
Machine Learning (CS 726) 29 Nov 2011

Hidden Markov Models

We now return to supervised learning for a bit. However, we are interested in solving problems whose output
has structure. We will begin with the simplest non-trival structure: sequences. There are lots of problems
from langauge and biology that fit in this paradigm.

Sequence labeling is the following problem: we get a sequence of M inputs and want to produce a sequence
of M labels. Training data will be N such input/output pairs.

Example: “The/det man/noun ate/verb a/det sandwith/noun with/prep mayo/noun” We get the sentence
and want to produce the part of speech labels. We will usually talk about a label set Y of size L.

Several non-options:

1. Treat it as a classification problem into ML classes. Doesn’t work – too many classes, M not constant.

2. Treat as M separate L-class classification problems. Works okay, but doesn’t reflect structure (eg.,
unlikely to have “verb” follow “det”).

We adopt a Markov model. This model makes two assumptions:

1. The value of the word depends only on its label and not on surrounding labels/words

2. Conditioned on the K previous labels, the current label is independent of all others

Number 2 is called a K-th order Markov assumption.

The generative model looks something like:

1. Choose a label y1

2. Generate input x1 conditioned on y1

3. For m = 2 . . .M ,

(a) Choose a label ym conditioned on {ym−1, . . . , ym−K}
(b) Generate input xm conditioned on ym

For simplicity we will stick with K = 1; the extension is straightforward.

For this, we need three ingredients:

1. Initial state probabilities π. This is a vector of length L, all positive with sum 1. These are used to
choose y1. πl is the probability that y1 = l.

2. Emission probabilities β. This is a matrix of size LtimesV , where V is the size of the output vocabulary.
βl,v is the probability of “emitting” word v given that the label is l.

3. Transition probabilities α. This is a matrix of size LtimesL, where αp,l is the probability of transi-
tioning to state l given that we were in state p (“p” for previous).

1

Hidden Markov Models 2

Putting this all together, the joint probability of an input sequence x and state sequence y (both of length
M) is:

p(x, y | π, α, β) = πy1
βy1,x1

M∏
m=2

αym−1,ym
βym,xm

It becomes frustrating to have to separate out the first element all the time. So what we’ll do instead is
define y0 to be a state with a unique label z and define αz,· = π. Then, we get:

p(x, y | α, β) =

M∏
m=1

αym−1,ym
βym,xm

=

M∏
m=1

∏
l

(∏
v

β
1[xm=v]
l,v

∏
p

α
1[ym−1=p]
p,l

)1[ym=l]

Given data, we can estimate α and β exactly as in the naive Bayes classification model:

α̂p,l =
of times l follows p

of times p occurs

β̂l,v =
of times v has label l

of times l occurs

We can generalize this to a simple naive Bayes model over emissions, rather than the “label emits word”
part. I.e., if xm itself is a bunch of features, xm,1, . . . , xm,D, then bel becomes a vector of length D instead
of V , but everything else remains the same.

The key problem in such models is at test time: given a word sequence x, find the best label sequence y.
This question is somewhat ill-posed: there are many possible interpretations of “best:”

1. Best = output sequence y that maximizes p(x, y | α, β)

2. Best = output sequence y that maximizes
∏

m p(x, ym | α, β)

Typically people consider the first because it is “parsimonious.”

This problem is most easily considered by picturing a lattice of possible states, with connections between
adjacent time steps.

We ask ourselves: what is the probability that the most likely path will pass through state l at time m? We
store this as Am,l; leaving off conditioning on α and β, we have:

Am,l = max
y1:m−1

p(y1:m−1, x1:m−1, ym = l)

We can compute this probability recursively:

Hidden Markov Models 3

Am+1,l = max
y1:m

p(y1:m, x1:m, ym = l)

= max
y1:m−1

max
p

p(y1:m−1, x1:m−1, ym = p, xm, ym = l)

= max
y1:m−1

max
p

p(y1:m−1, x1:m−1, ym = p)p(xm, ym = l | y1:m−1, x1:m−1, ym = p)

= max
y1:m−1

max
p

p(y1:m−1, x1:m−1, ym = p)p(xm, ym = l | ym = p)

= max
p

[
max
y1:m−1

p(y1:m−1, x1:m−1, ym = p)

]
p(xm, ym = l | ym = p)

= max
p

Am,pp(xm, ym = l | ym = p)

= max
p

Am,pp(ym = l | ym = p)p(xm | ym = l)

= max
p

Am,pαp,lβl,xm

This analysis leads to an efficient, O(ML2) dynamic programming algorithm for finding the most likely state
sequences. The only extra thing we need to do is, for each position (m, l), we need to store a “backpointer”
to where we came from — i.e., to the value of p that maximized the produce. We store these in a ζ matrix:

1. Initialize A0,z = 1 and A0,l = for l 6= z (remember, z is our unique start state).

2. For m = 0, . . . ,M ,

(a) Compute Am+1,l = maxpAm,pαp,lβl,xm

(b) Store ζm+1,l = argmaxpAm,pαp,lβl,xm

Now, all we need to do is extract the most likely state sequence from this lattice. We do this by starting at
the end and working our way backward. I.e., first we compute the most likely state to be in at time M + 1.
That is, argmaxlAM+1,l. Call this n. Now, we recurse backward. The label for time step M is ζM+1,n.
This gives us yM . The label for time step M − 1 is ζM,yM

. This gives us yM−1. In general, we compute
ym = ζm+1,ym+1 .

