
Interpretation as AbductionJerry R. Hobbs, Mark Stickel,Douglas Appelt, and Paul MartinArti�cial Intelligence CenterSRI InternationalAbstractAbduction is inference to the best explanation. In the TACITUS project at SRI wehave developed an approach to abductive inference, called \weighted abduction", thathas resulted in a signi�cant simpli�cation of how the problem of interpreting textsis conceptualized. The interpretation of a text is the minimal explanation of whythe text would be true. More precisely, to interpret a text, one must prove the logicalform of the text from what is already mutually known, allowing for coercions, mergingredundancies where possible, and making assumptions where necessary. It is shownhow such \local pragmatics" problems as reference resolution, the interpretation ofcompound nominals, the resolution of syntactic ambiguity and metonymy, and schemarecognition can be solved in this manner. Moreover, this approach of \interpretationas abduction" can be combined with the older view of \parsing as deduction" toproduce an elegant and thorough integration of syntax, semantics, and pragmatics, onethat spans the range of linguistic phenomena from phonology to discourse structure.Finally, we discuss means for making the abduction process e�cient, possibilities forextending the approach to other pragmatics phenomena, and the semantics of theweights and costs in the abduction scheme.1 IntroductionAbductive inference is inference to the best explanation. The process of interpretingsentences in discourse can be viewed as the process of providing the best explanation ofwhy the sentences would be true. In the TACITUS Project at SRI, we have developed ascheme for abductive inference that yields a signi�cant simpli�cation in the description ofsuch interpretation processes and a signi�cant extension of the range of phenomena thatcan be captured. It has been implemented in the TACITUS System (Hobbs, 1986; Hobbsand Martin, 1987; Hobbs et al., 1991) and has been or is being used to solve a variety ofinterpretation problems in several kinds of messages, including equipment failure reports,naval operations reports, and terrorist reports.It is a commonplace that people understand discourse so well because they knowso much. Accordingly, the aim of the TACITUS Project has been to investigate howknowledge is used in the interpretation of discourse. This has involved building a largeknowledge base of commonsense and domain knowledge (see Hobbs et al., 1987), and1



developing procedures for using this knowledge for the interpretation of discourse. In thelatter e�ort, we have concentrated on problems in \local pragmatics", speci�cally, theproblems of reference resolution, the interpretation of compound nominals, the resolutionof some kinds of syntactic and lexical ambiguity, and metonymy resolution. Our approachto these problems is the focus of the �rst part of this article. We apply it to otherphenomena in the later parts of the article.In the framework we have developed, what the interpretation of a sentence is can bedescribed very concisely:To interpret a sentence:(1) Prove the logical form of the sentence,together with the constraints that predicates impose on their arguments,allowing for coercions,Merging redundancies where possible,Making assumptions where necessary.By the �rst line we mean \prove, or derive in the logical sense, from the predicate calcu-lus axioms in the knowledge base, the logical form that has been produced by syntacticanalysis and semantic translation of the sentence."In a discourse situation, the speaker and hearer both have their sets of private beliefs,and there is a large overlapping set of mutual beliefs. (See Figure 1.) An utterance lives onthe boundary between mutual belief and the speaker's private beliefs. It is a bid to extendthe area of mutual belief to include some private beliefs of the speaker's.1 It is anchoredreferentially in mutual belief, and when we succeed in proving the logical form and theconstraints, we are recognizing this referential anchor. This is the given information, thede�nite, the presupposed. Where it is necessary to make assumptions, the informationcomes from the speaker's private beliefs, and hence is the new information, the inde�nite,the asserted. Merging redundancies is a way of getting a minimal, and hence a best,interpretation.2Consider a simple example.(2) The Boston o�ce called.1This is clearest in the case of assertions. But questions and commands can also be conceived of asprimarily conveying information|about the speaker's wishes. In any case, most of what is required tointerpret the three sentences,John called the Boston o�ce.Did John call the Boston o�ce?John, call the Boston o�ce.is the same.2Interpreting indirect speech acts, such as \It's cold in here," meaning \Close the window," is not acounterexample to the principle that the minimal interpretation is the best interpretation, but rather canbe seen as a matter of achieving the minimal interpretation coherent with the interests of the speaker.More on this in Section 8.2. 2



Figure 1: The Discourse SituationThis sentence poses at least three local pragmatics problems, the problems of resolving thereference of \the Boston o�ce", expanding the metonymy to \[Some person at] the Bostono�ce called", and determining the implicit relation between Boston and the o�ce. Let usput these problems aside for the moment, however, and interpret the sentence according tocharacterization (1). We must prove abductively the logical form of the sentence togetherwith the constraint \call" imposes on its agent, allowing for a coercion. That is, we mustprove abductively the expression (ignoring tense and some other complexities)(3) (9 x; y; z; e)call0(e; x) ^ person(x) ^ rel(x; y)^ o�ce(y) ^ Boston(z)^nn(z; y)That is, there is a calling event e by x where x is a person. x may or may not be the sameas the explicit subject of the sentence, but it is at least related to it, or coercible fromit, represented by rel(x; y). y is an o�ce and it bears some unspeci�ed relation nn to zwhich is Boston. person(x) is the requirement that call0 imposes on its agent x.The sentence can be interpreted with respect to a knowledge base of mutual knowledge3that contains the following facts:Boston(B1)that is, B1 is the city of Boston.o�ce(O1) ^ in(O1; B1)that is, O1 is an o�ce and is in Boston.3Throughout this article it will be assumed that all axioms are mutually known by the speaker andhearer, that they are part of the common cultural background3



person(J1)that is, John J1 is a person.work-for(J1; O1)that is, John J1 works for the o�ce O1.(8 y; z)in(y; z) � nn(z; y)that is, if y is in z, then z and y are in a possible compound nominal relation.(8 x; y)work-for(x; y) � rel(x; y)that is, if x works for y, then y can be coerced into x.The proof of all of (3) is straightforward except for the conjunct call0(x). Hence, weassume that; it is the new information conveyed by the sentence.This interpretation is illustrated in the proof graph of Figure 2, where a rectangle isdrawn around the assumed literal call0(e; x). Such proof graphs play the same role in inter-pretation as parse trees play in syntactic analysis. They are pictures of the interpretations,and we will see a number of such diagrams in this paper.Now notice that the three local pragmatics problems have been solved as a by-product.We have resolved \the Boston o�ce" to O1. We have determined the implicit relation inthe compound nominal to be in. And we have expanded the metonymy to \John, whoworks for the Boston o�ce, called."In the remainder of the article, we develop this basic idea in a variety of ways. InSection 2, we give a high-level overview of the TACITUS system, in which this methodof interpretation is implemented. In Section 3, we justify the �rst clause of characteriza-tion (1) by showing in a more detailed fashion that solving local pragmatics problems isequivalent to proving the logical form plus the constraints. In Section 4, we justify thelast two clauses by describing our scheme of abductive inference. In Section 5 we presenta number of examples of the use of the method for solving local pragmatics problems.In Section 6 we show how the idea of interpretation as abduction can be combinedwith the older idea of parsing as deduction to yield a thorough and elegant integration ofsyntax, semantics, and pragmatics. In Section 7 we discuss related work. In Section 8 wediscuss three kinds of future directions|improving the e�ciency, extending the coverage,and devising a principled semantics for the numbers in the abduction scheme.2 The TACITUS SystemTACITUS stands for The Abductive Commonsense Inference Text Understanding System.It is intended for processing messages and other texts for a variety of purposes, includingmessage routing and prioritizing, problem monitoring, and database entry and diagnosison the basis of the information in the texts. It has been used for three applications so far:1. Equipment failure reports or casualty reports (casreps). These are short, telegraphicmessages about breakdowns in machinery. The application is to perform a diagnosison the basis of the information in the message.4
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in(O1; B1)6Figure 2: Interpretation of \The Boston o�ce called."2. Naval operation reports (opreps). These are telegraphic messages about ships at-tacking other ships, of from one to ten sentences, each of from one to thirty words,generated in the midst of naval exercises. There are frequent misspellings and usesof jargon, and there are more sentence fragments than grammatical sentences. Theapplication is to produce database entries saying who did what to whom, with whatinstrument, when, where, and with what result.3. Newspaper articles and similar texts on terrorist activities. The application is againto produce database entries. The texts range from a third of a page to a page and ahalf. The sentences average 27 words, but sentences of 80 words and more are by nomeans unusual. The topics talked about in these texts range over much of humanactivity, so that although the task is narrowly constrained, the texts are not.To give the reader a concrete sense of these applications, we give an example of theinput and output of the system for a relatively short terrorist report, dated March 30,1989. A cargo train running from Lima to Lorohia was derailed before dawn todayafter hitting a dynamite charge. 5



Inspector Eulogio Flores died in the explosion.The police reported that the incident took place past midnight in the Carahuaichi-Jaurin area.Some of the corresponding database entries are as follows:Incident: Date 30 Mar 89Incident: Location Peru: Carahuaichi-Jaurin (area)Incident: Type BombingPhysical Target: Description \cargo train"Physical Target: E�ect Some Damage: \cargo train"Human Target: Name \Eulogio Flores"Human Target: Description \inspector": "Eulogio Flores"Human Target: E�ect Death: \Eulogio Flores"It must be determined that hitting a dynamite charge constitutes a bombing, that thephysical target was the cargo train that hit the charge, and that derailing constitutesdamage. It must also be determined that the explosion was the one that resulted fromhitting the dynamite charge, and hence Eulogio Flores is a human target in the incident.The de�nite noun phrase \the incident" must be resolved to the hitting of the dynamitecharge for the location to be recognized.The system, as it is presently constructed, consists of three components: the syntacticanalysis and semantic translation component, the pragmatics component, and the taskcomponent. How the pragmatics component works is the topic of Sections 3, 4, and 8.1.Here we describe the other two components very briey.The syntactic analysis and semantic translation is done by the DIALOGIC system.DIALOGIC includes a large grammar of English that was constructed in 1980 and 1981essentially by merging the DIAGRAM grammar of Robinson (1982) with the LinguisticString Project grammar of Sager (1981), including semantic translators for all the rules. Ithas since undergone further development. Its coverage encompasses all of the major syn-tactic structures of English, including sentential complements, adverbials, relative clauses,and the most common conjunction constructions. Selectional constraints can be encodedand applied in either a hard mode that rejects parses or in a soft mode that orders parses.A list of possible intra- and inter-sentential antecedents for pronouns is produced, orderedby syntactic criteria. There are a number of heuristics for ordering parses on the basisof syntactic criteria (Hobbs and Bear, 1990). Optionally, the system can produce neu-tral representations for the most common cases of structural ambiguity (Bear and Hobbs,1988). DIALOGIC produces a logical form for the sentence in an ontologically promis-cuous version of �rst-order predicate calculus (Hobbs, 1985a), encoding everything thatcan be determined by purely syntactic means, without recourse to the context or to worldknowledge.This initial logical form is passed to the pragmatics component, which works as de-scribed below, to produce an elaborated logical form, making explicit the inferences andassumptions required for interpreting the text and the coreference relations that are dis-covered in interpretation. 6



On the basis of the information in the elaborated logical form, the task componentproduces the required output, for example, the diagnosis or the database entries. Thetask component is generally fairly small because all of the relevant information has beenmade explicit by the pragmatics component. Task components can be programmed in aschema-speci�cation language that is a slight extension of �rst-order predicate calculus(Tyson and Hobbs, 1990).TACITUS is intended to be largely domain- and application-independent. The lexiconused by DIALOGIC and the knowledge base used by the pragmatics component must ofcourse vary from domain to domain, but the grammar itself and the pragmatics proceduredo not vary from one domain to the next. The task component varies from application toapplication, but the use of the schema-speci�cation language can make even this compo-nent largely domain-independent.A detailed analysis of the performance of the system and its various components isgiven in Hobbs et al. (1991).The modular organization of the system into syntax, pragmatics, and task is undercutin Section 6. There we propose a uni�ed framework that incorporates all three modules.The framework has been implemented, however, only in a preliminary experimental man-ner, due to the e�ort involved in duplicating the coverage of the DIALOGIC grammar inthe new framework.3 Solving Local Pragmatics Problems as Abductive Infer-ence3.1 A Notational ConventionBefore we proceed, we need to introduce a notational convention (that we have in factalready used). We will take p(x) to mean that p is true of x, and p0(e; x) to mean that eis the eventuality or possible situation of p being true of x. This eventuality may or maynot exist in the real world. The unprimed and primed predicates are related by the axiomschema(8 x)p(x) � (9 e)p0(e; x) ^ Rexists(e)where Rexists(e) says that the eventuality e does in fact really exist. Existential quan-ti�cation by itself only guarantees existence in a Platonic universe of possible entities.This notation, by reifying events and conditions, provides a way of specifying higher-orderproperties in �rst-order logic. This Davidsonian rei�cation of eventualities (Davidson,1967) is a common device in AI. See Hobbs (1985a, 1985b) for further explanation of thespeci�c notation and ontological assumptions.Often axioms that intuitively ought to be written as(8 x)p(x) � q(x)will be written(8 e1; x)p0(e1; x) � (9 e2)q0(e2; x) 7



That is, if e1 is the eventuality of p being true of x, then there is an eventuality e2 of qbeing true of x. It will sometimes be convenient to state this in a stronger form. It is notjust that if e1 exists, then e2 happens to exist as well. The eventuality e2 exists by virtueof the fact that e1 exists. Let us express this tight connection by the predicate gen, for\generates". Then the above axiom can be strengthened to(8 e1; x)p0(e1; x) � (9 e2)q0(e2; x) ^ gen(e1; e2)Not only is there an e2, but there an e2 by virture of the fact that there is an e1. Therelative existential and modal statuses of e1 and e2 can then be axiomatized in terms ofthe predicate gen.3.2 An ExampleThe following \sentence" from an equipment failure report illustrates four local pragmaticsproblems.(4) Disengaged compressor after lube-oil alarm.Identifying the compressor and the alarm are reference resolution problems. Determin-ing the implicit relation between \lube-oil" and \alarm" is the problem of compoundnominal interpretation. Deciding whether \after lube-oil alarm" modi�es the compres-sor or the disengaging is a problem in syntactic ambiguity resolution. The preposition\after" requires an event or condition as its object and this forces us to coerce \lube-oilalarm" into \the sounding of the lube-oil alarm"; this is an example of metonymy res-olution. We wish to show that solving the �rst three of these problems amounts toderiving the logical form of the sentence. Solving the fourth amounts to deriving the con-straints predicates impose on their arguments, allowing for coercions. Thus, to solve all ofthem is to interpret them according to characterization (1). For each of these problems,our approach is to frame a logical expression whose derivation, or proof, constitutes aninterpretation.Reference: To resolve the reference of \compressor" in sentence (4), we need to prove(constructively) the following logical expression:(5) (9 c)compressor(c)If, for example, we prove this expression by using axioms that say C1 is a \starting aircompressor",4 and that a starting air compressor is a compressor, then we have resolvedthe reference of \compressor" to C1.In general, we would expect de�nite noun phrases to refer to entities the hearer alreadyknows about and can identify, and inde�nite noun phrases to refer to new entities thespeaker is introducing. However, in the casualty reports most noun phrases have nodeterminers. There are sentences, such as4That is, a compressor for the air used to start the ship's gas turbine engines.8



