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Abstract

Variable selection for cluster analysis is a dif-
ficult problem. The difficulty originates not
only from the lack of class information but
also the fact that high-dimensional data are
often multifaceted and can be meaningfully
clustered in multiple ways. In such a case
the effort to find one subset of attributes
that presumably gives the “best” clustering
may be misguided. It makes more sense
to facilitate variable selection by domain ex-
perts, that is, to systematically identify var-
ious facets of a data set (each being based
on a subset of attributes), cluster the data
along each one, and present the results to the
domain experts for appraisal and selection.
In this paper, we propose a generalization of
the Gaussian mixture model, show its abil-
ity to cluster data along multiple facets, and
demonstrate it is often more reasonable to fa-
cilitate variable selection than to perform it.

1. Introduction

Variable selection is an important issue for cluster
analysis of high-dimensional data. The cluster struc-
ture of interest to domain experts can often be best
described using a subset of attributes. The inclusion
of other attributes can degrade clustering performance
and complicate cluster interpretation. Recently there
is growing interest in the issue (Dy & Brodley, 2004;
Steinley & Brusco, 2008; Zeng & Cheung, 2009). This
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paper is concerned with variable selection for model-
based clustering.

In classification, variable selection is a clearly defined
problem, i.e., to find the subset of attributes that
gives the best classification performance. The prob-
lem is less clear for cluster analysis due to the lack
of class information. Several methods have been pro-
posed for model-based clustering. Most of them in-
troduce flexibility into the generative mixture model
to allow clusters to be related to subsets of (instead
of all) attributes and determine the subsets alongside
parameter estimation or during a separate model se-
lection phase. Raftery & Dean (2006) consider a vari-
ation of the Gaussian mixture model (GMM) where
the latent variable is related to a subset of attributes
and is independent of other attributes given the sub-
set. A greedy algorithm is proposed to search among
those models for one with high BIC score. At each
search step, two nested models are compared using
the Bayes factor and the better one is chosen to seed
the next search step. Law et al. (2004) start with
the Näıve Bayes model (i.e., GMM with diagonal co-
variance matrices) and add a saliency parameter for
each attribute. The parameter ranges between 0 and
1. When it is 1, the attribute depends on the latent
variable. When it is 0, the attribute is independent of
the latent variable and its distribution is assumed to
be unimodal. The saliency parameters are estimated
together with other model parameters using the EM
algorithm. The work is extended by Li et al. (2009)
so that the saliency of an attribute can vary across
clusters. The third line of work is based on GMMs
where all clusters share a common diagonal covariance
matrix, while their means may vary. If the mean of a
cluster along an attribute turns out to coincide with
the overall mean, then that attribute is irrelevant to
cluster. Both Bayesian methods (Liu et al., 2003; Hoff,
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2006) and regularization methods (Pan & Shen, 2007)
have been developed based on this idea.

Our work is based on two observations. First, while
clustering algorithms identify clusters in data based
on the characteristics of data, domain experts are ulti-
mately the ones to judge the interestingness of the clus-
ters found. Second, high-dimensional data are often
multifaceted in the sense that there may be multiple
meaningful ways to partition them. The first observa-
tion is the reason why variable selection for clustering
is such a difficult problem, whereas the second one sug-
gests that the problem may be ill-conceived from the
start.

Instead of performing variable selection, we advocate
to facilitate variable selection by domain experts. The
idea is to systematically identify all the different facets
of a data set, cluster the data along each one, and
present the results to the domain experts for appraisal
and selection. The analysis would be useful if one of
the clusterings is found interesting.

To realize the idea, we generalize GMM to allow multi-
ple latent variables. For computational tractability, we
restrict that each attribute can be connected to only
one latent variable and the relationships among the la-
tent variables can be represented as a tree. The result
is what we call pouch latent tree models (PLTMs).
Analyzing data using a PLTM may result in multi-
ple latent variables. Each latent variable represents a
partition (clustering) of the data and is usually related
primarily to only a subset of attributes. Consequently,
the data is clustered along multiple dimensions and the
results can be used to facilitate variable selection.

