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Reasoning over Time

➢ Often, we want to reason about a sequence of 
observations

➢ Speech recognition
➢ Robot localization
➢ User attention
➢ Medical monitoring

➢ Need to introduce time into our models
➢ Basic approach: hidden Markov models (HMMs)
➢ More general: dynamic Bayes’ nets
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Markov Models

➢ A Markov model is a chain-structured BN
➢ Each node is identically distributed (stationarity)
➢ Value of X at a given time is called the state
➢ As a BN:

➢ Parameters: called transition probabilities or dynamics, specify 
how the state evolves over time (also, initial probs)

X2X1 X3 X4

P X1 P X2∣X1 P XT∣XT−1
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Conditional Independence

➢ Basic conditional independence:
➢ Past and future independent of the present
➢ Each time step only depends on the previous
➢ This is called the (first order) Markov property

➢ Note that the chain is just a (growing) BN
➢ We can always use generic BN reasoning on it (if we truncate 

the chain)

X2X1 X3 X4
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Example: Markov Chain

➢ Weather:
➢ States: X = {rain, sun}
➢ Transitions:

➢ Initial distribution: 1.0 sun
➢ What’s the probability distribution after one step?

rain sun

0.9

0.9

0.1

0.1

This is a CPT, 
not a BN!
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Mini-Forward Algorithm

➢ Question: probability of being in state x at time t?
➢ Slow answer:

➢ Enumerate all sequences of length t which end in s
➢ Add up their probabilities

…
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Mini-Forward Algorithm

➢ Better way: cached incremental belief updates
➢ An instance of variable elimination!

sun

rain

sun

rain

sun

rain

sun

rain

Forward simulation



CS 726: HMMs8 Hal Daumé III (me@hal3.name)

Example

➢ From initial observation of sun

➢ From initial observation of rain

P(X1) P(X2) P(X3) P(X∞)

P(X1) P(X2) P(X3) P(X∞)
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Stationary Distributions

➢ If we simulate the chain long enough:
➢ What happens?
➢ Uncertainty accumulates
➢ Eventually, we have no idea what the state is!

➢ Stationary distributions:
➢ For most chains, the distribution we end up in is independent of 

the initial distribution (but not always uniform!)
➢ Called the stationary distribution of the chain
➢ Usually, can only predict a short time out
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Web Link Analysis

➢ PageRank over a web graph
➢ Each web page is a state
➢ Initial distribution: uniform over pages
➢ Transitions:

➢ With prob. c, uniform jump to a
random page (dotted lines)

➢ With prob. 1-c, follow a random
outlink (solid lines)

➢ Stationary distribution
➢ Will spend more time on highly reachable pages
➢ E.g. many ways to get to the Acrobat Reader download page
➢ Somewhat robust to link spam (but not immune)
➢ Google 1.0 returned the set of pages containing all your keywords in 

decreasing rank, now all search engines use link analysis along with 
many other factors
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Hidden Markov Models

➢ Markov chains not so useful for most agents
➢ Eventually you don’t know anything anymore
➢ Need observations to update your beliefs

➢ Hidden Markov models (HMMs)
➢ Underlying Markov chain over states S
➢ You observe outputs (effects) at each time step
➢ As a Bayes’ net:

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Example

➢ An HMM is defined by:
➢ Initial distribution:
➢ Transitions:
➢ Emissions:

P X1
P XT∣XT−1

P E∣X 
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Conditional Independence
➢ HMMs have two important independence properties:

➢ Markov hidden process, future depends on past via the present
➢ Current observation independent of all else given current state

➢ Quiz: does this mean that observations are independent given no 
evidence?