Retained oil sample and �lter element for future analysis.where \sample" is inde�nite, or new information, and \�lter element" is de�nite, or alreadyknown to the hearer. In this case, we try to prove the existence of both the sample andthe �lter. When we fail to prove the existence of the sample, we know that it is new, andwe simply assume its existence.Elements in a sentence other than nominals can also function referentially. InAlarm sounded.Alarm activated during routine start of compressor.one can argue that the activation is the same as, or at least implicit in, the sounding.Hence, in addition to trying to derive expressions such as (5) for nominal reference, forpossible non-nominal reference we try to prove similar expressions.(9 : : : e; a; : : :) : : : ^ activate0(e; a) ^ : : :That is, we wish to derive the existence, from background knowledge or the previous text,of some known or implied activation. Most, but certainly not all, information conveyednon-nominally is new, and hence will be assumed by means described in Section 4.Compound Nominals: To resolve the reference of the noun phrase \lube-oil alarm",we need to �nd two entities o and a with the appropriate properties. The entity o mustbe lube oil, a must be an alarm, and there must be some implicit relation between them.If we call that implicit relation nn, then the expression that must be proved is(9 o; a; nn)lube-oil(o) ^ alarm(a) ^ nn(o; a)In the proof, instantiating nn amounts to interpreting the implicit relation between thetwo nouns in the compound nominal. Compound nominal interpretation is thus just aspecial case of reference resolution.Treating nn as a predicate variable in this way assumes that the relation between thetwo nouns can be anything, and there are good reasons for believing this to be the case(e.g., Downing, 1977). In \lube-oil alarm", for example, the relation is�x; y [y sounds when the pressure of x drops too low]However, in our implementation we use a �rst-order simulation of this approach. Thesymbol nn is treated as a predicate constant, and the most common possible relations (seeLevi, 1978) are encoded in axioms. The axiom(8 x; y)part(y; x) � nn(x; y)allows interpretation of compound nominals of the form \<whole> <part>", such as\�lter element". Axioms of the form(8 x; y)sample(y; x) � nn(x; y)handle the very common case in which the head noun is a relational noun and the prenom-inal noun �lls one of its roles, as in \oil sample". Complex relations such as the one in\lube-oil alarm" can sometimes be glossed as \for".9



(8 x; y)for(y; x) � nn(x; y)Syntactic Ambiguity: Some of the most common types of syntactic ambiguity, in-cluding prepositional phrase and other attachment ambiguities and very compound nom-inal ambiguities5, can be converted into constrained coreference problems (see Bear andHobbs, 1988). For example, in (4) the �rst argument of after is taken to be an existentiallyquanti�ed variable which is equal to either the compressor or the disengaging event. Thelogical form would thus include(9 : : : e; c; y; a; : : :) : : : ^ after(y; a) ^ y 2 fc; eg ^ : : :That is, no matter how after(y; a) is proved or assumed, y must be equal to either thecompressor c or the disengaging e. This kind of ambiguity is often solved as a by-productof the resolution of metonymy or of the merging of redundancies.Metonymy: Predicates impose constraints on their arguments that are often violated.When they are violated, the arguments must be coerced into something related that sat-is�es the constraints. This is the process of metonymy resolution.6 Let us suppose, forexample, that in sentence (4), the predicate after requires its arguments to be events:after(e1; e2) : event(e1) ^ event(e2)To allow for coercions, the logical form of the sentence is altered by replacing the explicitarguments by \coercion variables" which satisfy the constraints and which are relatedsomehow to the explicit arguments. Thus the altered logical form for (4) would include(9 : : : k1; k2; y; a; rel1; rel2; : : :) : : : ^ after(k1; k2) ^ event(k1) ^ rel1(k1; y)^ event(k2) ^ rel2(k2; a) ^ : : :Here, k1 and k2 are the coercion variables, and the after relation obtains between them,rather than between y and a. k1 and k2 are both events, and k1 and k2 are coercible fromy and a, respectively. The coercion relations rel1 and rel2 may, of course, be identity, inwhich case there is no metonymy.As in the most general approach to compound nominal interpretation, this treatmentis second-order, and suggests that any relation at all can hold between the implicit andexplicit arguments. Nunberg (1978), among others, has in fact argued just this point.However, in our implementation, we are using a �rst-order simulation. rel is treated asa predicate constant, and there are a number of axioms that specify what the possiblecoercions are. Identity is one possible relation, since the explicit arguments could in factsatisfy the constraints:(8 x)rel(x; x)5A very compound nominal is a string of two or more nouns preceding a head noun, as in \StanfordResearch Institute". The ambiguity they pose is whether the �rst noun is taken to modify the second orthe third.6There are other interpretive moves in this situation besides metonymic interpretation, such asmetaphoric interpretation. We will con�ne ourselves here to metonymy, however.10



In general, where this works, it will lead to the best interpretation. We can also coercefrom a whole to a part and from an object to its function. Hence,(8 x; y)part(x; y) � rel(x; y)(8 x; e)function(e; x) � rel(e; x)Putting It All Together: Putting it all together, we �nd that to solve all the localpragmatics problems posed by sentence (4), we must derive the following expression:(9 e; x; c; k1; k2; y; a; o)Past(e) ^ disengage0(e; x; c) ^ compressor(c)^ after(k1; k2) ^ event(k1) ^ rel(k1; y) ^ y 2 fc; eg^ event(k2) ^ rel(k2; a) ^ alarm(a) ^ nn(o; a) ^ lube-oil(o)But this is just the logical form of the sentence7 together with the constraints that predi-cates impose on their arguments, allowing for coercions. That is, it is the �rst half of ourcharacterization (1) of what it is to interpret a sentence.When parts of this expression cannot be derived, assumptions must be made, and theseassumptions are taken to be the new information. The likelihood that di�erent conjunctsin this expression will be new information varies according to how the information ispresented, linguistically. The main verb is more likely to convey new information than ade�nite noun phrase. Thus, we assign a cost to each of the conjuncts|the cost of assumingthat conjunct. This cost is expressed in the same currency in which other factors involvedin the \goodness" of an interpretation are expressed; among these factors are likely tobe the length of the proofs used and the salience of the axioms they rely on. Since ade�nite noun phrase is generally used referentially, an interpretation that simply assumesthe existence of the referent and thus fails to identify it should be an expensive one. Itis therefore given a high assumability cost. For purposes of concreteness, let's just callthis $10. Inde�nite noun phrases are not usually used referentially, so they are given alow cost, say, $1. Bare noun phrases are given an intermediate cost, say, $5. Propositionspresented non-nominally are usually new information, so they are given a low cost, say,$3. One does not usually use selectional constraints to convey new information, so theyare given the same cost as de�nite noun phrases. Coercion relations and the compoundnominal relations are given a very high cost, say $20, since to assume them is to fail tosolve the interpretation problem. If we place the assumability costs as superscripts ontheir conjuncts in the above logical form, we get the following expression:(9 e; x; c; k1; k2; y; a; o)Past(e)$3 ^ disengage0(e; x; c)$3 ^ compressor(c)$5^ after(k1; k2)$3 ^ event(k1)$10 ^ rel(k1; y)$20 ^ y 2 fc; eg ^ event(k2)$10^ rel(k2; a)$20 ^ alarm(a)$5 ^ nn(o; a)$20 ^ lube-oil(o)$5While this example gives a rough idea of the relative assumability costs, the real costsmust mesh well with the inference processes and thus must be determined experimentally.The use of numbers here and throughout the next section constitutes one possible regimewith the needed properties. This issue is addressed more fully in Section 8.3.7For justi�cation for this kind of logical form for sentences with quanti�ers and intensional operators,see Hobbs(1983b, 1985a). 11



4 Weighted Abduction4.1 The MethodIn deduction, from (8 x)p(x) � q(x) and p(A), one concludes q(A). In induction, fromp(A) and q(A), or more likely, from a number of instances of p(A) and q(A), one concludes(8 x)p(x) � q(x). Abduction is the third possibility. From (8 x)p(x) � q(x) and q(A),one concludes p(A). One can think of q(A) as the observable evidence, of (8 x)p(x) � q(x)as a general principle that could explain q(A)'s occurrence, and of p(A) as the inferred,underlying cause or explanation of q(A). Of course, this mode of inference is not valid;there may be many possible such p(A)'s. Therefore, other criteria are needed to chooseamong the possibilities.One obvious criterion is the consistency of p(A) with the rest of what one knows. Twoother criteria are what Thagard (1978) has called simplicity and consilience. Roughly,simplicity is that p(A) should be as small as possible, and consilience is that q(A) shouldbe as big as possible. We want to get more bang for the buck, where q(A) is bang, andp(A) is buck.There is a property of natural language discourse, noticed by a number of linguists(e.g., Joos, 1972; Wilks, 1972), that suggests a role for simplicity and consilience ininterpretation|its high degree of redundancy. ConsiderInspection of oil �lter revealed metal particles.An inspection is a looking at that causes one to learn a property relevant to the functionof the inspected object. The function of a �lter is to capture particles from a uid. Toreveal is to cause one to learn. If we assume the two causings to learn are identical,the two sets of particles are identical, and the two functions are identical, then we haveexplained the sentence in a minimal fashion. Because we have exploited this redundancy, asmall number of inferences and assumptions (simplicity) have explained a large number ofsyntactically independent propositions in the sentence (consilience). As a by-product, wehave moreover shown that the inspector is the one to whom the particles are revealed andthat the particles are in the �lter, facts which are not explicitly conveyed by the sentence.Another issue that arises in abduction in choosing among potential explanations iswhat might be called the \informativeness-correctness tradeo�". Many previous uses ofabduction in AI from a theorem-proving perspective have been in diagnostic reasoning(e.g., Pople, 1973; Cox and Pietrzykowski, 1986), and they have assumed \most-speci�cabduction". If we wish to explain chest pains, it is not su�cient to assume the cause issimply chest pains. We want something more speci�c, such as \pneumonia". We wantthe most speci�c possible explanation. In natural language processing, however, we oftenwant the least speci�c assumption. If there is a mention of a uid, we do not necessarilywant to assume it is lube oil. Assuming simply the existence of a uid may be the bestwe can do.8 However, if there is corroborating evidence, we may want to make a morespeci�c assumption. InAlarm sounded. Flow obstructed.8As Freud is purported to have said, \Sometimes a cigar is just a cigar."12



we know the alarm is for the lube oil pressure, and this provides evidence that the owis not merely of a uid but of lube oil. The more speci�c our assumptions are, the moreinformative our interpretation is. The less speci�c they are, the more likely they are to becorrect.We therefore need a scheme of abductive inference with three features. First, it shouldbe possible for goal expressions to be assumable, at varying costs. Second, there should bethe possibility of making assumptions at various levels of speci�city. Third, there shouldbe a way of exploiting the natural redundancy of texts to yield more economic proofs.We have devised just such an abduction scheme.9 First, every conjunct in the logicalform of the sentence is given an assumability cost, as described at the end of Section 3.Second, this cost is passed back to the antecedents in Horn clauses by assigning weightsto them. Axioms are stated in the form(6) Pw11 ^ Pw22 � QThis says that P1 and P2 imply Q, but also that if the cost of assuming Q is c, then thecost of assuming P1 is w1c, and the cost of assuming P2 is w2c.10 Third, factoring orsynthesis is allowed. That is, goal expressions may be uni�ed, in which case the resultingexpression is given the smaller of the costs of the input expressions. Thus, if the goalexpression is of the form(9 : : : ; x; y; : : :) : : : ^ q(x) ^ : : : ^ q(y) ^ : : :where q(x) costs $20 and q(y) costs $10, then factoring assumes x and y to be identicaland yields an expression of the form(9 : : : ; x; : : :) : : : ^ q(x) ^ : : :where q(x) costs $10. This feature leads to minimality through the exploitation of redun-dancy.Note that in (6), if w1 + w2 < 1, most-speci�c abduction is favored|why assumeQ when it is cheaper to assume P1 and P2. If w1 + w2 > 1, least-speci�c abduction isfavored|why assume P1 and P2 when it is cheaper to assume Q. But inP :61 ^ P :62 � Qif P1 has already been derived, it is cheaper to assume P2 than Q. P1 has provided evidencefor Q, and assuming the \balance" P2 of the necessary evidence for Q should be cheaper.Factoring can also override least-speci�c abduction. Suppose we have the axiomsP :61 ^ P :62 � Q1P :62 ^ P :63 � Q29The abduction scheme is due to Mark Stickel, and it, or a variant of it, is described at greater lengthin Stickel (1989).10Stickel (1989) generalizes the weights to arbitrary functions of c.13



and we wish to derive Q1 ^ Q2, where each conjunct has an assumability cost of $10.Assuming Q1 ^ Q2 will then cost $20, whereas assuming P1 ^ P2 ^ P3 will cost only$18, since the two instances of P2 can be uni�ed. Thus, the abduction scheme allows usto adopt the careful policy of favoring least-speci�c abduction while also allowing us toexploit the redundancy of texts for more speci�c interpretations.Finally, we should note that whenever an assumption is made, it �rst must be checkedfor consistency. Problems associated with this requirement are discussed in Section 8.1.In the above examples we have used equal weights on the conjuncts in the antecedents.It is more reasonable, however, to assign the weights according to the \semantic contribu-tion" each conjunct makes to the consequent. Consider, for example, the axiom(8 x)car(x):8 ^ no-top(x):4 � convertible(x)We have an intuitive sense that car contributes more to convertible than no-top does. Weare more likely to assume something is a convertible if we know that it is a car than ifwe know it has no top.11 The weights on the conjuncts in the antecedent are adjustedaccordingly.Exactly how the weights and costs should be assigned is a matter of continuing research.Our experience so far suggests that which interpretation is chosen is sensitive to whetherthe weights add up to more or less than one, but that otherwise the system's performanceis fairly impervious to small changes in the values of the weights and costs. In Section8.1, there is some further discussion about the uses the numbers can be put to in makingthe abduction procedure more e�cient, and in Section 8.3, there is a discussion of thesemantics of the numbers.4.2 \Et Cetera" Propositions and the Form of AxiomsIn the abductive approach to interpretation, we determine what implies the logical formof the sentence rather than determining what can be inferred from it. We backward-chainrather than forward-chain. Thus, one would think that we could not use superset infor-mation in processing the sentence. Since we are backward-chaining from the propositionsin the logical form, the fact that, say, lube oil is a uid, which would be expressed as(7) (8 x)lube-oil(x) � fluid(x)could not play a role in the analysis of a sentence containing \lube oil". This is inconve-nient. In the textFlow obstructed. Metal particles in lube oil �lter.we know from the �rst sentence that there is a uid. We would like to identify it with thelube oil mentioned in the second sentence. In interpreting the second sentence, we mustprove the expression11To prime this intuition, imagine two doors. Behind one is a car. Behind the other is something withno top. You pick a door. If there's a convertible behind it, you get to keep it. Which door would you pick?14



(9 x)lube-oil(x)If we had as an axiom(8 x)fluid(x) � lube-oil(x)then we could establish the identity. But of course we don't have such an axiom, for itisn't true. There are lots of other kinds of uids. There would seem to be no way to usesuperset information in our scheme.Fortunately, however, there is a way. We can make use of this information by convertingthe axiom to a biconditional. In general, axioms of the formspecies � genuscan be converted into biconditional axioms of the formgenus ^ di�erentiae � speciesOften as in the above example, we will not be able to prove the di�erentiae, and in manycases the di�erentiae cannot even be spelled out. But in our abductive scheme, this doesnot matter; they can simply be assumed. In fact, we need not state them explicitly. Wecan simply introduce a predicate which stands for all the remaining properties. It willnever be provable, but it will be assumable. Thus, we can rewrite (7) as(7a) (8 x)fluid(x):6 ^ etc1(x):6 � lube-oil(x)Then the fact that something is uid can be used as evidence for its being lube oil, sincewe can assume etc1(x). With the weights distributed according to semantic contribution,we can go to extremes and use an axiom like(8 x)mammal(x):2 ^ etc2(x):9 � elephant(x)to allow us to use the fact that something is a mammal as (weak) evidence for its beingan elephant. This axiom can be taken to say, \One way of being a mammal is being anelephant."Although this device may seem ad hoc, we view it as implementing a fairly generalsolution to the problems of nonmonotonicity in commonsense reasoning and vaguenessof meaning in natural language. The use of \et cetera" propositions is a very powerful,and liberating, device. Before we hit upon this device, in our attempts at axiomatizing adomain in a way that would accommodate many texts, we were always \arrow hacking"|trying to �gure out which way the implication had to go if we were to get the rightinterpretations, and lamenting when that made no semantic sense. With \et cetera"predications, that problem went away, and for principled reasons. Implicative relationscould be used in either direction. Moreover, their use is liberating when constructingaxioms for a knowledge base. It is well-known that almost no concept can be de�nedprecisely. We are now able to come as close to a de�nition as we can and introduce an \etcetera" proposition with an appropriate weight to indicate how far short we feel we havefallen. 15