The rest of the paper is organized as follows. We first
introduce PLTMs in Section 2. In Sections 3 and 4, we
discuss how to learn PLTMs from data. In Section 5,
we present the empirical results. Related works are
reviewed in Section 6 while conclusions are given in
Section 7. Our discussion of the learning algorithm
will be brief so that there is enough room to cover all
the interesting empirical findings. More details of the
learning algorithm will be given in an extended version
of the paper.

2. Pouch Latent Tree Models

A pouch latent tree model (PLTM) is a rooted tree,
where each internal node represents a latent (or unob-
served) variable, and each leaf node represents a set of
manifest (or observed) variables. All the latent vari-
ables are discrete, while all the manifest variables are
continuous. A leaf node may contain a single manifest
variable or several of them. Because of the second pos-

sibility, leaf nodes are called pouch nodes. Figure 1(a)
shows an example of PLTM. In this example, Y1–Y4
are discrete latent variables, each having three possi-
ble values. X1–X9 are continuous manifest variables,
which are grouped into five pouch nodes, {X1, X2},
{X3}, {X4, X5}, {X6}, and {X7, X8, X9}.

In this paper, we use capital letters such as X and Y
to denote random variables, lower case letters such as
x and y to denote their values, and bold face letters
such as X, Y , x, and y to denote sets of variables or
values. And we use the terms ‘variable’ and ‘node’ in-
terchangeably. In a PLTM, the dependency of a latent
variable Y on its parent Y ′ is characterized by a con-
ditional discrete distribution P (y|y′).1 Let X be the
set of continuous manifest variables in a pouch node
with parent node Y . We assume that, given a value
y of Y , X follow the conditional Gaussian distribu-
tion P (x|y) = N (x|µy,Σy) with mean vector µy and
covariance matrix Σy. We write a PLTM as a pair
M = (m,θ), where m denotes the structure of the
model and θ denotes the parameters.

PLTMs generalize GMMs. As a matter of fact, a GMM
is a PLTM that has only one latent variable and a sin-
gle pouch node containing all manifest variables. Fig-
ure 1(b) depicts a GMM as a PLTM, where Y1 is the
latent variable and X1–X9 are the continuous mani-
fest variables. PLTMs also resemble hierarchical latent
class models (Zhang, 2004), except that the latter con-
sists of only discrete variables and do not have pouch
nodes.

Cluster analysis based on PLTM requires learning a
PLTM from data. In the next section, we first discuss
parameter estimation. In Section 4, we discuss learn-
ing both model structure and parameters from data.

3. Parameter Estimation

Suppose there is a data set D with N samples
d1, . . . ,dN . Each sample consists of values for the
manifest variables. Consider computing the maximum
likelihood estimate (MLE) θ∗ of the parameters for a
given PLTM structure m. We do this using the EM al-
gorithm (Dempster et al., 1977). The algorithm starts

with an initial estimate θ(0) and improves the estimate
iteratively.

Suppose the parameter estimate θ(t−1) is obtained
after t − 1 iterations. The t-th iteration consists
of two steps, an E-step and an M-step. In the E-

1 The root node is regarded as the child of a dummy
node with only one value, and hence is treated in the same
way as other latent nodes.
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(a) (b) (c)

Figure 1. (a) An example of pouch latent tree model. The numbers in parentheses show the cardinalities of the discrete
variables. (b) GMM as a special case of PLTM. (c) Generative model for synthetic data.

step, we compute, for each latent node Y and its
parent Y ′, the distributions P (y, y′|di,θ(t−1)) and

P (y|di,θ(t−1)). This is done using, with minor adap-
tions, the exact inference algorithm for mixed Bayesian
networks by Lauritzen & Jensen (2001). For each i,
let xi be the values of X in the sample di. In the
M-step, the new estimate θ(t) is obtained as follows:

P (y|y′,θ(t)) ∝
N∑
i=1

P
(
y, y′|di,θ(t−1)

)

µ(t)
y =

∑N
i=1 P (y|di,θ(t−1))xi∑N
i=1 P (y|di,θ(t−1))

Σ(t)
y =

∑N
i=1 P (y|di,θ(t−1))(xi − µ(t)

y )(xi − µ(t)
y )′∑N

i=1 P (y|di,θ(t−1))
.

