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Questions
• What is the most probable configuration?

• What is the marginal probability for a node 
or group of nodes?

These questions can be attacked by Simulated 
Annealing or Monte Carlo Simulation, but there 
are often much more efficient methods.

Belief propagation is one method, but one 
should remember that there are others!



Marginal Probabilities = 
local magnetization

Ising Model



Computer Vision and 
Signal Processing

Marginal Probabilities = 
“beliefs” about possible 
underlying scenes



Observed Variables

=

Observed Variables induce a local 
“evidence” factor node. 



Error-correcting Codes

+ + +

Marginal Probabilities = A posteriori bit probabilities

(Tanner, 1981 
Gallager, 1963)



Inference Engines

A S

T L B

E

D

X
(example adapted from Lauritzen, 1992)

Marginal Probabilities = 
“beliefs” about possible 
diagnoses

(Pearl, 1988)



Equivalent Graphical Models

• Markov Random Fields: Use only variable 
nodes. Factor nodes are defined implicitly 
when all nodes in a “clique” are connected 
to each other.

• Forney Factor Graphs: Use only factor 
nodes. Variables live on edges. Use equality 
factor nodes to convert ordinary factor 
graphs into Forney factor graphs

• Bayesian Networks: Use directed graphs 
which imply conditional probabilities.
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Belief Propagation

i

“beliefs”         “messages”

a

The “belief” is the BP approximation 
of the marginal probability.
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BP Message-update Rules

Using we get the “Sum-Product” 
message-update rules:

aii a
=
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BP Is Exact for Trees
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Max-Product BP

Max-Product (a.k.a. min-sum) message-update 
rules provably give the most probable 
configuration for graphs without cycles. This 
algorithm is also known as the Viterbi algorithm.



Outline

• Factor Graphs

• Message Passing Algorithms

• Free Energy Approximations



Variational Free Energies

Brief Article

The Author

March 20, 2008

p(X) =
1
Z

exp

(
−

∑

a

Ea(Xa)

)
(1)

F = U − TS =
∑

s

psEs + T
∑

s

ps log ps (2)

1



Variational Free Energies

Brief Article

The Author

March 20, 2008

p(X) =
1
Z

exp

(
−

∑

a

Ea(Xa)

)
(1)

F = U − TS =
∑

s

psEs + T
∑

s

ps log ps (2)

1

Brief Article

The Author

March 20, 2008

p(X) =
1
Z

exp

(
−

∑

a

Ea(Xa)

)
(1)

F = U − TS =
∑

s

psEs + T
∑

s

ps log ps (2)

G(bs) =
∑

s

bsEs + T
∑

s

bs log bs (3)

1

Optimizing G(bs), with a normalized bs,
we obtain Boltzmann’s Law:
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Variational Derivation of 
Mean-Field Theory 

Choose the bs from a limited and tractable sub-space: 

Brief Article

The Author

March 20, 2008

p(X) =
1
Z

exp

(
−

∑

a

Ea(Xa)

)
(1)

F = U − TS =
∑

s

psEs + T
∑

s

ps log ps (2)

G(bs) =
∑

s

bsEs + T
∑

s

bs log bs (3)

bs =
1
Z

exp (−Es/T ) (4)

bi(xi) ∝
∏

a∈N(i)

ma→i(xi) (5)

ba(Xa) ∝ fa(Xa)
∏

i∈N(a)

∏

b∈N(i)\a

mb→i(xi) (6)

bi(xi) =
∑

Xa\xi

ba(Xa), (7)

ma→i(xi) =
∑

Xa\xi

fa(Xa)
∏

j∈N(a)\i

∏

b∈N(j)\a

mb→j(xj) (8)

b1(x1) ∝ mA→1(x1) (9)

∝
∑

x2

fA(x1, x2)mB→2(x2) (10)

∝
∑

x2,x3,x4

fA(x1, x2)fB(x2, x3, x4)mC→4(x4) (11)

∝
∑

x2,x3,x4

fA(x1, x2)fB(x2, x3, x4)fC(x4) (12)

bs =
∏

i

bi(xi) (13)

1

Minimizing the free energy over beliefs from 
this limited sub-space will give a rigorous 

upper-bound on the true free energy. 



Region-based Approximations to the 
Variational Free Energy

Exact:

Regions:

(intractable)

(Kikuchi, 1951)



Defining a “Region”
   A region r is a set of variable nodes Vr and factor nodes 

Fr such that if a factor node a belongs to Fr , all variable 
nodes neighboring a must belong to Vr . A region free 
energy can be naturally defined. The overall free 
energy will be the sum of the region free energies, 
weighted by their counting numbers.

Regions

Not a 
Region



Bethe Approximation
Two sets of regions: 

   Large regions containing a 
single factor node a and all 
attached variable nodes. 

   Small regions containing a 
single variable node i.

3
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Bethe Free Energy

Minimizing the Bethe Free Energy, subject to the 
normalization and consistency constraints, gives a 
set of equations that is equivalent to the Belief 
Propagation message update rules!



Improving on BP
• Generalized Belief Propagation: Using larger regions, construct a more 

accurate region-based free energy, or equivalent message-passing algorithm. 
Particularly useful for factor graphs defined on a square lattice.

• Survey Propagation:  Account for the possibility of many thermodynamic 
states by keeping a probability distribution over messages. Particularly useful 
for constraint-satisfaction problems.

• Loop Calculus:  An expansion where the zeroth order term is BP, and the 
corrections can be systematically computed.

• Convexified Free Energies: approximations, with a unique global minimum 
which can be used to obtain rigorous lower bounds on the free energy.

• Expectation Propagation: an algorithm, with a different derivation but very 
close connections to Generalized Belief Propagation; it also can be used to 
derive message-passing algorithms for factor graphs with continuous 
variables.
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