The \et cetera" propositions play a role analogous to the abnormality propositions ofcircumscriptive logic (McCarthy, 1987). In circumscriptive theories it is usual to writeaxioms like(8 x)bird(x) ^ :Ab1(x) � flies(x)This certainly looks like the axiom(8 x)bird(x) ^ etc3(x)w � flies(x)The literal :Ab1(x) says that x is not abnormal in some particular respect. The literaletc3(x) says that x possesses certain unspeci�ed properties, for example, that x is notabnormal in that same respect. In circumscription, one minimizes over the abnormalitypredicates, assuming they are false wherever possible, perhaps with a partial ordering onabnormality predicates to determine which assumptions to select (e.g., Poole, 1989). Ourabduction scheme generalizes this a bit: The literal etc3(x) may be assumed if no contra-diction results and if the resulting proof is the most economical one available. Moreover,the \et cetera" predicates can be used for any kind of di�erentiae distinguishing a speciesfrom the rest of a genus, and not just for those related to normality.There is no particular di�culty in specifying a semantics for the \et cetera" predicates.Formally, etc1 in axiom (7a) can be taken to denote the set of all things that either are notuid or are lube oil. Intuitively, etc1 conveys all the information one would need to knowbeyond uidness to conclude that something is lube oil. As with nearly every predicatein an axiomatization of commonsense knowledge, it is hopeless to spell out necessary andsu�cient conditions for an \et cetera" predicate. In fact, the use of such predicates ismotivated largely by a recognition of this fact about commonsense knowledge.The \et cetera" predicates could be used as the abnormality predicates are in cir-cumscriptive logic, with separate axioms spelling out conditions under which they wouldhold. However, in the view adopted here, more detailed conditions would be spelled outby expanding axioms of the form(8 x)p1(x) ^ etc4(x) � q(x)to axioms of the form(8 x)p1(x) ^ p2(x) ^ etc5(x) � q(x)where the weight on etc5(x) would be less than that on etc4(x). An \et cetera" predicatewould appear only in the antecedent of a single axiom and never in a consequent. Thus,the \et cetera" predications are only place-holders for assumption costs. They are neverproved. They are only assumed.Let us summarize at this point the most elaborate form axioms in the knowledge basewill have. If we wish to express an implicative relation between concepts p and q, the mostnatural way to do so is as the axiom(8 x; z)p(x; z) � (9 y)q(x; y)where z and y stand for arguments that occur in one predication but not in the other.When we introduce eventualities, this axiom becomes16



(8 e1; x; z)p0(e1; x; z) � (9 e2; y)q0(e2; x; y)Using the gen relation to express the tight connection between the two eventualities, theaxiom becomes(8 e1; x; z)p0(e1; x; z) � (9 e2; y)q0(e2; x; y) ^ gen(e1; e2)Next we introduce an \et cetera" proposition into the antecedent to take care of theimprecision of our knowledge of the implicative relation.(8 e1; x; z)p0(e1; x; z) ^ etc1(x; z) � (9 e2; y)q0(e2; x; y) ^ gen(e1; e2)Finally we biconditionalize the relation between p and q by writing the converse axiom aswell: (8 e1; x; z)p0(e1; x; z) ^ etc1(x; z) � (9 e2; y)q0(e2; x; y) ^ gen(e1; e2)(8 e1; x; y)q0(e2; x; y) ^ etc2(x; y) � (9 e1; z)p0(e1; x; z) ^ gen(e2; e1)This then is the most general formal expression in our abductive logic of what is intuitivelyfelt to be an association between the concepts p and q.In this article, for notational convenience, we will use the simplest form of axiom wecan get away with for the example. The reader should keep in mind however that theseare only abbreviations for the full, biconditionalized form of the axiom.125 Some Local Pragmatics Phenomena5.1 De�nite ReferenceThe following four examples are sometimes taken to illustrate four di�erent kinds of de�nitereference.13I bought a new car last week. The car is already giving me trouble.I bought a new car last week. The vehicle is already giving me trouble.I bought a new car last week. The engine is already giving me trouble.The engine of my new car is already giving me trouble.In the �rst example, the same word is used in the de�nite noun phrase as in its antecedent.In the second example, a hyponym is used. In the third example, the reference is not tothe \antecedent" but to an object that is related to it, requiring what Clark (1975) hascalled a \bridging inference". The fourth example is a determinative de�nite noun phrase,12The full axioms are non-Horn, but not seriously so. They can be Skolemized and broken into twoaxioms having the same Skolem functions. This remark holds as well for other axioms in this article thathave conjunctions in the consequent.13In all the examples of Section 5, we will ignore weights and costs, show the path to the correctinterpretation, and assume the weights and costs are such that this interpretation will be chosen. A greatdeal of theoretical and empirical research will be required before this will happen in fact, especially in asystem with a very large knowledge base. 17



rather than an anaphoric one; all the information required for its resolution is found inthe noun phrase itself.These distinctions are insigni�cant in the abductive approach. In each case we needto prove the existence of the de�nite entity. In the �rst example it is immediate. In thesecond, we use the axiom(8 x)car(x) � vehicle(x)In the third example, we use the axiom(8 x)car(x) � (9 y)engine(y; x)that is, cars have engines. In the fourth example, we use the same axiom, but afterassuming the existence of the speaker's new car.The determiner \the" indicates that the entity is the most salient, mutually identi�ableentity of that description. In this article, we deal with this fact by giving the correspondingpropositions in the logical form high assumption costs to force resolution and dependingon the minimal cost proof to �nd the most salient appropriate entity. A more principledapproach would take seriously the information presented by the determiner \the", viewingit as a relation between the entity referred to and the description provided by the rest ofthe noun phrase, axiomatizing it in terms of mutual knowledge and the discourse situation,and taking it as a proposition in the logical form to be proved.5.2 Distinguishing the Given and the NewNext let us examine four successively more di�cult de�nite reference problems in whichthe given and the new information are intertwined and must be separated. The �rst isRetained sample and �lter element.Here \sample" is new information. It was not known before this sentence in the messagethat a sample was taken. The \�lter element", on the other hand, is given information.It is already known that the compressor's lube oil system has a �lter, and that a �lter hasa �lter element as one of its parts. These facts are represented in the knowledge base bythe axiomsfilter(F )(8 f)filter(f) � (9 fe)filter-element(fe) ^ part(fe; f)Noun phrase conjunction is represented by the predicate andn. The expression andn(x; s; fe)says that x is the typical element of the set consisting of the elements s and fe. Typi-cal elements can be thought of as rei�ed universally quanti�ed variables. Roughly, theirproperties are inherited by the elements of the set. (See Hobbs, 1983b.) An axiom of pairssays that a set can be formed out of any two elements:(8 s; fe)(9 x)andn(x; s; fe)The logical form for the sentence is, roughly,18



(9 e; y; x; s; fe)retain0(e; y; x)^ andn(x; s; fe)^ sample(s)^ filter-element(fe)That is, y retained x where x is the typical element of a set consisting of a sample sand a �lter element fe. Let us suppose we have no metonymy problems here. Theninterpretation is simply a matter of deriving this expression. We can prove the existenceof the �lter element from the existence of the �lter F . We cannot prove the existence of thesample s, so we assume it. It is thus new information. Given s and fe, the axiom of pairsgives us the existence of x and the truth of andn(x; s; fe). We cannot prove the existenceof the retaining e, so we assume it; it is likewise new information. This interpretation isillustrated in Figure 3.Logical Form:retain0(e; y; x) ^ andn(x; s; fe)^ sample(s) ^ filter-element(fe)Knowledge Base:andn(x; s; fe)6filter(f) � filter-element(fe) ^ part(fe; f)������������3filter(F )���Figure 3: Interpretation of \Retained sample and �lter element."In the next example new and old information about the same entity are encoded in asingle noun phrase.There was adequate lube oil.We know about the lube oil already, and there is a corresponding axiom in the knowledgebase. lube-oil(O)Its adequacy is new information, however. It is what the sentence is telling us.The logical form of the sentence is, roughly,(9 o)lube-oil(o) ^ adequate(o)This is the expression that must be derived. The proof of the existence of the lube oilis immediate. It is thus old information. The adequacy cannot be proved and is henceassumed as new information.The next example is from Clark (1975), and illustrates what happens when the givenand new information are combined into a single lexical item:19



John walked into the room.The chandelier shone brightly.What chandelier is being referred to?Let us suppose we have in our knowledge base the fact that rooms have lights:(8) (8 r)room(r) � (9 l)light(l) ^ in(l; r)Suppose we also have the fact that lighting �xtures with several branches are chandeliers:(9) (8 l)light(l) ^ has-branches(l) � chandelier(l)The �rst sentence has given us the existence of a room|room(R). To solve the de�nitereference problem in the second sentence, we must prove the existence of a chandelier.Back-chaining on axiom (9), we see we need to prove the existence of a light with branches.Back-chaining from light(l) in axiom (8), we see we need to prove the existence of a room.We have this in room(R). To complete the derivation, we assume the light l has branches.The light is thus given by the room mentioned in the previous sentence, while the fact thatit has several branches is new information. This interpretation is illustrated in Figure 4.Logical Form: : : : ^ chandelier(x) ^ : : :Knowledge Base:light(l)^ has-branches(l) � chandelier(l)@@@@@@Iroom(r) � light(l) ^ in(l; r)6room(R)6 Figure 4: Interpretation of \The chandelier : : :"Note that it is not enough merely to assume the existence of the chandelier, since thatwould not connect it with the room.This example may seem to have an unnatural, pseudo-literary quality. There aresimilar examples, however, which are completely natural. ConsiderI saw my doctor last week.He told me to get more exercise. 20



Who does \he" in the second sentence refer to?Suppose in our knowledge base we have axioms encoding the fact that a doctor is aperson,(10) (8 d)doctor(d) � person(d)and the fact that a male person is a \he",(11) (8 d)person(d) ^ male(d) � he(d)To solve the reference problem, we must derive(9 d)he(d)Back-chaining on axioms (11) and (10), matching with the doctor mentioned in the �rstsentence, and assuming the new information male(d) gives us a derivation.145.3 Lexical AmbiguityThe treatment of lexical ambiguity is reasonably straightforward in our framework, adopt-ing an approach advocated by Hobbs (1982a) and similar to the \polaroid word" methodof Hirst (1987). The ambiguous word \bank" has a corresponding predicate bank which istrue of both �nancial institutions and the banks of rivers. There are two other predicates,bank1 true of �nancial institutions and bank2 true of banks of rivers. The three predicatesare related by the two axioms(8 x)bank1(x) � bank(x)(8 x)bank2(x) � bank(x)All world knowledge is then expressed in terms of either bank1 or bank2, not in terms ofbank. In interpreting the text, we use one or the other of the axioms to reach into theknowledge base, and whichever one we use determines the intended sense of the word.Where these axioms are not used, it is apparently because the best interpretation of thetext did not require the resolution of the lexical ambiguity.Consider the exampleJohn wanted a loan. He went to the bank.Suppose the knowledge base contains the two axioms above as well as the following axioms:(8 y)loan(y) � (9 x)financial-institution(x) ^ issue(x; y)that is, loans are issued by �nancial institutions.(8 x)financial-institution(x) ^ etc1(x) � bank1(x)14Sexists will �nd this example more compelling if they substitute \she" for \he".21



that is, one way kind of �nancial institution is a bank1.(8 z)river(z) � bank2(x) ^ borders(x; z)that is, a river has a bank2 that borders it.The proof of the proposition bank(y) in the logical form will use the predicates bank1and financial-institution and ground out at loan(L) from the interpretation of the �rstsentence, and the ambiguity will thereby be resolved. (This interpretation is illustratedin Figure 5.) Of course one can construct a context in which \bank" is resolved the otherway, but what one is doing in constructing such a context is modifying the knowledgebase, the salience of the axioms, and the surrounding discourse so that the minimum-costproof of the whole text will be something else.Logical Form: : : : ^ bank(x) ^ : : :Knowledge Base: bank1(x) � bank(x)@@@@@Ifinancial-institution(x)^ etc1(x) � bank1(x)@@Iloan(y) � financial-institution(x) ^ issue(x; y)@@Iloan(L)6bank2(x) � bank(x)river(z) � bank2(x) ^ borders(x; z)Figure 5: Interpretation of \: : : the bank."Next let us consider an example from Hirst (1987):The plane taxied to the terminal.Suppose the knowledge base consists of the following axioms:(8 x)airplane(x) � plane(x)or an airplane is a plane. 22



(8 x)wood-smoother(x) � plane(x)or a wood smoother is a plane.(8 x; y)move-on-ground(x; y) ^ airplane(x) � taxi(x; y)or for an airplane x to move on the ground to y is for it to taxi to y.(8 x; y)ride-in-cab(x; y) ^ person(x) � taxi(x; y)or for a person x to ride in a cab to y is for x to taxi to y.(8 y)airport-terminal(y) � terminal(y)or an airport terminal is a terminal.(8 y)computer-terminal(y) � terminal(y)or a computer terminal is a terminal.(8 z)airport(z) � (9 x; y)airplane(x) ^ airport-terminal(y)or airport have airplanes and airport terminals.The logical form of the sentence will be, roughly,(9 x; y)plane(x) ^ taxi(x; y) ^ terminal(y)The minimal proof of this logical form will involve assuming the existence of an airport,deriving from that the airplane, and thus the plane, and the airport terminal, and thusthe terminal, and recognizing the redundancy of the airplane with one of the readings of\taxi". This interpretation is illustrated in Figure 6.Hirst solved this problem by marker passing. Charniak (1986) pointed out that markerpassing can be viewed as a search through a set of axioms for a proof, where the bindingsof variables are ignored. Adopting this account of marker passing, our abductive prooffollows essentially the same lines as Hirst's marker-passing solution. However, whereasHirst's marker passing is a largely unmotivated special process in language comprehension,our abductive proof is simply the way interpretation is always done.5.4 Compound NominalsIn a compound nominal such as \turpentine jar", the logical form we need to prove consistsof three propositions, one for each noun and one for the relation between them.(9 x; y)turpentine(y) ^ jar(x) ^ nn(y; x)Proving nn(y; x) constitutes discovering the implicit relation between the nouns.Suppose our knowledge base consists of the following axioms:(8 y)liquid(y) ^ etc1(y) � turpentine(y)or one kind of liquid is turpentine. 23



Logical Form: plane(x) ^ taxi(x; y) ^ terminal(y)Knowledge Base: 6airplane(x) � plane(x) @@@@@@@@@Imove-on-ground(x; y) ^ airplane(x) � taxi(x; y) SSSSSSSSSSSSoairport-terminal(y) � terminal(y)SSSSSSSSSo �������> 6airport(z) � airplane(x) ^ airport-terminal(y)wood-smoother(x) � plane(x)ride-in-cab(x; y) ^ person(x) � taxi(x; y)computer-terminal(y) � terminal(y)Figure 6: Interpretation of \The plane taxied to the terminal."(8 e1; x; y)function(e1; x) ^ contain0(e1; x; y) ^ liquid(y) ^ etc2(e1; x; y) �jar(x)or if the function of something is to contain liquid, then it may be a jar.(8 e1; x; y)contain0(e1; x; y) � nn(y; x)or one possible implicit relation in compound nominals is the \contains" relation.Then the minimal proof of the logical form will take the liquid turpentine to be thesame as the liquid implicit in \jar" and take the nn relation to be the \contains" relationimplicit in \jar". This is illustrated in Figure 7.If nn were taken to be a predicate variable, then the last axiom would not be required.When nn is taken to be a predicate variable, we can see that a very common case ofcompound nominals simply falls out, namely, where the head noun is a relational nounand the prenominal noun is one of its arguments. Consider \oil sample", and suppose thatsample is a two-argument predicate, the sample itself and the substance it is a sample of.The logical form of the noun phrase, before the compound nominal is interpreted, is(9 x; y; z; nn)oil(y) ^ sample(x; z) ^ nn(y; x)24



