
Machine Learning CS 726, Fall 2011

HW05: Gradient descent and friends

Hand in at: http://www.cs.utah.edu/~hal/handin.pl?course=cs726. Remember that only PDF submissions
are accepted. We encourage using LATEX to produce your writeups. See hw00.tex for an example of how to
do so. You can make a .pdf out of the .tex by running “pdflatex hw00.tex”.

1. Show that logistic loss (Equations 6.5 on p87 of the book) is convex for a fixed value of y ∈ ±1 and as
a function of ŷ. It’s easiest (shortest, least cumbersome) to do in terms of derivatives, but you could
also do it directly from the definition of convexity in terms of chords if you prefer.

2. Show that if f(z) is convex in z, then f(w · x) is convex in w for a fixed x. Note: show it directly :
simply saying that linear functions are convex and composition of convex functions is convex is not an
acceptable answer. In particular, show it in terms of the chord definition of convexity. I’ve started the
solution below to set up some notation that you’re free to use or erase.

Let u and w be given, and let β ∈ [0, 1]. Let v = βu + (1 − β)w (so that v is between u and w).
Define fu = f(u · x) and similarly for fv and fw. We wish to show that fv ≤ βfu + (1− β)fv.
TODO: your part here

3. You might notice that Algorithm 23 (for subgradient descent on regularized hinge loss) looks a lot
like Algorithm 5 (the original perceptron algorithm). In fact, the most substantial differences are in
line 5, where HingeRegularizedGD compares y(w · x + b) ≤ 1 whereas Perceptron comparse · · · ≤ 0;
and line 10 in which the weights are regularized. How would you have to change the hinge loss and
change the regularizer to make these two differences go away? (Note even with these changes that
Perceptron would make updates after each example, while HingeRegularizedGD doesn’t update until
after processing all examples, so they’re not completely identical.)

1


