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Gaussian Mixture Models

We can think of k-means clustering in a probabilistic framework. Suppose that we have a Gaussian centered
at each of the means, then we can get the probability of the data set as:

p(x1:N | c1:N ) =
∏
n

Nor(xn | µcn
, σ2I)

Here, µk is the the mean of cluster k. (For now, we assume common variance.)

We can think of the clustering problem as trying to find good µks.

Change of notation: Instead of cn being the cluster for data point n, let zn ∈ {0, 1}K be an indicator vector
for data point n. I.e., zn,k = 1 if xn is in k and = 0, otherwise.

Model: Generate each data point by first choosing among one of k clusters, each with probability πk. Then
generate the data point by a Gaussian centered at µk. In equations:

p(x1:N , z1:N,1:K | µ1:K , σ
2, π) =

∏
n

∏
k

{
πkNor(xn | µk, σ2I)

}zn,k

=
∏
n

∏
k

{
πk(2π(σ2)d)−1/2 exp

[
− 1

2σ2
||xn − µk||2

]}zn,k

From this, we get the likelihood of the data by summing over the unknown zs:

p(x | µ, σ2, π) =
∑

z1:N,1:K

∏
n

∏
k

{
πk(2πσ2d)−1/2 exp

[
− 1

2σ2
||xn − µk||2

]}zn,k

=
∏
n

∑
zn,1:K

∏
k

{
πk(2πσ2d)−1/2 exp

[
− 1

2σ2
||xn − µk||2

]}zn,k

So now we follow our standard recipe of taking logs and derivatives...

log p(x | µ, σ2, π) =
∑
n

log
∑
zn

∏
k

{
πk(2πσ2d)−1/2 exp

[
− 1

2σ2
||xn − µk||2

]}zn,k

But at this point we get stuck!

If we knew z, we could do this easily:

log p(x, z | µ, σ2, π) =
∑
n

∑
k

zn,k
{

log πk + logNor(xn | µk, σ2I)
}

We call the value with z the “complete log likelihood” and the value without z the “incomplete log likelihood.”
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The idea for clustering with GMMs is the same as for k-means. We will make an initial guess at z, and then
try to iteratively refine it. This turns out to be a special case of the “expectation maximization” algorithm,
which we will discuss shortly in more generality.

In k-means, we made “hard” guesses at the clusters: the z vector we considered had a one in a single location
and zeros everywhere else. In Gaussian mixture models, we make “soft” guesses. The z vector will satisfy
zn,k ≥ 0 for all n, k and

∑
k zn,k = 1 for all n. Thus, it’s a probabilistic guess at the clustering.

Given some setting of µ and σ2, we can make guesses at z by just looking at their expectations:

Ep(z | x,µ,σ2,π)zn,k = 1× p(zn,k = 1 | xn, µ, σ2, π) + 0× p(zn,k = 0 | xn, µ, σ2, π)

= p(zn,k = 1 | xn, µ, σ2, π)

=
p(xn | zn,k = 1, µ, σ2)p(zn,k = 1 | π)∑
k′ p(xn | zn,k′ = 1, µ, σ2)p(zn,k′ = 1 | π)

=
Nor(xn | µk, σ2)πk∑
k′ Nor(xn | µk′ , σ2)πk′

These expectations give us a soft clustering for each data point into each of the k clusters.

Now, using these “guesses”, we want to maximize the complete data log likelihood with respect to µ and σ2.
To do this, we take the gradient of the complete likelihood with respect to π, µ and σ2.

We do π first. For this, we actually need to introduce a Lagrange multiplier to ensure that the constraints
on π are satisfied (πk ≥ 0 and

∑
k πk = 1). This gives us an augmented likelihood function of:

∑
n

∑
k

zn,k log πk − λ

(∑
k

πk − 1

)

We differentiate this with respect to πk to get:

∑
n

zn,k
πk
− λ =

∑
n

zn,k − λπk = 0

Summing over all K, we get that λ =
∑
n

∑
k zn,k = N , so:

πk =
1
N

∑
n

zn,k

This makes intuitive sense!

Next, we’ll take care of µk. These are somewhat easier since we don’t need to worry about constraints, so
there are no Lagrange multipliers.
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Here, we take the gradient of the complete log likelihood with respect to µk:

∇µk
log p(x, z | µ, σ2, π) =

∑
n

zn,k∇µk
logNor(xn | µk, σ2I)

=
∑
n

zn,k∇µk

−1
2σ2
||xn − µk||2

= −
∑
n

zn,k
1
σ2

(xn − µk)

We equate this to zero to give:

∑
n

zn,k
1
σ2

(µk − xn) = 0

=⇒
∑
n

zn,k
1
σ2
µk =

∑
n

zn,k
1
σ2
xn

=⇒µk
∑
n

zn,k =
∑
n

zn,kxn

=⇒µk =
∑
n

zn,k∑
n′ zn′,k

xn

Again, this result is intuitive!

Finally, we deal with σ2.

∇σ2 log p(x, z | µ, σ2, π) =
∑
n

∑
k

zn,k∇σ2 logNor(xn | µk, σ2)

=
∑
n

∑
k

zn,k∇σ2

[
−d
2

log(σ2)− 1
2σ2
||xn − µk||2

]
=
∑
n

∑
k

zn,k

[
−d
2σ2

+
1

2σ4
||xn − µk||2

]

We set this equal to zero to obtain:

∑
n

∑
k

zn,k
d

2σ2
=
∑
n

∑
k

zn,k
1

2σ4
||xn − µk||2

=⇒ d

σ2

∑
n

∑
k

zn,k =
1
σ4

∑
n

∑
k

zn,k ||xn − µk||2

=⇒dNσ2 =
∑
n

∑
k

zn,k ||xn − µk||2

=⇒σ2 =
1
dN

∑
n

∑
k

zn,k ||xn − µk||2
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Putting this all together, we obtain the following algorithm:

• Initialize cluster centers µ1:K , π and σ2

• Iterate T times . . .

– Compute expectation of z variables by:

Ep(z | x,µ,σ2,π)zn,k =
Nor(xn | µk, σ2)πk∑
k′ Nor(xn | µk′ , σ2)πk′

– Compute new values of π, µ, σ2 by:

πk =
1
N

∑
n

zn,k

µk =
∑
n

zn,k∑
n′ zn′,k

xn

σ2 =
1
dN

∑
n

∑
k

zn,k ||xn − µk||2

One can obtain a more general solution, where we use full covariance matrices and/or cluster-specific covari-
ance matrices.