Logical Form: turpentine(y) ^ nn(y; x) ^ jar(x)Knowledge Base: 6liquid(y)^ etc1(y) � turpentine(y) 6contain0(e1; x; y) � nn(y; x)6 ��� AAAAAAAAAAAAKliquid(y) ^ contain0(e1; x; y) ^ function(e1; x) ^ etc2(e1; x; y) � jar(x)Figure 7: Interpretation of \turpentine jar".To interpret this we need to recognize that z is y. But that is exactly what will resultif we take the nn relation to be the sample relation itself, unifying y and z. We need asalient relation between the two nouns, but the most salient relation is the one providedby the head noun.Another case of compound nominal interpretation that can be seen to fall out ofa predicate variable approach is what Jack Kulas (personal communication) has called\referential compound nominals". ConsiderHalf the people will study the role of women in the early history of California.Half the people will study the role of women in the early history of Texas.The California people should �nish their reports by October 15.The relation encoded in the compound nominal \California people" is�x; y [x will study the role of women in the early history of y]but this is exactly the relation that is made salient by the previous two sentences.5.5 Exploiting RedundancyWe next show the use of the abduction scheme in solving internal coreference problems.Two problems raised by the sentenceThe plain was reduced by erosion to its present level.are determining what was eroding and determining what \it" refers to. Suppose ourknowledge base consists of the following axioms:(8 p; l; s)decrease(p; l; s) ^ vertical(s) ^ etc3(p; l; s) � (9 e; z)reduce0(e; z; p; l)25



or if p decreases to l on some (real or metaphorical) vertical scale s (plus some otherconditions), then there is an e which is a reducing by something z of p to l.(8 p)landform(p) ^ flat(p) ^ etc4(p) � plain(p)or p is a plain if p is a at landform (plus some other conditions).(8 e; y; l; s)at0(e; y; l) ^ on(l; s) ^ vertical(s) ^ flat(y) ^ etc5(e; y; l; s)� level0(e; l; y)or e is the condition of l's being the level of y if e is the condition of y's being at l on somevertical scale s and y is at (plus some other conditions).(8 x; l; s)decrease(x; l; s) ^ landform(x) ^ altitude(s) ^ etc6(x; l; s)� (9 e)erode0(e; x)or e is an eroding of x if x is a landform that decreases to some point l on the altitudescale s (plus some other conditions).(8 s)vertical(s) ^ etc7(s) � altitude(s)or s is the altitude scale if s is vertical (plus some other conditions).Now the analysis. The logical form of the sentence is roughly(9 e1; e2; p; l; x; e3; y)reduce0(e1; e2; p; l)^ plain(p)^ erode0(e2; x) ^ present(e3)^ level0(e3; l; y)Our characterization of interpretation says that we must derive this expression from theaxioms or from assumptions. Back-chaining on reduce0(e1; e2; p; l) yieldsdecrease(p; l; s1) ^ vertical(s1) ^ etc3(p; l; s1)Back-chaining on erode0(e1; x) yieldsdecrease(x; l2; s2) ^ landform(x) ^ altitude(s2) ^ etc6(x; l2; s2)and back-chaining on altitude(s2) in turn yieldsvertical(s2) ^ etc7(s2)We unify the goals decrease(p; l; s1) and decrease(x; l2; s2), and thereby identify the objectx of the erosion with the plain p. The goals vertical(s1) and vertical(s2) also unify, tellingus the reduction was on the altitude scale. Back-chaining on plain(p) yieldslandform(p) ^ flat(p) ^ etc4(p)and landform(x) uni�es with landform(p), reinforcing our identi�cation of the object ofthe erosion with the plain. Back-chaining on level0(e3; l; y) yieldsat0(e3; y; l) ^ on(l; s3) ^ vertical(s3) ^ flat(y) ^ etc5(e3; y; l; s3)26



and vertical(s3) and vertical(s2) unify, as do flat(y) and flat(p), thereby identifying\it", or y, as the plain p. We have not written out the axioms for this, but note also that\present" implies the existence of a change of level, or a change in the location of \it" ona vertical scale, and a decrease of a plain is a change of the plain's location on a verticalscale. Unifying these would provide reinforcement for our identi�cation of \it" with theplain. Now assuming the most speci�c atomic formulas we have derived including all the\et cetera" conditions, we arrive at an interpretation that is minimal and that solves theinternal coreference problems as a by-product.15This interpretation is illustrated in Figure 8. (The factoring of two literals is indicatedby marking one as assumed and deriving the second from it.)Knowledge Base: Logical Form:vertical(s) ^ decrease(p; l; s)^ etc3(p; l; s)� reduce0(e; e2; p; l) -reduce0(e1; e2; p; l)vertical(s)^ at0(e; y; l) ^ on(l; s)^ flat(y)^ etc5(e; y; l; s)� level0(e; l; y) - ^ level0(e3; l; y)y = p AAAAKlandform(p)^ flat(p) ^ etc4(p)� plain(p) - ^ plain(p)x = p
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@@@@@Idecrease(x; l; s) ^ landform(x)^ altitude(s)^ etc6(x; l; s)� erode0(e; x) - ^ erode0(e2; x)
6
�������������

��������
@@@@Ivertical(s) ^ etc7(s) � altitude(s) ^ present(e3)Figure 8: Interpretation of \The plain was reduced by erosion to its present level."5.6 The Four Local Pragmatics Problems At OnceLet us now return to the example of Section 3.15This example was analyzed in a similar manner in Hobbs (1978) but not in such a clean fashion, sinceit was without bene�t of the abduction scheme. 27



Disengaged compressor after lube-oil alarm.Recall that we must resolve the reference of \compressor" and \alarm", discover the im-plicit relation between the lube oil and the alarm, attach \after alarm" to either thecompressor or the disengaging, and expand \after alarm" into \after the sounding of thealarm".Suppose our knowledge base includes the following axioms: There are a compressor C,an alarm A, lube oil O, and the pressure P of the lube oil O at A:compressor(C), alarm(A), lube-oil(O), pressure(P;O;A)The alarm is for the lube oil:for(A;O)The for relation is a possible nn relation:(8 a; o)for(a; o) � nn(o; a)A disengaging e1 by x of c is an event:(8 e1; x; c)disengage0(e1; x; c) � event(e1)If the pressure p of the lube oil o at the alarm a is inadequate, then there is a soundinge2 of the alarm, and that sounding is the function of the alarm:(8 a; o; p)alarm(a) ^ lube-oil(o) ^ pressure(p; o; a) ^ inadequate(p)� (9 e2)sound0(e2; a) ^ function(e2; a)A sounding is an event:(8 e2; a)sound0(e2; a) � event(e2)An entity can be coerced into its function:(8 e2; a)function(e2; a) � rel(e2; a)Identity is a possible coercion:(8 x)rel(x; x)Finally, we have axioms encoding set membership:(8 y; s)y 2 fyg [ s(8 y; x; s)y 2 s � y 2 fxg [ sOf the possible metonymy problems, let us con�ne ourselves to one posed by \after".Then the expression that needs to be derived for an interpretation is(9 e1; x; c; k1; k2; y; a; o)disengage0(e1; x; c) ^ compressor(c)^ after(k1; k2)^ event(k1) ^ rel(k1; y) ^ y 2 fc; e1g ^ event(k2) ^ rel(k2; a)^ alarm(a) ^ lube-oil(o) ^ nn(o; a)28



One way for rel(k1; y) to be true is for k1 and y to be identical. We can back-chain fromevent(k1) to obtain disengage0(k1; x1; c1). This can be merged with disengage0(e1; x; c),yielding an interpretation in which the attachment y of the prepositional phrase is to \dis-engage". This identi�cation of y with e1 is consistent with the constraint y 2 fc; e1g. Theconjunct disengage0(e1; x; c) cannot be proved and must be assumed as new information.The conjuncts compressor(c), lube-oil(o), and alarm(a) can be proved immediately,resolving c to C, o to O, and a to A. The compound nominal relation nn(O;A) is truebecause for(A;O) is true. One way for event(k2) to be true is for sound0(k2; a) to betrue, and function(k2; A) is one way for rel(k2; A) to be true. Back-chaining on eachof these and merging the results yields the goals alarm(A), lube-oil(o), pressure(p; o; A),and inadequate(p). The �rst three of these can be derived immediately, thus identifying oas O and p as P , and inadequate(P ) is assumed. We have thereby coerced the alarm intothe sounding of the alarm, and as a by-product we have drawn the correct implicature|that is, we have assumed|that the lube oil pressure is inadequate. This interpretation isillustrated in Figure 9.5.7 Schema RecognitionOne of the most common views of \understanding" in arti�cial intelligence has been thatto understand a text is to match it with some pre-existing schema. In our view, this is fartoo limited a notion. But it is interesting to note that this sort of processing falls out ofour abduction method, provided schemas are expressed as axioms in the right way.Let us consider an example. RAINFORM messages are messages about sightings andpursuits of enemy submarines, generated during naval maneuvers. A typical messagemight read, in part,Visual sighting of periscope followed by attack with ASROC and torpedoes.Submarine went sinker.An \ASROC" is an air-to-surface rocket, and to go sinker is to submerge. These messagesgenerally follow a single, rather simple schema. An enemy sub is sighted by one of ourships. The sub either evades our ship or is attacked. If it is attacked, it is either damagedor destroyed, or it escapes.A somewhat simpli�ed version of this schema can be encoded in an axiom as follows:(8 e1; e2; e3; x; y)sub-sighting-schema(e1; e2; e3; x; y; )� sight0(e1; x; y) ^ friendly(x) ^ ship(x) ^ enemy(y) ^ sub(y)^ then(e1; e2) ^ attack0(e2; x; y) ^ sub-sighting-outcome(e3; e2; x; y)That is, if we are in a submarine-sighting situation, with all of its associated roles e1, x,y, and so on, then a number of things are true. There is a sighting e1 by a friendly shipx of an enemy sub y. Then there is an attack e2 by x on y, with some outcome e3.Among the possible outcomes is y's escaping from x, which we can express as follows:(8 e3; e2; x; y)sub-sighting-outcome(e3; e2; x; y) ^ etc1(e3; e2; x; y)� escape0(e3; y; x) 29



Knowledge Base: Logical Form:disengage0(e1; x; c)�����������������)compressor(C) - ^ compressor(c)^ after(e1; e2)disengage0(e1; x; c) � event(e1) - ^ event(e1)rel(e1; e1) - ^ rel(e1; e1)e1 2 fe1g � e1 2 fcg [ fe1g - ^ e1 2 fc; e1g6e1 2 fe1g [ fgsound0(e2; a) � event(e2) - ^ event(e2)function(e2; a) � rel(e2; a) - ^ rel(e2; a)pressure(p; o; a)^ inadequate(p)^ lube-oil(o) ^ alarm(a) PPPPPPi PPPPPPi� function(e2; a) ^ sound0(e2; a)6pressure(P;O;A) 6alarm(A) - ^ alarm(a)BBBBBBBMlube-oil(O) - ^ lube-oil(o)for(a; o) � nn(o; a) - ^ nn(o; a)6for(A;O)Figure 9: Interpretation of \Disengaged compressor after lube oil alarm."30



We express it here in this direction because we will have to backward-chain from the escapeto the outcome, and on to the schema.The other facts that need to be encoded are as follows:(8 y)sub(y) � (9 z)periscope(z) ^ part(z; y)That is, a sub has a periscope as one of its parts.(8 e1; e2)then(e1; e2) � follow(e2; e1)That is, if e1 and e2 occur in temporal succession (then), then e2 follows e1.(8 e3; y; x)escape0(e3; y; x) ^ etc2(e3; x; y) � submerge0(e3; y)That is, submerging is one way of escaping.(8 e3; y)submerge0(e3; y) � go-sinker0(e3; y)That is, submerging implies going sinker.In order to interpret the �rst sentence of the example, we must prove its logical form,which is, roughly,(9 e1; x; z; e2; u; v; a; t)sight0(e1; x; z) ^ visual(e1) ^ periscope(z)^ follow(e2; e1) ^ attack0(e2; u; v) ^ with(e2; a)^ASROC(a) ^ with(e2; t) ^ torpedo(t)and the logical form for the second sentence, roughly, is the following:(9 e3; y1)go-sinker0(e3; y1) ^ sub(y1)When we backward-chain from the logical forms using the given axioms, we end up, mostof the time, with di�erent instances of the schema predicationsub-sighting-schema(e1; e2; e3; x; y; : : :)as goal expressions. Since our abductive inference method merges uni�able goal expres-sions, all of these are uni�ed, and this single instance is assumed. Since it is almost theonly expression that had to be assumed, we have a very economical interpretation for theentire text.To summarize, when a large chunk of organized knowledge comes to be known, it canbe encoded in a single axiom whose antecedent is a \schema predicate" applied to all ofthe role �llers in the schema. When a text describes a situation containing many of theentities and properties that occur in the consequent of the schema axiom, then very oftenthe most economical interpretation of the text will be achieved by assuming the schemapredicate, appropriately instantiated. If we were to break up the schema axiom into anumber of axioms, each expressing di�erent stereotypical features of the situation andeach having in its antecedent the conjunction of a schema predication and an et ceterapredication, default values for role �llers could be inferred where and only where they wereappropriate and consistent.When we do schema recognition in this way, there is no problem, as there is in otherapproaches, with merging several schemas. It is just a matter of assuming more than oneschema predication with the right instantiations of the variables.31



6 A Thorough Integration of Syntax, Semantics, andPragmatics6.1 The IntegrationBy combining the idea of interpretation as abduction with the older idea of parsing asdeduction (Kowalski, 1980, pp. 52-53; Pereira and Warren, 1983), it becomes possible tointegrate syntax, semantics, and pragmatics in a very thorough and elegant way.16We will present this in terms of example (2), repeated here for convenience.(2) The Boston o�ce called.Recall that to interpret this we must prove the expression(3a) (9 x; y; z; e)call0(e; x) ^ person(x) ^ rel(x; y)(3b) ^ o�ce(y) ^ Boston(z) ^ nn(z; y)Consider now a simple grammar, adequate for parsing this sentence, written in Prologstyle: (8w1; w2)np(w1) ^ verb(w2) � s(w1 w2)(8w1; w2)det(the) ^ noun(w1) ^ noun(w2) � np(the w1 w2)That is, if string w1 is a noun phrase and string w2 is a verb, then the concatenation w1w2 is a sentence. The second rule is interpreted similarly. To parse a sentence W is toprove s(W ).We can integrate syntax, semantics, and local pragmatics by augmenting the axiomsof this grammar with portions of the logical form in the appropriate places, as follows:(12) (8w1; w2; y; p; e; x)np(w1; y) ^ verb(w2; p) ^ p0(e; x) ^ rel(x; y) ^ Req(p; x)� s(w1 w2; e)(13) (8w1; w2; q; r; y; z)det(the) ^ noun(w1; r) ^ noun(w2; q)^ r(z) ^ q(y) ^ nn(z; y) � np(the w1 w2; y)The second arguments of the \lexical" predicates noun and verb denote the predicatescorresponding to the words, such as Boston, o�ce or call. The atomic formula np(w1; y)means that the string w1 is a noun phrase referring to y. The atomic formula Req(p; x)stands for the requirements that the predicate p places on its argument x. The speci�cconstraint can then be enforced if there is an axiom(8 x)person(x) � Req(call; x)16This idea is due to Stuart Shieber. 32



that says that one way for the requirements to be satis�ed is for x to be a person. Axiom(12) can then be paraphrased as follows: \If w1 is a noun phrase referring to y, and w2is a verb denoting the predicate p, and p0 is true of some eventuality e and some entityx, and x is related to (or coercible from) y, and x satis�es the requirements p0 places onits second argument, then the concatenation w1 w2 is a sentence describing eventualitye." Axiom (13) can be paraphrased as follows: \If the is a determiner, and w1 is a noundenoting the predicate r, and w2 is a noun denoting the predicate q, and the predicate ris true of some entity z, and the predicate q is true of some entity y, and there is someimplicit relation nn between z and y, then the concatenation the w1 w2 is a noun phrasereferring to the entity y." Note that the conjuncts from line (3a) in the logical form havebeen incorporated into axiom (12) and the conjuncts from line (3b) into axiom (13).17The parse and interpretation of sentence (2) is illustrated in Figure 10.s(\The Boston o�ce called."; e)�������* ����� AAAAK PPPPPPPPPPPiverb(\called"; call) call0(e; J1) Req(call; J1) rel(J1; O1)6np(\The Boston o�ce"; O1) AAAKperson(J1) 6work-for(J1; O1)�������*����� 6 @@@@Idet(\the") Boston(B1) o�ce(O1) nn(B1; O1)�������� BBBBBBBM HHHYnoun(\Boston"; Boston) noun(\o�ce"; o�ce) in(O1; B1)Figure 10: Parse and interpretation of \The Boston o�ce called."Before when we proved s(W ), we proved that W was a sentence. Now, if we prove(9 e)s(W; e), we prove that W is an interpretable sentence and that the eventuality e is itsinterpretation.Each axiom in the \grammar" then has a \syntactic" part|the conjuncts like np(w1; y)and verb(w2; p)|that speci�es the syntactic structure, and a \pragmatic" part|the con-juncts like p0(e; x) and rel(x; y)|that drives the interpretation. That is, local pragmaticsis captured by virtue of the fact that in order to prove (9 e)s(W; e), one must derive thelogical form of the sentence together with the constraints predicates impose on their ar-guments, allowing for metonymy. The compositional semantics of the sentence is speci�edby the way the denotations given in the syntactic part are used in the construction of thepragmatic part.17As given, these axioms are second-order, but not seriously so, since the predicate variables only needto be instantiated to predicate constants, never to lambda expressions. It is thus easy to convert them to�rst-order axioms by having an individual constant corresponding to every predicate constant.33



