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Reasoning over Time

> Often, we want to reason about a sequence of
observations

Speech recognition
Robot localization
User attention
Medical monitoring

>
>
>
>
> Need to introduce time into our models
> Basic approach: hidden Markov models (HMMs)
> More general: dynamic Bayes' nets



Markov Models

> A Markov model is a chain-structured BN
> Each node is identically distributed (stationarity)
> Value of X at a given time is called the state

> As a BN:
6 () (5) -
P(X,) P(X,X;) P(X/ X )

> Parameters: called transition probabilities or dynamics, specify
how the state evolves over time (also, initial probs)



Conditional Independence

> Basic conditional independence:
> Past and future independent of the present
> Each time step only depends on the previous
> This is called the (first order) Markov property

> Note that the chain is just a (growing) BN

» We can always use generic BN reasoning on it (if we truncate
the chain)



Example: Markov Chain

> Weather:
> States: X = {rain, sun}
> Transitions:

0.1

0.9

This 1s a CPT,
not a BN!
L e 0.1
> |nitial distribution: 1.0 sun

> What's the probability distribution after one step?

0.9

P(Xp =sun) = +
P(X2 — SUH|X1 — rain)P(Xl — rain)

+0.1-0.0=0.9



Mini-Forward Algorithm

> Question: probability of being in state x at time t?

> Slow answer:

> Enumerate all sequences of length t whichend in s
» Add up their probabilities

P(X;=sun) = » P(z1,...74_1,sun)
L1...Tt—-1
P(X1 = sun)P(Xo = sun|X1 = sun)P(X3 = sun|Xo = sun)P(X4 = sun|X3 = sun)

P(Xq1 = sun)P(X> = rain| X1 = sun)P(X3 = sun|Xs = rain) P(X4 = sun|X3 = sun)



Mini-Forward Algorithm

> Better way: cached incremental belief updates
> An instance of variable elimination!

Sun Sun Sun Sun

rain rain rain rain

P(xz1) = known

P(xy) = Y P(at|lzi—1)P(x-1)
Ti_1
\ Forward simulation



Example

> From initial observation of sun

(00) (o1) {ois) = (03]

P(X)) P(X)) P(X;) P(X.,)
> From initial observation of rain

(1) (09) (osz) = {03)

P(X)) P(X) P(X;) P(X.,)



Stationary Distributions

> If we simulate the chain long enough:
>  What happens?
> Uncertainty accumulates
> Eventually, we have no idea what the state is!

> Stationary distributions:

> For most chains, the distribution we end up in is independent of
the initial distribution (but not always uniform!)

> Called the stationary distribution of the chain
> Usually, can only predict a short time out



Web Link Analysis

» PageRank over a web graph
> Each web page is a state
> Initial distribution: uniform over pages
> Transitions:
> With prob. c, uniform jump to a
random page (dotted lines)
> With prob. 1-c, follow a random
outlink (solid lines)

> Stationary distribution

Will spend more time on highly reachable pages
E.g. many ways to get to the Acrobat Reader download page
Somewhat robust to link spam (but not immune)

Google 1.0 returned the set of ﬁages_ containing all your keywords in
decreasing rank, now all search engines use link analysis along with
many other factors

YV V V V



Hidden Markov Models

» Markov chains not so useful for most agents
> Eventually you don’t know anything anymore
> Need observations to update your beliefs

> Hidden Markov models (HMMs)

> Underlying Markov chain over states S
> You observe outputs (effects) at each time step
> As a Bayes' net:

O OaOn) i




Example

Re| PRy
[ 0.7
(Fan y— Lo y—Qn
P(U,)
0.9
7| o
Umbrella, _, Umbrella, Umbrella, |

> An HMM is defined by:
> Initial distribution: P (X))
> Transitions: P(X:X: )
> Emissions: P(E|X)



Conditional Independence

> HMMs have two important independence properties:
» Markov hidden process, future depends on past via the present
> Current observation independent of all else given current state

() -~

> Quiz: does this mean that observations are independent given no
evidence?

> [No, correlated by the hidden state]



Real HMM Examples

> Speech recognition HMMs:
> QObservations are acoustic signals (continuous valued)

> States are specific positions in specific words (so, tens of
thousands)

> Machine translation HMMs:
> Observations are words (tens of thousands)
> States are translation options

> Robot tracking:
> QObservations are range readings (continuous)
> States are positions on a map (continuous)



Filtering / Monitoring

> Filtering, or monitoring, is the task of tracking the distribution B(X

(the belief state
> We start with B(X) in an initial setting, usually uniform

> As time passes, or we get observations, we update B(X)
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Example: Robot Localization

Example from
Michael Pfeiffer

I
Prob 0 1
t=0
Sensor model: never more than 1 mistake
Motion model: may not execute action with small prob.




Example: Robot Localization

Prob 0 1

t=1
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Example: Robot Localization

Prob 0 1

t=2



Example: Robot Localization

Prob 0 1

t=3



Example: Robot Localization

Prob 0 1

t=4



Example: Robot Localization

Prob 0 1

t=5



Passage of Time

> Assume we have current belief P(X | evidence to date)
B(X:) = P(X¢|e1:)

> Then, after one time step passes:
P(Xt1le1:t) =Y P(Xpyq|ze)P(xtler:t)
T

> Or, compactly:

B'(Xy41) = ) P(X'|z)B(wt)

> Basic idea: beliefs get “pushed” through the transitions

> With the “B” notation, we have to be careful about what time step t the belief
IS about, and what evidence it includes



Example: Passage of Time

> As time passes, uncertainty “accumulates”

Hn
u
n

u

T=1 T=2 T=35

nu

B'(X) =) P(X'|z)B(x)