➢ [No, correlated by the hidden state]

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Real HMM Examples
➢ Speech recognition HMMs:

➢ Observations are acoustic signals (continuous valued)
➢ States are specific positions in specific words (so, tens of 

thousands)

➢ Machine translation HMMs:
➢ Observations are words (tens of thousands)
➢ States are translation options

➢ Robot tracking:
➢ Observations are range readings (continuous)
➢ States are positions on a map (continuous)
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Filtering / Monitoring
➢ Filtering, or monitoring, is the task of tracking the distribution B(X) 

(the belief state)
➢ We start with B(X) in an initial setting, usually uniform
➢ As time passes, or we get observations, we update B(X)
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Example: Robot Localization

t=0
Sensor model: never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer
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Example: Robot Localization

t=1

10Prob
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Example: Robot Localization

t=2

10Prob
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Example: Robot Localization

t=3

10Prob
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Example: Robot Localization

t=4

10Prob
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Example: Robot Localization

t=5

10Prob



CS 726: HMMs22 Hal Daumé III (me@hal3.name)

Passage of Time
➢ Assume we have current belief P(X | evidence to date)

➢ Then, after one time step passes:

➢ Or, compactly:

➢ Basic idea: beliefs get “pushed” through the transitions
➢ With the “B” notation, we have to be careful about what time step t the belief 

is about, and what evidence it includes
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Example: Passage of Time
➢ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

Transition model: ships usually go clockwise
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Observation
➢ Assume we have current belief P(X | previous evidence):

➢ Then:

➢ Or:

➢ Basic idea: beliefs reweighted by likelihood of evidence

➢ Unlike passage of time, we have to renormalize
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Example: Observation
➢ As we get observations, beliefs get reweighted, uncertainty 

“decreases”

Before observation After observation
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Example HMM



CS 726: HMMs27 Hal Daumé III (me@hal3.name)

Example HMM

S S

E

S

E
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Updates: Time Complexity

➢ Every time step, we start with current P(X | evidence)
➢ We must update for time:

➢ We must update for observation:

➢ So, linear in time steps, quadratic in number of states |X|
➢ Of course, can do both at once, too
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The Forward Algorithm

➢ Can do belief propagation exactly as in previous slides, 
renormalizing each time step

➢ In the standard forward algorithm, we actually calculate P(X,e), 
without normalizing (it’s a special case of VE)
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Particle Filtering
➢ Sometimes |X| is too big to use exact inference

➢ |X| may be too big to even store B(X)
➢ E.g. X is continuous
➢ |X|2 may be too big to do updates

➢ Solution: approximate inference
➢ Track samples of X, not all values
➢ Time per step is linear in the number of samples
➢ But: number needed may be large

➢ This is how robot localization works in practice

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5
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Particle Filtering: Time

➢ Each particle is moved by sampling its 
next position from the transition model

➢ This is like prior sampling – samples are their 
own weights

➢ Here, most samples move clockwise, but some 
move in another direction or stay in place

➢ This captures the passage of time
➢ If we have enough samples, close to the exact 

values before and after (consistent)
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Particle Filtering: Observation

➢ Slightly trickier:
➢ We don’t sample the observation, we fix it
➢ This is similar to likelihood weighting, so 

we downweight our samples based on the 
evidence

➢ Note that, as before, the probabilities 
don’t sum to one, since most have been 
downweighted (they sum to an 
approximation of P(e))
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Particle Filtering: Resampling

➢ Rather than tracking weighted samples, 
we resample

➢ N times, we choose from our weighted 
sample distribution (i.e. draw with 
replacement)

➢ This is equivalent to renormalizing the 
distribution

➢ Now the update is complete for this time 
step, continue with the next one
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Robot Localization
➢ In robot localization:

➢ We know the map, but not the robot’s position
➢ Observations may be vectors of range finder readings
➢ State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X)
➢ Particle filtering is a main technique
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SLAM
➢ SLAM = Simultaneous Localization And Mapping

➢ We do not know the map or our location
➢ Our belief state is over maps and positions!
➢ Main techniques: Kalman filtering (Gaussian HMMs) and 

particle methods

DP-SLAM, Ron Parr
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Most Likely Explanation

➢ Question: most likely sequence ending in x at t?
➢ E.g. if sun on day 4, what’s the most likely sequence?
➢ Intuitively: probably sun all four days

➢ Slow answer: enumerate and score

…
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Mini-Viterbi Algorithm

➢ Better answer: cached incremental updates

➢ Define:

➢ Read best sequence off of m and a vectors

sun

rain

sun

rain

sun

rain

sun

rain
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Mini-Viterbi

sun

rain

sun

rain

sun

rain

sun

rain
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Viterbi Algorithm
➢ Question: what is the most likely state sequence given the 

observations?
➢ Slow answer: enumerate all possibilities
➢ Better answer: cached incremental version
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Example