One �nal modi�cation is necessary, since the elements of the pragmatic part have tobe assumable. If we wish to get the same costs on the conjuncts in the logical form thatwe proposed at the end of Section 3, we need to augment our formalism to allow attachingassumability costs directly to some of the conjuncts in the antecedents of Horn clauses.Continuing to use the arbitrary costs we have used before, we would thus rewrite theaxioms as follows:(14) (8w1; w2; y; p; e; x)np(w1; y) ^ verb(w2; p) ^ p0(e; x)$3 ^ rel(x; y)$20^Req(p; x)$10 � s(w1 w2; e)(15) (8w1; w2; ; q; r; y; z)det(the) ^ noun(w1; r) ^ noun(w2; q)^ r(z)$5 ^ q(y)$10 ^ nn(z; y)$20 � np(the w1 w2; y)The �rst axiom now says what it did before, but in addition we can assume p0(e; x) for acost of $3, rel(x; y) for a cost of $20, and Req(p; x) for a cost of $10.18Implementations of di�erent orders of interpretation, or di�erent sorts of interactionamong syntax, compositional semantics, and local pragmatics, can then be seen as di�erentorders of search for a proof of (9 e)s(W; e). In a syntax-�rst order of interpretation, onewould try �rst to prove all the \syntactic" atomic formulas, such as np(w1; y), before any ofthe \local pragmatics" atomic formulas, such as p0(e; x). Verb-driven interpretation would�rst try to prove verb(w2; p) and would then use the information in the requirementsassociated with the verb to drive the search for the arguments of the verb, by derivingReq(p; x) before back-chaining on np(w1; y). But more uid orders of interpretation areobviously possible. This formulation allows one to prove those things �rst which areeasiest to prove, and therefore allows one to exploit the fact that the strongest clues tothe meaning of a sentence can come from a variety of sources|its syntax, the semanticsof its main verb, the reference of its noun phrases, and so on. It is also easy to see howprocessing could occur in parallel, insofar as parallel Prolog is possible.In principle, at least, this approach to linguistic structure can be carried to �ner-grainedlevels. The input to the interpretation process could be speech information. Josephson(1990b) and Fox and Josephson (1991), among others, are exploring this idea. The ap-proach can also be applied on a larger scale to discourse structure. This is exploredbelow in Section 6.3. But �rst we see how the approach can be applied to the problem ofsyntactically ill-formed utterances.6.2 Syntactically Ill-Formed UtterancesIt is straightforward to extend this approach to deal with ill-formed or unclear utterances,by �rst giving the expression to be proved (9 e)s(W; e) an assumability cost and thenadding weights to the syntactic part of the axioms. Thus, axiom (14) can be revised asfollows:(8w1; w2; y; p; e; x)np(w1; y):6^ verb(w2; p)^ p0(e; x)$3^ rel(x; y)$20^Req(p; x)$10� s(w1 w2; e)18The costs, rather than weights, on the conjuncts in the antecedents are already permitted if we allow,as Stickel (1989) does, arbitrary functions rather than multiplicative weights.34



This says that if you �nd a verb, then for a small cost you can go ahead and assumethere is a noun phrase, allowing us to interpret utterances without subjects, which arevery common in certain kinds of informal discourse, including equipment failure reportsand naval operation reports. In this case, the variable y will have no identifying propertiesother than what the verb phrase gives it.More radically, we can revise the axiom to(8w1; w2; y; p; e; x)np(w1; y):4^ verb(w2; p):8^ p0(e; x)$3^ rel(x; y)$20^Req(p; x)$10� s(w1 w2; e)This allows us to assume there is a verb as well, although for a higher cost than forassuming a noun phrase (since presumably a verb phrase provides more evidence for theexistence of a sentence than a noun phrase does). That is, either the noun phrase orthe verb can constitute a sentence if the string of words is otherwise interpretable. Inparticular, this allows us to handle cases of ellipsis, where the subject is given but theverb is understood. In these cases we will not be able to prove Req(p; x) unless we �rstidentify p by proving p0(e; x). The solution to this problem is likely to come from saliencein context or from considerations of discourse coherence, such as recognizing a parallelwith a previous segment of the discourse.Similarly, axiom (15) can be rewritten to allow omission of determiners, as is also verycommon in some kinds of informal discourse.6.3 Recognizing the Coherence Structure of DiscourseIn Hobbs (1985d) a theory of discourse structure is outlined in which coherence relationssuch as Parallel, Elaboration, and Explanation can hold between successive segments ofa discourse and when they hold, the two segments compose into a larger segment, givingthe discourse as a whole a hierarchical structure. The coherence relations can be de�nedin terms of the information conveyed by the segments.Insofar as the coherence relations can be de�ned precisely, it is relatively straight-forward to incorporate the theory into our method of interpretation as abduction. Thehierarchical structure can be captured by the axiom(8w; e)s(w; e) � Segment(w; e)specifying that a sentence is a discourse segment, and the axiom(8w1; w2; e1; e2; e)Segment(w1; e1)^Segment(w2; e2)^CoherenceRel(e1; e2; e)� Segment(w1 w2; e)saying that if w1 is a segment whose assertion or topic is e1, and w2 is a segment assertinge2, and a coherence relation holds between the content of w1 and the content of w2, thenw1 w2 is also a segment. The third argument e of CoherenceRel is the assertion or topicof the composed segment, as determined by the de�nition of the particular coherencerelation.To interpret a text W , one must then prove the expression35



(9 e)Segment(W; e)For example, Explanation is a coherence relation.(8 e1; e2)Explanation(e1; e2) � CoherenceRel(e1; e2; e1)A �rst approximation to a de�nition for Explanation would be the following:(8 e1; e2)cause(e2; e1) � Explanation(e1; e2)That is, if what is asserted by the second segment could cause what is asserted by the �rstsegment, then there is an explanation relation between the segments. In explanations,what is explained is the dominant segment, so the assertion of the composed segmentis simply the assertion of the �rst segment. (In fact, this is what \dominant segment"means.) Hence, the third argument of CoherenceRel above is e1.Consider a variation on the classic example from Winograd (1972):The police prohibited the women from demonstrating.They feared violence.To interpret the text is to prove abductively the expressionSegment(\The police : : : violence.", e)This involves proving that each sentence is a segment, by proving they are sentences, andproving there is a coherence relation between them. To prove they are sentences, we wouldtap into an expanded version of the sentence grammar of Section 6.1. This would requireus to prove abductively the logical form of the sentences.One way to prove there is a coherence relation between the sentences is to prove thereis an Explanation relation between them, and one way to prove that is to prove a causalrelation between their assertions.After back-chaining in this manner, we are faced with proving the expression(9 e1; p; d; w; e2; y; v; z)prohibit0(e1; p; d) ^ demonstrate0(d; w) ^ cause(e2; e1)^ fear0(e2; y; v) ^ violent0(v; z)That is, there is a prohibiting event e1 by the police p of a demonstrating event d by thewomen w. There is a fearing event e2 by someone y (\they") of violence v by someone z.The fearing event e2 causes the prohibiting event e1. This expression is just the logicalforms of the two sentences, plus the hypothesized causal relation between them.Suppose, plausibly enough, we have the following axioms:(8 e2; y; v)fear0(e2; y; v) � (9 d2)diswant0(d2; y; v) ^ cause(e2; d2)That is, if e2 is a fearing by y of v, then that will cause the state d2 of y not wanting or\diswanting" v.(8 d; w)demonstrate0(d; w) � (9 v; z)cause(d; v) ^ violent0(v; z)That is, demonstrations cause violence. 36



(8 d; v; d2; y)cause(d; v)^ diswant0(d2; y; v) � (9 d1)diswant0(d1; y; d)^ cause(d2; d1)That is, if someone p diswants v and v is caused by d, then that will cause p to diswant das well. If you don't want the e�ect, you don't want the cause.(8 d1; p; d)diswant0(d1; p; d)^ authority(p) � (9 e1)prohibit0(e1; p; d)^ cause(d1; e1)That is, if those in authority diswant something, that will cause them to prohibit it.(8 e1; e2; e3)cause(e1; e2) ^ cause(e2; e3) � cause(e1; e3)That is, cause is transitive.(8 p)police(p) � authority(p)That is, the police are in authority.From these axioms, we can prove all of the above logical form except the propositionspolice(p), demonstrate0(d; w), and fear0(f; y; v), which we assume. This is illustrated inFigure 11. Notice that in the course of doing the proof, we unify y with p, thus resolvingthe problematic pronoun reference that originally motivated this example. \They" refersto the police.One can imagine a number of variations on this example. If we had not included theaxiom that demonstrations cause violence, we would have had to assume the violenceand the causal relation between demonstrations and violence. Moreover, other coherencerelations might be imagined here by constructing the surrounding context in the rightway. It could be followed by the sentence \But since they had never demonstrated before,they did not know that violence might result." In this case, the second sentence wouldplay a subordinate role to the third, forcing the resolution of \they" to the women. Eachexample, of course, has to be analyzed on its own, and changing the example changes theanalysis. In Winograd's original version of this example,The police prohibited the women from demonstrating, because they fearedviolence.the causality was explicit, thus eliminating the coherence relation as a source of ambiguity.The literal cause(e2; e1) would be part of the logical form.Consider another coherence relation. A �rst approximation to the Elaboration relationis that the same proposition can be inferred from the assertions of each of the segments.At some level, both segments say the same thing. In our notation, this can be capturedby the relation gen.(8 e1; e2; e)Elaboration(e1; e2; e) � CoherenceRel(e1; e2; e)(8 e1; e2; e)gen(e1; e) ^ gen(e2; e) � Elaboration(e1; e2; e)That is, if there is an eventuality e that is \generated" by each of the eventualities e1 ande2, then there is an Elaboration coherence relation between e1 and e2, and the assertionof the composed segment will be e.Let us consider a simple example: 37



Segment(\The police : : : violence."; e1)6CoherenceRel(e1; e2; e1)������ AAAAAKSegment(\The police : : : demonstrating."; e1) Segment(\They : : : violence."; e2)6Explanation(e1; e2)6 6s(\The police : : : demonstrating."; e1) s(\They feared violence."; e2)6cause(e2; e1)6 ���� AAAKprohibit0(e1; p; d) cause(d1; e1) cause(e2; d1)y = p6 �������*@@@@I 6 �����authority(p) diswant0(d1; y; d) cause(d2; d1)������ 6 ����� �������*AAAAK ����� 6 6
police(p) diswant0(d2; y; v) cause(d; v) cause(e2; d2) violent0(v; z)
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demonstrate0(d; w) fear0(e2; y; v)Figure 11: Interpretation of \The police prohibited the women from demonstrating. Theyfeared violence." 38



Go down First Sreet. Follow First Street to A Street.Note that it is important to recognize that this is an Elaboration, rather than two tem-porally successive instructions.To interpret the text we must prove abductively the expressionSegment(\Go : : : A Street.", e)To prove the text is a segment, we need to prove each sentence is a segment, by proving it isa sentence. This taps us into an expanded version of the sentence grammar of Section 6.1,which requires us to prove the logical form of the sentences. We also need to prove thereis a coherence relation between the two sentences. Thus, we need to prove (simplifyingsomewhat),(9 g; u; x; y; f; f1)go0(g; u; x; y) ^ down(g; FS) ^ CoherenceRel(g; f; f1)^ follow0(f; u; FS; AS)That is, there is a going g by u from x to y and the going is down First Street (FS). Thereis also a following f by u of First Street to A Street (AS). Finally, there is a coherencerelation between the going g and the following f , with the composite assertion f1.Suppose we have the following axioms in our knowledge base:(8 f)gen(f; f)That is, the gen relation is reexive.(8 g; u; x; y; z)go0(g; u; x; y) ^ along(g; z) � (9 f)follow0(f; u; z; y) ^ gen(g; f)That is, if g is a going by u from x to y and is along z, then g generates a following f byu of z to y.(8 g; z)down(g; z) � along(g; z)That is, a down relation is one kind of along relation.If we assume go0(g; u; x; y) and down(g; FS), then the proof of the logical form of thetext is straightforward. It is illustrated in Figure 12.In Hobbs (1991) there is an example of the recognition of a Contrast relation, followingessentially the same lines and resulting in the interpretation of a simple metaphor.This approach has the avor of discourse grammar approaches. What has always beenthe problem with discourse grammars is that their terminal symbols (e.g., Introduction)and sometimes their compositions have not been computable. Because in our abductive,inferential approach, we are able to reason about the content of the utterances of thediscourse, this problem no longer exists.A second possible approach to some aspects of discourse structure already falls out ofwhat was presented in the �rst part of this article. In 1979, Hobbs published an articleentitled \Coherence and Coreference", in which it was argued that coreference problemsare often solved as a by-product of recognizing coherence. However, one can turn this39



Segment(\Go : : : A Street."; f)6CoherenceRel(g; f; f)������ AAAAAKSegment(\Go down First Street."; g) Segment(\Follow : : : A Street."; f)6Elaboration(g; f; f)6 6s(\Go down First Street."; g) s(\Follow : : : A Street."; f)������ AAAAAKgen(g; f) gen(f; f) 6follow0(f; u; FS; AS)AAAAAAAAAAK 6 ��������1@@@@@@@I ����go0(g; u; x; y) along(g; FS)BBBBBBBBBBBBB
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�����������1down(g; FS)Figure 12: Interpretation of \Go down First Street. Follow First Street to A Street."observation on its head and see the coherence structure of the text as a kind of higher-order coreference, in a manner similar to the approach of Lockman and Klapholz (1980)and Lockman (1978). Where we see two sentences as being in an Elaboration relation, forexample, it is because we have inferred the same eventuality from the assertions of thetwo sentences. Thus, from both of the sentencesJohn can open Bill's safe.He knows the combination.we infer that there is some action that John/he can do that will cause the safe to be open.But we may also view the eventuality described by the second sentence as inferrable fromthe eventuality described by the �rst, as long as certain assumptions are made. From thispoint of view, recognizing elaborations looks very much like ordinary reference resolution,as described in Section 3 and 5. In Figure 12, if everything above the literals s(\Go downFirst Street."; g) and s(\Follow : : : A Street."; f) is ignored, the content of the secondsentence still follows from the content of the �rst.Causal relations can be treated similarly. Axioms would tell us in a general way whatkinds of things cause and are caused by what. In40



