
Machine Learning (CS 726) 1 Dec 2011

Hidden Markov Models II

We now shift back to unsupervised learning. We want to follow the EM framework for inference in hidden
Markov models. The basic idea is to think of the state lattice, and ask yourself “what is the probability of
going through a particular node.” This will give us the “fractional count” that we use to re-estimate the
parameters of the model.

The solution to this problem has many names: the forward-backward algorithm, the inside-outside algorithm,
the Baum-Welch algorithm, etc. (essentially because it’s been re-derived a bunch of times). The intuition is
that the “forward” probabilities compute the likelihood of getting to a node; the “backward” probabilities
compute the likelihood of getting from that node to the end. We multiply them together, and voila, we have
the probability of being at that node.

The “forward” procedure is a recursive process, analogous to the Viterbi algorithm. The difference is that
in the Viterbi algorithm we asked “what is the probability of getting to this node assuming we’ve followed
the optimal path thus far?” In forward, we ask “what is the probability of getting to this node, period?”

In particular, let:

αi(t) = P (x1, x2, . . . , xt−1, yt = i | Θ)

Here, x is the observed sequence, y is the latent sequence, and Θ are all the model parameters. This is the
probability of getting to state i at time t, and observing the sequence up to t− 1 in doing so.

We compute these recursively as:

αi(1) = πi

This is the base case: the probability of observing nothing and getting to state i at time 1 is just the
probability of starting in state i.

αj(t+ 1) = P (x1, x2, . . . , xt, yt+1 = j | Θ)

= P (x1, x2, . . . , xt−1, xt, yt+1 = j | Θ)

=
∑
i

P (x1, x2, . . . , xt−1, xt, yt = i, yt+1 = j | Θ)

=
∑
i

P (x1, x2, . . . , xt−1, yt = i | Θ)P (xt, yt+1 = j | yt = i,Θ)

=
∑
i

αi(t)P (yt+1 = j | yt = i,Θ)P (xt | yt+1 = j,Θ)

=
∑
i

αi(t)aijbj,xt

The first line is definition, the second is just expanding, the third is marginalizing over yt, the fourth is chain
rule, the fifth is applying the definition of α, the sixth is Markov assumption and the last step is plugging in
a and b tables.

The backward procedure is entirely analogous. Define:

βi(t) = P (xt, . . . , xT | yt = i,Θ)

This is the probability of the sequence of observations xt, . . . , xT being emitted, given that the machine
starts in state i at time t.
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As suggested by the name, we compute these right-to-left:

βi(T + 1) = 1

The probability of doing nothing is just 1, no matter what state we’re in.

βi(t) = P (xt, . . . , xT | yt = i,Θ)

= P (xt, xt+1, . . . , xT | yt = i,Θ)

=
∑
j

P (xt, xt+1, . . . , xT , yt+1 = j | yt = i,Θ)

=
∑
j

P (xt, yt+1 = j | yt = i,Θ)P (xt+1, . . . , xT | yt = i, xt, yt+1 = j,Θ)

=
∑
j

P (xt | yt = i,Θ)P (yt+1 = j | yt = i,Θ)P (xt+1, . . . , xT | yt+1 = j,Θ)

=
∑
j

bi,xt
aijP (xt+1, . . . , xT | yt+1 = j,Θ)

=
∑
j

bi,xt
aijβj(t+ 1)

Again, first is definition, second is expanding, third is marginalizing over yt+1, fourth is chain rule, fifth is
Markov assumption, sixth is definition of model parameters and last is applying the defition of β recursively.

Now, the magic happens. We want to compute the probability that we are in some lattice state at some
point in time:

P (x, yt = i | Θ) = P (x1, . . . , xT , yt = i | Θ)

= P (x1, . . . , xt−1, yt = i, xt, . . . , xT | Θ)

= P (x1, . . . , xt−1, yt = i | Θ)P (xt, . . . , xT | x1, . . . , xt−1, yt = i,Θ)

= P (x1, . . . , xt−1, yt = i | Θ)P (xt, . . . , xT | yt = i,Θ)

= αi(t)βi(t)

Which gives us an easy way to compute the probability of being in some state at some time.

Note that we can further compute:

P (x | Θ) =

K∑
i=1

αi(t)βi(t)

for any t. (This is a good debugging tip!!!)

Now, if we want to do EM, we need fractional counts for “how many times does state i transition to state
j” (to get the transition probabilities) and “how many times does state i emit observation x?”.

To get these, define:

γi(t) = P (yt = i | x,Θ)

=
P (yt = i,x | Θ)

P (x | Θ)

=
αi(t)βi(t)∑
j αj(t)βj(t)
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This is the probability of hitting a single state.

Similarly, defin:

δi,j(t) = P (yt = i, yt+1 = j | x,Θ)

=
P (yt = i, yt+1 = j,x | Θ)

P (x | Θ)

=
αi(t)ai,jbi,xtβj(t+ 1)∑

k αk(t)βk(t)

This is the probability of hitting a single transition.

Then, summing, we get:

∑
t

γi(t) = expected number of transitions from state i in x∑
t

δi,j(t) = expected number of transitions from state i to state j in x

Combining all of this, we can get re-estimated probabilities:

π̂i = expected frequency in state i at time 1

= γi(1)

âi,j =
expected transitions from i to j

expected transitions from i

=

∑
t δi,j(t)∑
t γi(t)

b̂i,x =
expected transitions from i with x observed

expected transitions from i

=

∑
t γi(t)1[xt = x]∑

t γi(t)

And that’s it for EM!


