a kernel: Gaussian kernel, string kernel Construct kernel matrix $K = [K_{ij}] = [K(x_i, x_j)]$ Diagonalize the kernel matrix

Caveat

Kernel PCA does not always reduce dimensions. Very important in choosing appropriate kernel Heavy computation for large data sets

• Handle complex data types.

Kernels for numerican data (eg., CPU load) $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2 / \sigma\right)$

"String" kernels for text data (eg. URL/http request) $K(s_i, s_j) = \# of \ common \ substrings$

Building blocks

Multiple kernels can be combined into a single kernel

Outline

- Linear method: redux and new intuition Multidimensional scaling (MDS)
- Graph based spectral methods

Isomap

Locally linear embedding

Other nonlinear methods

Kernel PCA

Maximum variance unfolding

Enforcing distance constraints explicitly

Quadratic programming

\max

$\sum \|oldsymbol{y}_i\|^2$ unfolding centering only if i and j are $\sum_{i} \boldsymbol{y}_{i} = 0$ nearest neighbor! $\|oldsymbol{y}_i-oldsymbol{y}_j\|^2=\|oldsymbol{x}_i-oldsymbol{x}_j\|^2$

Intuition

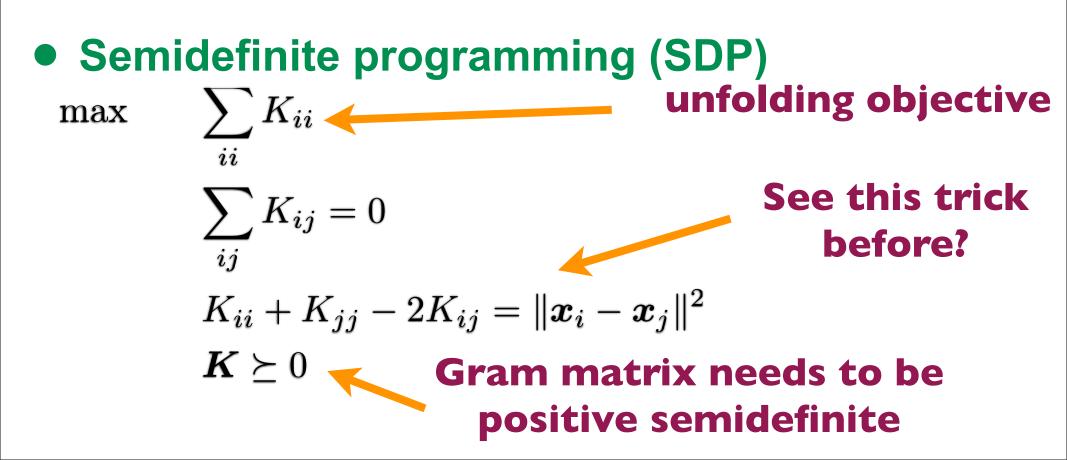
Nearby points are connected with rigid rods Unfold inputs without breaking apart rods.