John slipped on a banana peel,and broke his back.we cannot infer the entire content of the second clause from the �rst, but we know in ageneral way that slipping tends to cause falls, and falls tend to cause injuries. If we takethe second clause to contain an implicit de�nite reference to an injury, we can recoverthe causal relation between the two events, and the remainder of the speci�c informationabout the injury is new information and can be assumed.Recognizing parallelism is somewhat more complex, but perhaps it can be seen as akind of de�nite reference to types.A disadvantage of this approach to discourse coherence is that it does not yield thelarge-scale coherence structure of the discourse that we are able to derive in the approachbased on coherence relations. This is important because the coherence structure structuresthe context against which subsequent sentences are interpreted.The coreference view of coherence is in no way incompatible with the structural view.We can both recognize the coherence structure and recognize the implicit de�nite referencesthat rely on much the same knowledge.We have illustrated an abductive approach to discourse structure based on Hobbs'scoherence relations. But any other su�ciently precise theory of discourse structure, suchas Rhetorical Structure Theory (Mann and Thompson, 1986), can be treated in a similarfashion.We should point out a subtle shift of perspective we have just gone through in Section6. In the �rst �ve sections of this article, the problem of interpretation was viewed asfollows: One is given certain observable facts, namely, the logical form of the sentence,and one has to �nd a proof that demonstrates why they are true. In this section, weno longer set out to prove the observable facts. Rather we set out to prove that we areviewing a coherent situation, and it is built into the rules that specify what situations arecoherent that an explanation must be found for the observable facts. We return to thispoint in Section 8.3 and in the conclusion.6.4 Integration versus ModularityFor the past several decades, there has been quite a bit of discussion in linguistics, psy-cholinguistics, and related �elds about the various modules involved in language processingand their interactions. A number of researchers have, in particular, been concerned to showthat there was a syntactic module that operated in some sense independently of processesthat accessed general world knowledge. Fodor (1983) has been perhaps the most vocaladvocate of this position. He argues that human syntactic processing takes place in a spe-cial \informationally encapsulated" input module, immune from top-down inuences from\central processes" involving background knowledge. This position has been contentiousin psycholinguistics. Marslen-Wilson and Tyler (1987), for example, present evidence thatif there is any information encapsulation, it is not in a module that has logical form as itsoutput, but rather one that has a mental model or some other form of discourse represen-tation as its output. Such output requires background knowledge in its construction. At41



the very least, if linguistic processing is modular, it is not immune from top-down contextdependence.Finally, however, Marslen-Wilson and Tyler argue that the principal question aboutmodularity|\What interaction occurs between modules?"|is ill-posed. They suggestthat there may be no neat division of the linguistic labor into modules, and that it thereforedoes not make sense to talk about interaction between modules. This view is very muchin accord with the integrated approach we have presented here. Knowledge of syntax isjust one kind of knowledge of the world. All is given a uniform representation. Any ruleused in discourse interpretation can in principle, and often in fact will, involve predicationsabout syntactic phenomena, background knowledge, the discourse situation, or anythingelse. In such an approach, issues of modularity simply go away.In one extended defense of modularity, Fodor (n.d.) begins by admitting that the argu-ments against modularity are powerful. \If you're a modularity theorist, the fundamentalproblem in psycholinguistics is to talk your way out of the massive e�ects of context onlanguage comprehension" (p. 15). He proceeds with a valiant attempt to do just that.He begins with an assumption: \Since a structural description is really the union of rep-resentations of an utterance in a variety of di�erent theoretical vocabularies, it's naturalto assume that the internal structure of the parsers is correspondingly functionally dif-ferentiated" (p. 10). But in our framework, this assumption is incorrect. Facts aboutsyntax and pragmatics are expressed in di�erent theoretical vocabularies only in the sensethat facts about doors and airplanes are expressed in di�erent theoretical vocabularies|di�erent predicates are used. But the \internal structure of the parsers" is the same. Itis all abduction.In discussing certain sentences in which readers are \garden-pathed" by applying thesyntactic strategy of \minimal attachment", Fodor proposes two alternatives, the �rstinteractionist and the second modular: \Does context bias by penetrating the parser andsuspending the (putative) preference for minimal attachment? Or does it bias by correctingthe output of the parser when minimal attachment yields implausible analyses?" (p. 37)In our view, neither of these is true. The problem is to �nd the interpretation of theutterance that best satis�es a set of syntactic, semantic, and pragmatic constraints. Thus,all the constraints are applied simultaneously and the best interpretation satisfying themall is selected.Moreover, often the utterance is elliptical, obscure, ill-formed, or unclear in parts. Inthese cases, various interpretive moves are available to the hearer, among them the localpragmatics moves of assuming metonymy or metaphor, the lexical move of assuming avery low-salience sense of a word, and the syntactic move of inserting a word to repair thesyntax. The last of these is required in a sentence in a rough draft that was circulated ofFodor's paper:By contrast, on the Interactive model, it's assumed that the same processeshave access to linguistic information can also access cognitive background.(p. 57{8)The best way to interpret this sentence is to assume that a \that" should occur between\processes" and \have". There is no way of knowing a priori what interpretive moves will42



yield the best interpretation for a given utterance. This fact would dictate that syntacticanalysis be completed even where purely pragmatic processes could repair the utteranceto interpretability.In Bever's classic example (Bever, 1970),The horse raced past the barn fell.there are at least two possible interpretive moves: insert an \and" between \barn" and\fell", or assume the rather low-frequency, causative sense of \race". People generallymake the �rst of these moves. However, Fodor himself gives examples, such asThe performer sent the owers was very pleased.in which no such low-frequency sense needs to be accessed and the sentence is more easilyinterpreted as grammatical.Our approach to this problem is in the spirit of Crain and Steedman (1985), who arguethat interpretation is a matter of minimizing the number of presuppositions it is necessaryto assume are in e�ect. Such assumptions add to the cost of the interpretation.There remains, of course, the question of the optimal order of search for a prooffor any particular input text. As pointed out in Section 6.1, the various proposals ofmodularizations can be viewed as suggestions for order of search. But in our framework,there is no particular reason to assume a rigid order of search. It allows what seems to usthe most plausible account|that sometimes syntax drives interpretation and sometimespragmatics does.It should be pointed out that if Fodor were to adopt our position, it would only bewith the utmost pessimism. According to him, we would have taken a peripheral, modularprocess that is, for just that reason, perhaps amenable to investigation, and turned it intoone of the central processes, the understanding of which, on his view, would be completelyintractable. However, it seems to us that nothing can be lost in this move. Insofar assyntax is tractable and the syntactic processing can be traced out, this information canbe treated as information about e�cient search orders in the central processes.Finally, the reader may object to this integration because syntax and the other so-called modules constitute coherent domains of inquiry, and breaking down the barriersbetween them can only result in conceptual confusion. This is not a necessary consequence,however. One can still distinguish, if one wants, between linguistic axioms such as (12)and background knowledge axioms such as (8). It is just that they will both be expressedin the same formal language and used in the same fashion. What the integration has doneis to remove such distinctions from the code and put them into the comments.7 Relation to Other Work7.1 Previous and Current Research on Abduction in AIThe term \abduction" was �rst used by C. S. Pierce (e.g., 1955), who also called theprocess \retroduction". His de�nition of it is as follows:43



The surprising fact, C, is observed;But if A were true, C would be a matter of course,Hence, there is reason to suspect that A is true. (p. 151)Pierce's C is what we have been calling q(A) and his A is what we have been calling p(A).To say \if A were true, C would be a matter of course" is to say that for all x, p(x) impliesq(x), that is, (8 x)p(x) � q(x). He goes on to describe what he refers to as \abductoryinduction". In our terms, this is when, after abductively hypothesizing p(A), one checksa number of, or a random selection of, properties qi such that (8 x)p(x) � qi(x), to seewhether qi(A) holds. This, in a way, corresponds to our check for consistency. Then Piercesays that \in pure abduction, it can never be justi�able to accept the hypothesis otherwisethan as an interrogation", and that \the whole question of what one out of a number ofpossible hypotheses ought to be entertained becomes purely a question of economy." Thiscorresponds to our evaluation scheme.The earliest formulation of abduction in arti�cial intelligence was by Morgan (1971).He showed how a complete set of truth-preserving rules for generating theorems could beturned into a complete set of falsehood-preserving rules for generating hypotheses.The �rst application of abduction in arti�cial intelligence was by Pople (1973), in thecontext of medical diagnosis. He gave the formulation of abduction that we have usedand showed how it can be implemented in a theorem-proving framework. Literals that are\abandoned by deduction in the sense that they fail to have successor nodes" (p. 150) aretaken as the candidate hypotheses. Those hypotheses are best that account for the mostdata, and in service of this principle, he introduced factoring or synthesis, which, just asin our scheme, attempts to unify goal literals. Hypotheses where this is used are favored.No further scoring criteria are given, however.Work on abduction in arti�cial intelligence was revived in the early 1980s at severalsites. Reggia and his colleagues (e.g., Reggia et al., 1983; Reggia, 1985) formulated ab-ductive inference in terms of parsimonious covering theory. One is given a set of disorders(our p(A)'s) and a set of manifestations (our q(A)'s) and a set of causal relations betweendisorders and manifestations (our rules of the form (8 x)p(x) � q(x)). An explanationfor any set of manifestations is a set of disorders which together can cause all of the man-ifestations. The minimal explanation is the best one, where minimality can be de�nedin terms of cardinality or irredundancy. More recently, Peng and Reggia (1987a, 1987b)have begun to incorporate probabilistic considerations into their notion of minimality. ForReggia, the sets of disorders and manifestations are distinct, as is appropriate for medicaldiagnosis, and there is no backward-chaining to deeper causes; our abduction method ismore general than his in that we can assume any proposition|one of the manifestationsor an underlying cause of arbitrary depth.In their textbook, Charniak and McDermott (1985) presented the basic pattern ofabduction and then discuss many of the issues involved in trying to decide among alter-native hypotheses on probabilistic grounds. Reasoning in uncertainty and its applicationto expert systems are presented as examples of abduction.Cox and Pietrzykowski (1986) present a formulation in a theorem-proving frameworkthat is very similar to Pople's, though apparently independent. It is especially valuable44



in that it considers abduction abstractly, as a mechanism with a variety of possible ap-plications, and not just as a handmaiden to diagnosis. The test used to select a suitablehypothesis is that it should be what they call a \dead end"; that is, it should not be pos-sible to �nd a stronger consistent assumption by backward-chaining from the hypothesisusing the axioms in the knowledge base. The dead-end test forces the abductive reasoningsystem to overcommit|to produce overly speci�c hypotheses. This is a problem, however,since it often does not seem reasonable to accept any of a set of very speci�c assumptionsas the explanation of the fact that generated them by backward-chaining in the knowl-edge base. More backward-chaining is not necessarily better. Moreover, the location ofthese dead ends is often a rather super�cial and incidental feature of the knowledge basethat has been constructed. It is in part to overcome such objections that we devised ourweighted abduction scheme.In recent years there has been an explosion of interest in abduction in arti�cial intelli-gence. Some recent formal approaches are those of Reiter and de Kleer (1987), Levesque(1989), and Poole (1991). A good overview of recent research on abduction can be obtainedfrom O'Rorke (1990).In many of the applications of abduction to diagnosis, it is assumed that the relationsexpressed by the rules are all causal, and in fact Josephson (1990a) has argued that thatis necessarily the case in explanation. It seems to us that when one is diagnosing physicaldevices, of course explanations must be in terms of physical causality. But when weare working within an informational system, such as language or mathematics, then therelations are implicational and not necessarily causal.7.2 Inference in Natural Language UnderstandingThe problem of using world knowledge in the interpretation of discourse, and in particularof drawing the appropriate inferences, has been investigated by a number of researchers forthe last two decades. Among the earliest work was that of Rieger (Rieger, 1974; Schank,1975). He and his colleagues implemented a system in which a sentence was mapped intoan underlying representation on the basis of semantic information, and then all of thepossible inferences that could be drawn were drawn. Where an ambiguity was present,those interpretations were best that yielded the most inferences. Rieger's work was seminalin that of those who appreciated the importance of world knowledge in text interpretation,his implementation was probably the most general and on the largest scale. But becausehe imposed no constraints on what inferences should be drawn, his method was inherentlycombinatorially explosive.Recent work by Sperber and Wilson (1986) takes an approach very similar to Rieger's.They present a noncomputational attempt to characterize the relevance of utterancesin discourse. They �rst de�ne a contextual implication of some new information, say,that provided by a new utterance, to be a conclusion that can be drawn from the newinformation plus currently highlighted background knowledge but that cannot be drawnfrom either alone. An utterance is then relevant to the extent, essentially, that it has alarge number of easily derived contextual implications. To extend this to the problem ofinterpretation, we could say that the best interpretation of an ambiguous utterance is the45



one that gives it the greatest relevance in the context.In the late 1970s and early 1980s, Roger Schank and his students scaled back from theambitious program of Rieger. They adopted a method for handling extended text thatcombined keywords and scripts. The text was scanned for particular keywords which wereused to select the pre-stored script that was most likely to be relevant. The script wasthen used to guide the rest of the processing. This technique was used in the FRUMPprogram (DeJong, 1977; Schank et al., 1980) for summarizing stories on the AssociatedPress news wire that dealt with terrorist incidents and with disasters. Unconstrainedinference was thereby avoided, but at a cost. The technique was necessarily limited tovery narrow domains in which the texts to be processed described stereotyped scenariosand in which the information was conveyed in stereotyped ways. The more one examineseven the seemingly simplest examples of spoken or written discourse, the more one realizesthat very few cases satisfy these criteria.In what can be viewed as an alternative response to Rieger's project, Hobbs (1980)proposed a set of constraints on the inferences that should be drawn in knowledge-basedtext processing: those inferences should be drawn that are required for the most economicalsolution to the discourse problems posed by the text. These problems include interpretingvague predicates, resolving de�nite references, discovering the congruence of predicatesand their arguments, discovering the coherence relations among adjacent segments of text,and detecting the relation of the utterances to the speaker's or writer's overall plan. Foreach problem a discourse operation was de�ned, characterizing the forward and backwardinferences that had to be drawn for that problem to be solved.The di�erence in approaches can be characterized briey as follows: The Rieger and theSperber and Wilson models assume the unrestricted drawing of forward inferences, and thebest interpretation of a text is the one that maximizes this set of inferences. The selectiveinferencing model posits certain external constraints on what counts as an interpretation,namely, that certain discourse problems must be solved, and the best interpretation is thethe set of inferences, some backward and some forward, that satis�es these constraintsmost economically. In the abductive model, there is only one constraint, namely, thatthe text must be explained, and the best interpretation is the set of backward inferencesthat does this most economically. Whereas Rieger and Sperber and Wilson were forward-chaining from the text and trying to maximize implications, we are backward-chainingfrom the text and trying to minimize assumptions.7.3 Abduction in Natural Language UnderstandingGrice (1975) introduced the notion of \conversational implicature" to handle exampleslike the following:A: How is John doing on his new job at the bank?B: Quite well. He likes his colleagues and he hasn't embezzled any money yet.Grice argues that in order to see this as coherent, we must assume, or draw as a conver-sational implicature, that both A and B know that John is dishonest. An implicature canbe viewed as an abductive move for the sake of achieving the best interpretation.46