The EM algorithm proceeds to the (t + 1)-th it-
eration unless the improvement of log-likelihood
logP (D|θ(t)) − logP (D|θ(t−1)) falls below a certain
threshold.

The starting values of the parameters θ(0) are chosen
as follows. For P (y|y′,θ(0)), the probabilities are ran-
domly generated from a uniform distribution over the
interval (0, 1] and are then normalized. Let µD,X and
ΣD,X be the sample mean and covariance of D pro-
jected on variables X. For the conditional Gaussian

distribution of X, the means µ
(0)
y are generated from

N (µD,X ,ΣD,X), and the covariances Σ(0)
y are initial-

ized to be ΣD,X .

Like in the case of GMM, the likelihood is unbounded
in the case of PLTM. This might lead to spurious local
maxima (McLachlan & Peel, 2000). We mitigate this
problem using a variant of the method by Ingrassia
(2004). In the M-step of EM, we need to compute

the covariance matrix Σ(t)
y for each pouch node X.

We impose the following constraints on the eigenvalues

λ(t) of the matrix Σ(t)
y : σ2

min/γ ≤ λ
(t)
i ≤ γ × σ2

max,
where σ2

min and σ2
max are the minimum and maximum

of the sample variances of the variables X on D (i.e.
the diagonal values of the matrix ΣD,X) and γ is a
parameter for our method.

4. Structure Learning

Given a data set D, we aim at finding the model m∗

that maximizes the BIC score (Schwarz, 1978):

BIC(m|D) = logP (D|m,θ∗)− d(m)

2
logN,

where θ∗ is the MLE of the parameters and d(m) is
the number of independent parameters. The first term
is known as the likelihood term. It favors models that
fit data well. The second term is known as the penalty
term. It discourages complex models. Hence, the BIC
score provides a trade-off between model fit and model
complexity.

We have developed a hill-climbing algorithm to search
for m∗. It starts with a model m(0) that contains one
latent node and a separate pouch node for each mani-
fest variable. The unique latent variable has two pos-
sible values. Suppose a model m(j−1) is obtained after
j − 1 iterations. In the j-th iteration, the algorithm
uses some search operators to generate candidate mod-
els by modifying the base model m(j−1). The BIC
score is then computed for each candidate model. The
candidate model m′ with the highest BIC score is com-
pared with the base model m(j−1). If m′ has a higher
BIC score than m(j−1), m′ is used as the new base
model m(j) and the algorithm proceeds to the (j+ 1)-
th iteration. Otherwise, the algorithm terminates and
returns m∗ = m(j−1) (together with the MLE of the
parameters).

There are four aspects of the structure m, namely, the
number of latent variables, the cardinalities of latent
variables, the connections between variables, and the
composition of pouches. The search operators used
in our hill-climbing algorithm modify all these aspects
to effectively explore the search space. There are to-
tally 7 search operators. A node introduction operator
and a node deletion operator are used to add and re-
move a latent variable, respectively. A state introduc-
tion operator and a state deletion operator are used
to add and remove a state to and from a latent vari-
able, respectively. A node relocation operator is used
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to modify connections among nodes. Finally, a pouch-
ing operator is used to merge two pouch nodes, and
an unpouching operator is used to split a pouch node
into two pouch nodes.

The hill-climbing algorithm as outlined above is very
inefficient and can handle only toy data sets. We have
developed acceleration techniques that make the al-
gorithm efficient enough for some real-world applica-
tions. They include a way to approximately evalu-
ate candidate models without running complete EM
on them, and a way to control search such that only
a subset of search operators are used at each search
step. Due to space limit, we do not describe those
techniques. Instead, we focus on the empirical results
and show that PLTMs provide us with an interesting
new way to analyze unlabeled data.