Rotation allowed

Convex optimization

Change of variables

$$K_{ij} = \boldsymbol{y}_i^{\mathrm{T}} \boldsymbol{y}_j$$



Outline of the MVU algorithm

- Compute nearest neighbors & local distances
- Solve SDP

Convex optimization

Use off-shelf SDP solver

• Analyze the SDP solution

Apply MDS to the kernel matrix

Yield embedding and dimensionality

Implementation: complicated and non-trivial; best bet to use others' package

Images of rotating teapot

Full rotation N = 400 k = 4 D = 23028

Images are ordered by d=l embedding according to view angle

Similarities

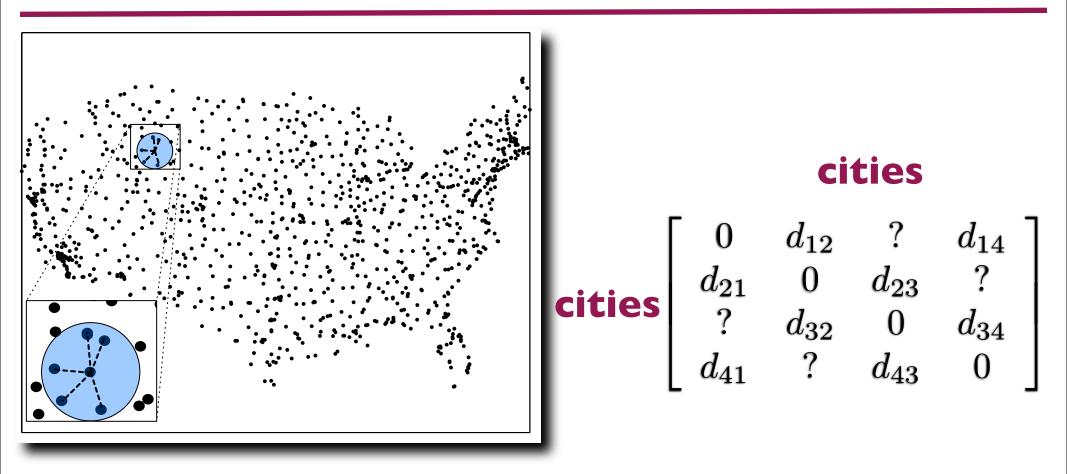
- Both motivated by isometry
- **Based on constructing Gram matrix**
- **Eigenvalues reveal dimensionality**

Differences

Semidefinite vs. dynamic programing to find Gram matrix

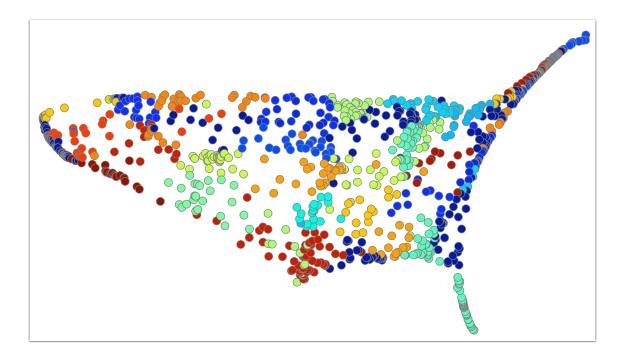
- Finite vs. asymptotic guarantee
- MVU works for manifolds with "holes"

Application: sensor localization



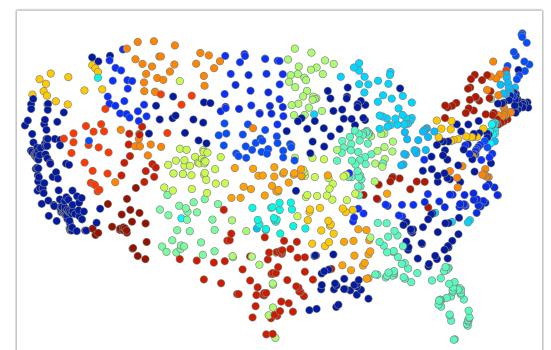
sensors distributed in US cities. Infer coordinates from limited measurement of distances (Weinberger, Sha & Saul, NIPS 2006)

Embedding in 2D while ignoring distances



Turn distance matrix into adjacency matrix Compute 2D embedding with Laplacian eigenmaps Assumption: measurements exist only if sensors are close to each other

Adding distance constraints



Start from Lapalcian eigenmap results Enforce known distances constraints Find embedding using maximum variance unfolding Recover almost perfectly!

Conclusion

• Big picture

Large-scale high dimensional data everywhere.

Many of them have intrinsic low dimension representation.

Nonlinear techniques can be very helpful for exploratory data analysis and visualization.

Techniques we sampled today

Manifold learning techniques.

Kernel methods.

Resources

Manifold learning tutorials by Lawrence K.
 Saul (UCSD)

http://www.cs.ucsd.edu/~saul/tutorials.html

• A bookmark page for manifold learning

http://www.cse.msu.edu/~lawhiu/manifold/

• Matlab learning demo

http://www.math.umn.edu/~wittman/mani/

• Manifold learning toolbox

<u>http://www.cs.unimaas.nl/l.vandermaaten/</u> <u>Laurens van der Maaten/</u> <u>Matlab Toolbox for Dimensionality Reduction.html</u>