Lewis (1979) introduces the notion of \accommodation" in conversation to explain thephenomenon that occurs when you \say something that requires a missing presupposi-tion, and straightaway that presupposition springs into existence, making what you saidacceptable after all." The hearer accommodates the speaker.Thomason (1985) argued that Grice's conversational implicatures are based on Lewis'srule of accommodation. We might say that implicature is a procedural characterization ofsomething that, at the functional or interactional level, appears as accommodation. Whenwe do accommodation, implicature is what our brain does.Hobbs (1979) recognized that many cases of pronoun reference resolution were in factconversational implicatures, drawn in the service of achieving the most coherent interpreta-tion of a text. Hobbs (1983a) gave an account of the interpretation of a spatial metaphoras a process of backward-chaining from the content of the utterance to a more speci�cunderlying proposition, although the details are vague. Hobbs (1982b) showed how thenotion of implicature can solve many problematic cases of de�nite reference. However, innone of this work was there a recognition of the pervasive role of abductive explanationin discourse interpretation.A more thorough-going early use of abduction in natural language understanding wasin the work of Norvig (1983, 1987), Wilensky (1983; Wilensky et al., 1988), and theirassociates. They propose an operation of \concretion", one of many that take place in theprocessing of a text. It is a \kind of inference in which a more speci�c interpretation ofan utterance is made than can be sustained on a strictly logical basis" (Wilensky et al.,1988, p. 50). Thus, \to use a pencil" generally means to write with a pencil, even thoughone could use a pencil for many other purposes. The operation of concretion works asfollows: \A concept represented as an instance of a category is passed to the concretionmechanism. Its eligibility for membership in a more speci�c subcategory is determined byits ability to meet the constraints imposed on the subcategory by its associated relationsand aspectual constraints. If all applicable conditions are met, the concept becomes aninstance of the subcategory" (ibid.). In the terminology of our schema,From q(A) and (8 x)p(x) � q(x), conclude p(A),A is the concept, q is the higher category, and p is the more speci�c subcategory. WhereasWilensky et al. view concretion as a special and somewhat questionable inference fromq(A), in the abductive approach it is a matter of determining the best explanation for q(A).The \associated relations and aspectual constraints" are other consequences of p(A). Inpart, checking these is checking for the consistency of p(A). In part, it is being able toexplain the most with the least.Norvig (1987), in particular, describes this process in terms of marker passing in asemantic net framework, deriving originally from Quillian (1968). Markers are passedfrom node to node, losing energy with each pass, until they run out of energy. When twomarkers collide, the paths they followed are inspected, and if they are of the right shape,they constitute the inferences that are drawn. Semantic nets express implicative relations,and their links can as easily be expressed as axioms. Hierarchical relations correspond toaxioms of the form(8 x)p(x) � q(x) 47



and slots correspond to axioms of the form(8 x)p(x) � (9 y)q(y; x) ^ r(y)Marker passing therefore is equivalent to forward- and backward-chaining in a set of ax-ioms. Although we do no forward-chaining, the use of \et cetera" propositions describedin Section 4 accomplishes the same thing. Norvig's \marker energy" corresponds to ourcosts; when the weights on antecedents sum to greater than one, that means cost is increas-ing and hence marker energy is decreasing. Norvig's marker collision corresponds to ourfactoring. We believe ours is a more compelling account of interpretation. There is reallyno justi�cation for the operation of marker passing beyond the pretheoretic psychologicalnotion that there are associations between concepts and one concept reminds us of another.And there is no justi�cation at all for why marker collision is what should determine theinferences that are drawn and hence the interpretation of the text. In our formulation,by contrast, the interpretation of a text is the best explanation of why it would be true,\marker passing" is the search through the axioms in the knowledge base for a proof, and\marker collision" is the discovery of redundancies that yield more economic explanations.Charniak and his associates have also been working out the details of an abductiveapproach to interpretation for a number of years. Charniak (1986) expresses the funda-mental insight: \A standard platitude is that understanding something is relating it towhat one already knows. : : : One extreme example would be to prove that what one istold must be true on the basis of what one already knows. : : :We want to prove what oneis told given certain assumptions."To compare Charniak's approach with ours, it is useful to examine in detail one of hisoperations, that for resolving de�nite references. In Charniak and Goldman (1988) therule is given as follows:(inst ?x ?frame) )(OR (PExists (y : ?frame)(== ?x ?y)):9(!OR (role-inst ?x ?superfrm ?slot)(Exists (?s : ?superfrm)(== (?slot ?s) ?x)))):1)For the sake of concreteness, we will look at the exampleJohn bought a new car. The engine is already acting up.where the problem is to resolve \the engine". For the sake of comparing Charniak andGoldman's with our approach, let us suppose we have the axiom(16) (8 y)car(y) � (9 x)engine-of(x; y) ^ engine(x)That is, if y is a car, then there is an engine x which is the engine of y. The relevantportion of the logical form of the second sentence is(9 : : : ; x; : : :) : : : ^ engine(x) ^ : : : 48



and after the �rst sentence has been processed, car(C) is in the knowledge base.Now, Charniak and Goldman's expression (inst ?x ?frame) says that an entity ?x,say, the engine, is an instance of a frame ?frame, such as the frame engine. In ourterminology, this is simply engine(x). The �rst disjunct in the conclusion of the rule saysthat a y instantiating the same frame previously exists (PExists) in the text and is equalto (or the best name for) the mentioned engine. For us, that corresponds to the casewhere we already know engine(E) for some E. In the second disjunct, the expression(role-inst ?x ?superfrm ?slot) says that ?x is a possible �ller for the ?slot slot inthe frame ?superfrm, as the engine x is a possible �ller for the engine-of slot in the carframe. In our formulation, that corresponds to backward-chaining using axiom (16) and�nding the predicate car. The expression(Exists (?s : ?superfrm)(== (?slot ?s) ?x))says that some entity ?s instantiating the frame ?superfrm must exist, and its ?slot slotis equal to (or the best name for) the de�nite entity ?x. So in our example, we need to�nd a car whose existence is known or can be inferred. The operator!OR tells us to inferits �rst argument in all possible ways and then to prove its second argument with one ofthe resulting bindings. The superscripts on the disjuncts are probabilities that result infavoring the �rst over the second, thereby favoring shorter proofs. The two disjuncts ofCharniak and Goldman's rule therefore correspond to the two cases of not having to useaxiom (16) in the proof of the engine's existence and having to use it.There are two ways of viewing the di�erence between Charniak and Goldman's for-mulation and ours. The �rst is that whereas they must explicitly state complex rulesfor de�nite reference, lexical disambiguation, case disambiguation, plan recognition, andother discourse operations in a complex metalanguage, we simply do backward-chainingon a set of axioms expressing our knowledge of the world. Their rules can be viewed asdescriptions of this backward-chaining process: If you �nd r(x) in the text, then look foran r(A) in the preceding text, or, if that fails, look for an axiom of the form(8 y)p(y) � (9 x)q(x; y) ^ r(x)and a p(B) in the preceding text or the knowledge base, and make the appropriate iden-ti�cations.Alternatively, we can view Charniak and Goldman's rule as an axiom schema, one ofwhose instances is(8 x)engine(x) � [(9 y)engine(y) ^ y = x]_ [(9 y)car(y) ^ engine-of(x; y)]_ [(9 y)truck(y) ^ engine-of(x; y)]_ [(9 y)plane(y) ^ engine-of(x; y)]_ : : :Kautz (1987) and Konolige (1990) point out that abduction can be viewed as nonmono-tonic reasoning with closure axioms and minimization over causes. That is, where thereare a number of potential causes expressed as axioms of the form Pi � Q, we can write49



the closure axiom Q � P1 _ P2 _ : : :, saying that if Q holds, then one of the Pi's must beits explanation. Then instead of backward-chaining through axioms of the �rst sort, oneforward chains through axioms of the second sort. Minimization over the Pi's, or assumingas many of them as possible to be false, then selects the most economic conjunctions ofPi's for explaining Q. Charniak and Goldman's approach is one of forward-chaining andminimization, whereas our approach is one of backward-chaining.In more recent work, Goldman and Charniak (1990; Charniak and Goldman, 1989)have begun to implement their interpretation procedure in the form of an incrementallybuilt belief network (Pearl, 1988), where the links between the nodes, representing inu-ences between events, are determined from the axioms, stated as described above. Theyfeel that one can make not unreasonable estimates of the required probabilities, giving aprincipled semantics to the numbers. The networks are then evaluated and ambiguitiesare resolved by looking for the highest resultant probabilities.It is clear that minimality in the number of assumptions is not, by itself, adequatefor choosing among interpretations; this is why we have added weights. Ng and Mooney(1990) have proposed another criterion, which they call \explanatory coherence". Theyde�ne a \coherence metric" that gives special weight to observations explained by otherobservations. One ought to be able to achieve this by factoring, but they give exampleswhere factoring does not work. Their motivating examples, however, are generally short,two-sentence texts, where they fail to take into account that one of the facts to be explainedis the adjacency of the sentences in a single, coherent text. When one does, one sees thattheir supposedly simple but low-coherence explanations are bad just because they explainso little. We believe it remains to be established that the coherence metric achievesanything that a minimality metric does not.There has been other recent work on using abduction in the solution of various natu-ral language problems, including the problems of lexical ambiguity (Dasigi, 1988, 1990),structural ambiguity (Nagao, 1989), and lexical selection (Zadrozny and Kokar, 1990).8 Future Directions8.1 Making Abduction More E�cientDeduction is explosive, and since the abduction scheme augments deduction with twomore options at each node|assumption and factoring|it is even more explosive. We arecurrently engaged in an empirical investigation of the behavior of this abductive schemeon a knowledge base of nearly 600 axioms, performing relatively sophisticated linguisticprocessing. So far, we have begun to experiment, with good results, with three di�erenttechniques for controlling abduction|a type hierarchy, unwinding or avoiding transitivityaxioms, and various heuristics for reducing the branch factor of the search.We expect our investigation to continue to yield techniques for controlling the abduc-tion process.The Type Hierarchy: The �rst example on which we tested the abductive schemewas the sentenceThere was adequate lube oil. 50



The system got the correct interpretation, that the lube oil was the lube oil in the lube oilsystem of the air compressor, and it assumed that that lube oil was adequate. But it alsogot another interpretation. There is a mention in the knowledge base of the adequacy ofthe lube oil pressure, so the system identi�ed that adequacy with the adequacy mentionedin the sentence. It then assumed that the pressure was lube oil.It is clear what went wrong here. Pressure is a magnitude whereas lube oil is amaterial, and magnitudes can't be materials. In principle, abduction requires a checkfor the consistency of what is assumed, and our knowledge base should have containedaxioms from which it could be inferred that a magnitude is not a material. In practice,unconstrained consistency checking is undecidable and, at best, may take a long time.Nevertheless, one can, through the use of a type hierarchy, eliminate a very large numberof possible assumptions that are likely to result in an inconsistency. We have consequentlyimplemented a module that speci�es the types that various predicate-argument positionscan take on, and the likely disjointness relations among types. This is a way of exploitingthe speci�city of the English lexicon for computational purposes. This addition led to aspeed-up of two orders of magnitude.A further use of the type hierarchy speeds up processing by a factor of 2 to 4. Thetypes provide pre�ltering of relevant axioms for compound nominal, coercion, and othervery general relations. Suppose, for example, that we wish to prove rel(a; b), and we havethe two axiomsp1(x; y) � rel(x; y)p2(x; y) � rel(x; y)Without a type hierarchy we would have to backward-chain on both of these axioms.If, however, the �rst of the axioms is valid only when x and y are of types t1 and t2,respectively, and the second is valid only when x and y are of types t3 and t4, respectively,and a and b have already been determined to be of types t1 and t2, respectively, then weneed to backward-chain on only the �rst of the axioms.There is a problem with the type hierarchy, however. In an ontologically promiscuousnotation, there is no commitment in a primed proposition to truth or existence in the realworld. Thus, lube-oil0(e; o) does not say that o is lube oil or even that it exists; ratherit says that e is the eventuality of o's being lube oil. This eventuality may or may notexist in the real world. If it does, then we would express this as Rexists(e), and fromthat we could derive from axioms the existence of o and the fact that it is lube oil. Bute's existential status could be something di�erent. For example, e could be nonexistent,expressed as not(e) in the notation, and in English as \The eventuality e of o's being lubeoil does not exist," or simply as \o is not lube oil." Or e may exist only in someone'sbeliefs or in some other possible world. While the axiom(8 x)pressure(x) � :lube-oil(x)is certainly true, the axiom(8 e1; x)pressure0(e1; x) � :(9 e2)lube-oil0(e2; x)51



would not be true. The fact that a variable occupies the second argument position of thepredicate lube-oil0 does not mean it is lube oil. We cannot properly restrict that argumentposition to be lube oil, or uid, or even a material, for that would rule out perfectly truesentences like \Truth is not lube oil."Generally, when one uses a type hierarchy, one assumes the types to be disjoint setswith cleanly de�ned boundaries, and one assumes that predicates take arguments of onlycertain types. There are a lot of problems with this idea. In any case, in our work, weare not buying into this notion that the universe is typed. Rather, we are using the typehierarchy strictly as a heuristic, as a set of guesses not about what could or could notbe but about what it would or would not occur to someone to say. When two types aredeclared to be disjoint, we are saying that they are certainly disjoint in the real world, andthat they are very probably disjoint everywhere except in certain bizarre modal contexts.This means, however, that we risk failing on certain rare examples. We could not, forexample, deal with the sentence, \It then assumed that the pressure was lube oil."Unwinding or Avoiding Transitivity Axioms: At one point, in order to concludefrom the sentenceBombs exploded at the o�ces of French-owned �rms in Catalonia.that the country in which the terrorist incident occurred was Spain, we wrote the followingaxiom:(8 x; y; z)in(x; y) ^ part-of(y; z) � in(x; z)That is, if x is in y and y is a part of z, then x is also in z. The interpretation of thissentence was taking an extraordinarily long time. When we examined the search space, wediscovered that it was dominated by this one axiom. We replaced the axiom with severalaxioms that limited the depth of recursion to three, and the problem disappeared.In general, one must exercise a certain discipline in the axioms one writes. Whichkinds of axioms cause trouble and how to replace them with adequate but less dangerousaxioms is a matter of continuing investigation.Reducing the Branch Factor of the Search: It is always useful to reduce thebranch factor of the search for a proof wherever possible. We have devised several heuristicsso far for accomplishing this.The �rst heuristic is to prove the easiest, most speci�c conjuncts �rst, and then topropagate the instantiations. For example, in the domain of naval operations reports,words like \Lafayette" are treated as referring to classes of ships rather than to individualships. Thus, in the sentenceLafayette sighted.\Lafayette" must be coerced into a physical object that can be sighted. We must provethe expression(9 x; y)sight(z; y) ^ rel(y; x)^Lafayette(x)52



The predicate Lafayette is true only of the entity LAFAYETTE-CLASS. Thus, ratherthan trying to prove rel(y; x) �rst, leading to a very explosive search, we try �rst toprove Lafayette(x). We succeed immediately, and propagate the value LAFAYETTE-CLASS for x. We thus have to prove rel(y;LAFAYETTE-CLASS). Because of the type ofLAFAYETTE-CLASS, only one axiom applies, namely, the one allowing coercions fromtypes to tokens that says that y must be an instance of LAFAYETTE-CLASS.Similar heuristics involve solving reference problems before coercion problems andproving conjuncts whose source is the head noun of a noun phrase before proving conjunctsderived from adjectives.Another heuristic is to eliminate assumptions wherever possible. We are better o�if at any node, rather than having either to prove an atomic formula or to assume it,we only have to prove it. Some predicates are therefore marked as nonassumable. Onecategory of such predicates is the \closed-world predicates", those predicates such thatwe know all entities of which the predicate is true. Predicates representing proper names,such as Enterprise, and classes, such as Lafayette, are examples. We don't assume thesepredicates because we know that if they are true of some entity, we will be able to proveit. Another category of such predicates is the \schema-related" predicates. In the navaloperations domain, the task is to characterize the participants in incidents described inthe message. This is done as described in Section 5.7. A schema is encoded by means ofa schema predication, with an argument for each role in the schema. Lexical realizationsand other consequences of schemas are encoded by means of schema axioms. Thus, inthe jargon of naval operations reports, a plane can splash another plane. The underlyingschema is called Init-Act. There is thus an axiom(8 x; y; : : :)Init-Act(x; y; attack; : : :) � splash(x; y)Schema-related predicates like splash occurring in the logical form of a sentence are givenvery large assumption costs, e�ectively preventing their being assumed. The weight asso-ciated with the antecedent of the schema axioms is very very small, so that the schemapredication can be assumed very cheaply. This forces backward-chaining into the schema.In addition, in the naval operations application, coercion relations are never assumed,since constraints on the arguments of predicates are what drives the use of the typehierarchy.Factoring also multiplies the size of the search tree wherever it can occur. As explainedabove, it is a very powerful method for coreference resolution. It is based on the principlethat where it can be inferred that two entities have the same property, there is a goodpossibility that the two entities are identical. However, this is true only for fairly speci�cproperties. We don't want to factor predicates true of many things. For example, toresolve the noun phraseships and planeswe need to prove the expression(9 x; s1; y; s2)Plural(x; s1) ^ ship(x) ^ Plural(y; s2) ^ plane(y)53