Transition model: ships usually go clockwise



Observation

> Assume we have current belief P(X | previous evidence):
B'(Xi11) = P(Xy11le1:t)

> Then:

P(Xiq1ler:p41) o< P(ept1|Xp41) P(Xyp1le1)

B(X;11) < P(e]X)B'(X;11)

> Basic idea: beliefs reweighted by likelihood of evidence

> Unlike passage of time, we have to renormalize



Example: Observation

> As we get observations, beliefs get reweighted, uncertainty
“decreases’

<0.01 <0.01 <0.01|<0.01 <0.01<0.01

Before observation After observation

B(X) x P(e|X)B'(X)



Example HMM

0.500 0.627
0.500 0.373
True 0.500 0.518 0.8’83
False 0.500 0.182 0.117
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Example HMM

ﬂ

A 4




Updates: Time Complexity

> Every time step, we start with current P(X | evidence)
>  We must update for time:

P(Xtle1:4—1) oc ) P(Xilme—1)P(zt-1le1:t—1)

Lt—1
> We must update for observation:
P(X¢le1:t) oc P(eg| X)) P(X¢leq:4—1)

> 30, linear in time steps, quadratic in number of states [X]|
> Of course, can do both at once, too



The Forward Algorithm

> (Can do belief propagation exactly as in previous slides,
renormalizing each time step

> In the standard forward algorithm, we actually calculate P(X,e),
without normalizing (it's a special case of VE)

P(x¢le-¢) o< P(x¢, eq:¢)

= > P(x—1,xt,€1:1)

Lt—1

= Y P(z¢_1,e1:+—1)P(xt|zs_1) P(et|zt)

Lt—1

= P(et|zt) > P(wi|lwe—1)P(zi—1,€1:4-1)

Lt—1



Particle Filtering

> Sometimes |X] is too big to use exact inference
> |X] may be too big to even store B(X)
> E.g. Xis continuous

> |X|? may be too big to do updates

> Solution: approximate inference
> Track samples of X, not all values

» Time per step is linear in the number of samples
> But: number needed may be large

> This is how robot localization works in practice

0.0 { 0.1 | 0.0

0.0 | 0.0 | 0.2

0.0 [ 0.2 | 0.5
@

@0

. ...




Particle Filtering: Time

> Each particle is moved by sampling its
next position from the transition model

v’ = sample(P(X'|x))

> This is like prior sampling — samples are their
own weights

» Here, most samples move clockwise, but some
move in another direction or stay in place

> This captures the passage of time

> If we have enough samples, close to the exact
values before and after (consistent)

o®
el @




Particle Filtering: Observation

> Slightly trickier:
> We don’t sample the observation, we fix it

> This is similar to likelihood weighting, so
we downweight our samples based on the
evidence

w(x) = P(e|x)

B(X) x P(e|X)B'(X)

> Note that, as before, the probabilities
don’t sum to one, since most have been
downweighted (they sum to an
approximation of P(e))

q

O op
o.o @9
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Particle Filtering: Resampling

> Rather than tracking weighted samples,
we resample

> N times, we choose from our weighted
sample distribution (i.e. draw with
replacement)

> This is equivalent to renormalizing the
distribution

> Now the update is complete for this time
step, continue with the next one




Robot Localization

> In robot localization:
> We know the map, but not the robot’s position
> QObservations may be vectors of range finder readings

> State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X

> Particle filtering is a main technique

34 Hal Daumé Il (me@hal3.name) CS 726: HMMs



SLAM

> SLAM = Simultaneous Localization And Mapping
> We do not know the map or our location

> Our belief state is over maps and positions!

> Main techniques: Kalman filtering (Gaussian HMMs) and
particle methods
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DP-SLAM, Ron Parr



Most Likely Explanation

> Question: most likely sequence ending in x at t?
> E.qg. if sun on day 4, what's the most likely sequence?
> Intuitively: probably sun all four days

> Slow answer: enumerate and score

P(X; = sun) = Zb‘lm%tx—1 P(xq1,...24_1,sun)

P(X1 = sun)P(Xp = sun|X1 = sun) P(X3 = sun|Xo = sun)P(X4 = sun|X3 = sun)

P(X1 = sun)P(Xp = rain| X1 = sun) P(X3 = sun| Xy = rain) P(X4 = sun|X3 = sun)



Mini-Viterbi Algorithm

> Better answer: cached incremental updates

Sun Sun Sun Sun

rain rain rain rain

> Define:
mi[z] = max P(x1:4—1,2)

at|z] = arg max P(xy:4-1,7)

> Read best sequence off of m and a vectors




Mini-Viterbi

Sun Sun Sun Sun

rain rain rain rain

mylz] = max P(z1:-1,2)

max P(xq1:¢—1)P _
max P(z1:—1)P(z|zt—1)

max P(x¢|z;—1) max P(z1:4-1)
Li—1 L1:t—2

max P(xt|xi—1)mi—1[z]
t—1

m1lx] = P(x1)



Viterbi Algorithm

> Question: what is the most likely state sequence given the
observations?

» Slow answer: enumerate all possibilities
> Better answer: cached incremental version

T].p = ar%p;aXP(ajl:ﬂel:T)
my|ze] = CUT?—Xl P(x1:4—1,Tt,€1:¢)
= Mmax P(z1:-1, e1:t—1) P(xe|zs—1) Plet|2t)

= P(et|z¢) ":pt?lXP(ﬂ?tla?t—l)xﬂl’!aX P(@14_1,€141)

= P(et|xt) rﬂf‘fp(mﬂifit—l)mt—l[wt—l]



Example
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