where Plural is taken to be a relation between the typical element of a set and the set itself.If we applied factoring indiscriminately, then we would factor the conjuncts Plural(x; s1)and Plural(y; s2), identifying x with y and s1 with s2. If we were lucky, this interpretationwould be rejected because of a type violation|planes aren't ships. But this would wastetime. It is more reasonable to say that very general predicates such as Plural provide noevidence for identity.The type hierarchy, the discipline imposed in writing axioms, and the heuristics forlimiting search all make the system less powerful than it would otherwise be, but weimplement these techniques for the sake of e�ciency. We are trying to locate the systemon a scale whose extremes are e�ciency and power. Where on that scale we achieveoptimal performance is a matter of ongoing investigation.8.2 Other Pragmatics ProblemsIn this article we have described our approach to the problems of reference resolution,compound nominal interpretation, lexical and syntactic ambiguity, metonymy resolution,and schema recognition. These approaches have been worked out, implemented, andtested on a fairly large scale. We intend similarly to work out the details of an abductivetreatment of other problems in discourse interpretation. Among these problems are theproblems of metaphor interpretation, the resolution of quanti�er scope ambiguities, andthe recognition of the relation between the utterance and the speaker's plan. Metaphorinterpretation is discussed in Hobbs (1991). We will indicate very briey for the other twoproblems what an abductive approach might look like.Resolving Quanti�er Scope Ambiguities: Hobbs (1983b) proposed a at repre-sentation for sentences with multiple quanti�ers, consisting of a conjunction of atomicformulas, by admitting variables denoting sets and typical elements of sets, where thetypical elements behave essentially like rei�ed universally quanti�ed variables, similar toMcCarthy's (1977) \inner variables". Webber (1978), Van Lehn (1978), Mellish (1985),and Fahlman (1979) have all urged similar approaches in some form or other, althoughthe technical details of such an approach are by no means easy to work out. (See Shapiro,1980.) In such an approach, the initial logical form of a sentence, representing all thatcan be determined from syntactic analysis alone without recourse to world knowledge, isneutral with respect to the various possible scopings. As various constraints on the quanti-�er structure are discovered during pragmatics processing, the information is representedin the form of predications expressing \functional dependence" relations among sets andtheir typical elements. For example, inThree women in our group had a baby last year.syntactic analysis of the sentence tells us that there is an entity w that is the typicalelement of a set of women, the cardinality of which is three, and there is an entity b thatin some sense is a baby. What needs to be inferred is that b is functionally dependent onw. In an abductive framework, what needs to be worked out is what mechanism willbe used to infer the functional dependency. Is it, for example, something that must54



be assumed in order to avoid contradiction when the main predication of the sentenceis assumed? Or is it something that we somehow infer directly from the propositionalcontent of the sentence. The problem remains to be worked out.It may also be that if the quanti�er scoping possibilities were built into the grammarrules in the integrated approach of Section 6, much as Montague (1974) did, the wholeproblem of determining the scopes of quanti�ers will simply disappear into the largerproblem of searching for the best interpretation, just as the problem of syntactic ambiguitydid.Recognizing the Speaker's Plan: It is a very common view that to interpret anutterance is to discover its relation to the speaker's presumed plan, and on any account,discovering this relation is an important component of an interpretation. The most fun-damental of the objections that Norvig and Wilensky (1990) raise to current abductiveapproaches to discourse interpretation is that they take as their starting point that thehearer must explain why the utterance is true rather than what the speaker was trying toaccomplish with it. We agree in part with this criticism.Let us look at things from the broadest possible context. An intelligent agent isembedded in the world. Just as a hearer must explain why a sequence of words is asentence or a coherent text, our agent must, at each instant, explain why the completeset of observables it is encountering constitutes a coherent situation. Other agents in theenvironment are viewed as intentional, that is, as planning mechanisms, and that meanstheir observable actions are sequences of steps in a coherent plan. Thus, making sense ofthe environment entails making sense of other agents' actions in terms of what they areintended to achieve. When those actions are utterances, the utterances must be related tothe goals those agents are trying to achieve. That is, the speaker's plan must be recognized.Recognizing the speaker's plan is a problem of abduction. If we encode as axiomsbeliefs about what kinds of actions cause and enable what kinds of events and conditions,then in the presence of complete knowledge, it is a matter of deduction to prove that asequence or more complex arrangement of actions will achieve an agent's goals, given theagent's beliefs. Unfortunately, we rarely have complete knowledge. We will almost alwayshave to make assumptions. That is, abduction will be called for. To handle this aspect ofinterpretation in our framework, therefore, we can take it as one of our tasks, in additionto proving the logical form, to prove abductively that the utterance contributes to theachievement of a goal of the speaker, within the context of a coherent plan. In the processwe ought to �nd ourselves making many of the assumptions that hearers make when theyare trying to \psych out" what the speaker is doing by means of his or her utterance.Appelt and Pollack (1990) have begun research on how weighted abduction can be usedfor the plan ascription problem.There is a point, however, at which the \intentional" view of interpretation becomestrivial. It tells us that the proper interpretation of a compound nominal like \coin copier"means what the speaker intended it to mean. This is true enough, but it o�ers us virtuallyno assistance in determining what it really does mean. It is at this point where the\informational" view of interpretation comes into play. We are working for the most partin the domain of common knowledge, so in fact what the speaker intended a sentenceto mean is just what can be proved to be true from that base of common knowledge.55



That is, the best interpretation of the sentence is the best explanation for why it wouldbe true, given the speaker and hearer's common knowledge. So while we agree that theintentional view of interpretation is correct, we believe that the informational view is anecessary component of that, a component that moreover, in analyzing long written textsand monologues, completely overshadows considerations of intention.Another way to put it is this. We need to �gure out why the speaker uttered a sequenceof words that conveyed that particular content. This involves two parts, the informationalaspect of �guring out what the particular content is, and the intentional aspect of �guringout why the speaker wished to convey it. In this paper we have focused on the formeraspect. We are now working on an approach that will encompass the two. In such acombined approach, we should be able to interpret ironic statements and tautologies, forexample, from intentional considerations, as well as using informational considerations tointerpret the more ordinary sorts of discourse discussed in this article.8.3 What the Numbers MeanThe problem of how to combine symbolic and numeric schemes in the most e�ective way,exploiting the expressive power of the �rst and the evaluative power of the second, is oneof the most signi�cant problems that faces researchers in arti�cial intelligence today. Theabduction scheme we have presented attempts just this. However, our numeric componentis highly ad hoc at the present time. We need a more principled account of what thenumbers mean. Here we point out several possible lines of investigation.Charniak and Shimony (1990) have proposed a probabilistic semantics for weightedabduction schemes, under several simplifying assumptions. They consider only the propo-sitional case, so, for example, no factoring or equality assumptions are needed. Fromour point of view, this is not a limitation in their account. If we take one of our proofs,represented by a directed acyclic graph with costs attached, each node or literal beingdi�erent, we can treat it as propositional with variables standing for unnamed constants.Their interpretation of the costs as probabilities would apply to this proof, and we coulda posteriori interpret the proof in their probabilistic terms.They also make the simplifying assumption that a proposition always has the same cost,wherever it occurs in the inference process, although rules themselves may also have anassociated cost. They concern themselves only with the probability that the propositionsare true, and do not try to incorporate utilities into their cost functions as we do. This isa more signi�cant simpli�cation. We believe we bene�t from exible assignment of coststo goals, their propagation by weights, and their sharing by factoring. We sometimesequate high assumption cost with the disutility of not proving something, rather thanits improbability. For example, in the compound nominal problem, we strongly believethe nn relations are true, but we give them high assumption costs, not because they areimprobable, but because it is important for us to explain rather than assume them.Charniak and Shimony show that a set of axioms satisfying their restrictions can beconverted into a Bayesian network where the negative logarithms of the prior probabilitiesof the nodes are the assumability costs of the propositions. They then show that theassignment of truth values to the nodes in the Bayesian network with maximum probability56



given the evidence is equivalent to the assignment of truth values to the propositions thatminimizes cost.We view this as a very promising start toward a semantics for the less restrictedabduction scheme we have used.Let us turn now to a detailed consideration of our weighted abduction scheme. Wetend to agree with Charniak and Shimony that a principled approach is most likely to beone that relies on probability. But what is the space of events over which the probabilitiesare to be calculated? It is a rather glaring problem in Goldman's (1990) otherwise very�ne work that he bases his probabilities on occurrences in the actual world. This leads tovery implausible results. Thus, inJohn wanted to hang himself. He got a rope.the probability that the rope implied by the hanging is the same as the rope mentionedin the second sentence is taken to be the very low probability that two randomly selectedropes in the real world would be identical. The problem is that we must base our prob-abilities not on occurrences in the real world but on frequency of utilization in the textswe are interpreting.Suppose we are given our corpus of interest. Imagine that a TACITUS-system-in-the-sky runs on this entire corpus, interpreting all the texts and instantiating all theabductive inferences it has to draw, producing the correct proof graphs. This gives us aset of propositions Q occurring in the texts and some propositions P assumed or drawnfrom the knowledge base. It seems reasonable that the appropriate probabilities andconditional probabilities are those involving instances of the concepts P and instances ofconcepts Q in this space.Given this space of events, let us examine the weights in our abduction scheme. The�rst question is how the weights should be distributed across the conjuncts in the an-tecedents of Horn clauses. In formula (6), repeated here for convenience,(6) Pw11 ^ Pw22 � Qone has the feeling that the weights should correspond somehow to the semantic contri-bution that each of P1 and P2 make to Q. The semantic contribution of Pi to Q may bestbe understood in terms of the conditional probability that an instance of concept Q is aninstance of concept Pi in the space of events, Pr(Q j Pi). If we distribute the total weightw of the antecedent of (6) according to these conditional probabilities, then wi shouldvary directly with w and with Pr(Q j Pi), normalized somehow by the combination ofPr(Q j P1) and Pr(Q j P2). Following Charniak and Shimony in interpreting costs asnegative logarithms of probabilities, it may be that wi should be given by something likethe formulawi = w log(Pr(QjPi))log(Pr(QjP1))+log(Pr(QjP2))The next question is what the total weight on the antecedent should be. To addressthis question, let us suppose that all the axioms have just one conjunct in the antecedent.Then we consider the set of axioms that have Q as the conclusion:57



Pw11 � QPw22 � Q: : :Pwkk � QIntuitively, the price we will have to pay for the use of each axiom should be inverselyrelated to the likelihood that Q is true by virtue of that axiom. That is, we want to lookat the conditional probability that Pi is true given Q, Pr(Pi j Q). The weights wi shouldbe ordered in the reverse order of these conditional probabilities. We need to include inthis ordering the likelihood of Q occurring in the space of events without any of the Pi'soccurring, Pr(:(P1 ^ : : : ^ Pk) j Q), to take care of those cases where the best assumptionfor Q was simply Q itself. In assigning weights, this should be anchored at 1, and theweights wi should be assigned accordingly.All of this is only the coarsest pointer to a serious treatment of the weights in termsof probabilities.Appelt (1990), by contrast, is exploring an approach to the semantics of the weights,based not on probabilities but on preference relations among models, as Shoham (1987)has done for nonmonotonic logics. Briey, when we have two axioms of the formPw11 � QPw22 � Qwhere w1 is less than w2, we take this to mean that every model in which P1, Q, and :P2are true is preferred over some model in which P2, Q, and :P1 are true. Appelt's approachexposes problems of unintended side-e�ects. Elsewhere among the axioms, P2 may entaila highly preferred proposition, even though w2 is larger than w1. To get around thisproblem, Appelt must place very tight global constraints on the assignment of weights.This di�culty may be fundamental, resulting from the fact that the abduction schemeattempts to make global judgments on the basis of strictly local information.So far we have only talked about the semantics of the weights, and not the costs. Hasida(personal communication) has suggested that the costs and weights be viewed along thelines of an economic model of supply and demand. The requirement to interpret textscreates a demand for propositions to be proved. The costs reect that demand. Thosemost likely to anchor the text referentially are the ones that are in the greatest demand;therefore, they cost the most to assume. The supply, on the other hand, corresponds tothe probability that the propositions are true. The more probable the proposition, theless it should cost to assume, hence the smaller the weight.A further requirement for the scoring scheme is that it incorporate not only the costsof assumptions, but also the costs of inference steps, where highly salient inferences costless than inferences of low salience. The obvious way to do this is to associate costs withthe use of each axiom, where the costs are based on the axiom's salience, and to levy thatcost as a charge for each proof step involving the axiom. If we do this, we need a wayof correlating the cost of inference steps with the cost of assumptions; there must be acommon coin of the realm. In order to relate assumption costs and inference costs, twomoves are called for: interpreting the cost of inference as uncertainty and interpretingsalience as truth in a local theory. 58



The �rst move is to recognize that virtually all of our knowledge is uncertain to somedegree. Then we can view the cost of using an axiom to be a result of the greater un-certainty that is introduced by assuming that axiom is true. This can be done with \etcetera" propositions, either at the level of the axiom as a whole or at the level of itsinstantiations. To associate the cost with the general axiom, we can write our axioms asfollows:(8 x)[p(x) ^ etc$c11 � q(x)]That is, there is no dependence on x. Then we can use any number of instances of theaxiom once we pay the price c1. To associate the cost with each instantiation of the axiom,we can write our axioms as follows:(8 x)[p(x) ^ etc1(x)$c1 � q(x)]Here we must pay the price of c1 for every instance of the axiom we use. The latter styleseems more reasonable.Furthermore, it seems reasonable not to charge for multiple uses of particular instan-tiations of axioms; we need to pay for etc1(A) only once for any given A. This intuitionsupports the uncertainty interpretation of inference costs.It is easy to see how a salience measure can be implemented in this scheme. Lesssalient axioms have higher associated costs c1. These costs can be changed from situationto situation if we take the cost c1 to be not a constant but a function that is sensitivesomehow to the contextual factors a�ecting the salience of di�erent clusters of knowledge.Alternatively, if axioms are grouped into clusters and tagged with the cluster they belongto, as in(8 x)p(x) ^ cluster$c1 � q(x)then whole clusters can be moved from low salience to high salience by paying the cost$c1 of the \proposition" cluster exactly once. This axiom may be read as saying that if pis true of x and the cluster of facts cluster is relevant, then q is true of x.We suspect this use of the costs can also be interpreted as a measure of uncertainty,based on ideas discussed in Hobbs (1985c). There it is argued that whenever intelligentagents are interpreting and acting in speci�c environments, they are doing so not on thebasis of everything they know, their entire knowledge base, but rather on the basis oflocal theories that are already in place or that are constructed somehow for the occasionfor reasoning about such situations. At its simplest, a local theory is a relatively smallsubset of the entire knowledge base; more complex versions are also imaginable, in whichaxioms are modi�ed in some way for the local theory. In this view, a local theory createsa binary distinction between the axioms that are true in the local theory and the axiomsin the global theory that are not necessarily true. However, in the abductive framework,the local theory can be given a graded edge by assigning values to the costs c1 in theright way. Thus, highly salient axioms will be in the core of the local theory and will haverelatively low costs. Low-salience axioms will be ones for which there is a great deal ofuncertainty as to whether they are relevant to the given situation and thus whether they59



should actually be true in the local theory; they will have relatively high costs. Saliencecan thus be seen as a measure of the certainty that an axiom is true in the local theory.Josephson et al. (1987) have argued that an evaluation scheme must consider thefollowing criteria when choosing a hypothesis H to explain some data D:1. How decisively does H surpass its alternatives?2. How good is H by itself, independent of the alternatives?3. How thorough was the search for alternatives?4. What are the risks of being wrong and the bene�ts of being right?5. How strong is the need to come to a conclusion at all?Of these, our abduction scheme uses the weights and costs to formalize criterion 2, and thecosts at least in part address criteria 4 and 5. Criterion 3 is addressed in the TACITUSsystem in that a much deeper search is generally conducted for a �rst proof than forsubsequent proofs. But criterion 1 is not accommodated at this time. The fact that ourabduction scheme does not take into account the competing possible interpretations is aclear shortcoming that needs to be corrected.A theoretical account, such as the one we have sketched, can inform our intuitions, butin practice we can only assign weights and costs by a rough, intuitive sense of semanticcontribution, importance, and so on, and re�ne them by successive approximation on arepresentative sample of the corpus. But the theoretical account would at least give us aclear view of what the approximations are approximating.9 ConclusionInterpretation in general may be viewed as abduction. When we look out the windowand see a tree waving back and forth, we normally assume the wind is blowing. Theremay be other reasons for the tree's motion; for example, someone below window levelmight be shaking it. But most of the time the most economical explanation coherentwith the rest of what we know will be that the wind is blowing. This is an abductiveexplanation. Moreover, in much the same way as we try to exploit the redundancy innatural language discourse, we try to minimize our explanations for the situations weencounter by identifying disparately presented entities with each other wherever possible.If we see a branch of a tree occluded in the middle by a telephone pole, we assume that thereis indeed just one branch and not two branches twisting bizarrely behind the telephonepole. If we hear a loud noise and the lights go out, we assume one event happened andnot two.These observations make the abductive approach to discourse interpretation more ap-pealing. Discourse interpretation is seen, as it ought to be seen, as just a special case ofinterpretation. From the viewpoint of Section 6.3, to interpret a text is to prove abduc-tively that it is coherent, where part of what coherence is is an explanation for why thetext would be true. Similarly, one could argue that faced with any scene or other situation,60
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