5. Empirical Results

Our empirical investigation is designed to compare two
types of analyses that can be applied to unlabeled
data: PLTM analysis and GMM analysis. PLTM anal-
ysis yields a model with multiple latent variables. Each
of the latent variables represents a partition of data
and may depend only on a subset of attributes. GMM
analysis produces a model with a single latent vari-
able. It can be done with or without variable selection.
This paper is primarily concerned with GMM analysis
with variable selection. GMM analysis without vari-
able selection is included for reference. When variable
selection is performed, the latent variable may depend
only on a subset of attributes.

5.1. Data Sets and Algorithms

We used both synthetic and real-world data sets in
our experiments. The synthetic data were generated
from the model shown in Figure 1(c). This model has
9 continuous manifest variables X1–X9 and 2 discrete
latent variables Y1–Y2. Each latent variable has 3 pos-
sible values. The root variable Y1 is uniformly dis-
tributed. Given a value of Y1, Y2 takes the same value
with probability 0.5 and each of the other two values
with probability 0.25. The conditional distributions of
the manifest variables are all Gaussian. Their means
are determined by the values of their parents and can
be 0, 2.5, 5. All the manifest variables have variance 1
and the covariance between any pair of these variables
in the same pouch is 0.5. The data were obtained by
sampling 1,000 data cases from this model. The vari-
able Y1 was designated as the class variable, and the
other latent variable Y2 was excluded from the data.

The real-world data sets were borrowed from the UCI

Table 1. Descriptions of data sets used in our experiments.
The last column shows the numbers of latent variables ob-
tained by PTLM analysis.

Data Set Attr. Classes Samples Latents
synthetic 9 3 1000 2
image 184 7 2310 4
ionosphere 334 2 351 10
iris 4 3 150 1
sonar 60 2 208 11
vehicle 18 4 846 2
wdbc 30 2 569 8
wine 13 3 178 2
yeast 8 10 1484 5
zernike 47 10 2000 7

machine learning repository2. We chose 9 labeled data
sets that are commonly used in the literature and that
contain only continuous attributes. Table 1 shows the
basic information of these data sets.

We compare PLTM analysis with four methods based
on GMMs. The first method is plain GMM analy-
sis. The second one is MCLUST (Fraley & Raftery,
2006), which reduces the number of parameters by im-
posing constraints on the eigenvalue decomposition of
the covariance matrices. The third one is CLUST-
VARSEL (Raftery & Dean, 2006)3, which is denoted
as CVS for short. The last one is the method of Law
et al. (2004), which we call LFJ, using the the first
letters of the three author names. Among these four
methods, the last two perform variable selection while
the first two do not.

In our experiments, the parameters of GMMs and
PLTMs were estimated using the EM algorithm. The
same settings were used for both cases. EM was termi-
nated when it failed to improve the log-likelihood by
0.01 in one iteration or when the number of iterations
reached 500. We used a variant of multiple-restart ap-
proach (Chickering & Heckerman, 1997) with 64 start-
ing points to avoid local maxima. For the scheme to
avoid spurious local maxima as described in Section 3,
we set the constant γ at 20. For GMM and CVS,
the true numbers of classes were given as input. For
MCLUST and LFJ, the maximum number of mixture
components was set at 20.

5.2. Method of Comparison

Our experiments started with labeled data. We split
the data into training and testing sets using 5-fold
stratified cross-validation. In the training phase, mod-

2 http://www.ics.uci.edu/∼mlearn/MLRepository.html
3 http://cran.r-project.org/web/packages/clustvarsel
4Attributes having single values had been removed.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://cran.r-project.org/web/packages/clustvarsel
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els were learned from training sets with the class labels
removed. In the testing phase, the clusterings con-
tained in models were evaluated and compared based
on the testing sets. The objective is to see which
method recovers the class variable the best.

A model produced by a GMM-based method contains
a single latent variable Y . It represents one way to par-
tition the data. We follow Strehl & Ghosh (2002) and
evaluate the partition using normalized mutual infor-
mation NMI(C;Y ) between Y and the class variable
C. The NMI is given by

NMI(C;Y ) =
I(C;Y )√
H(C)H(Y )

,

where I(C;Y ) is the mutual information between
C and Y and H(V ) is the entropy of a vari-
able V . These quantities can be computed from
P (C, Y ), which in turn is estimated by P (C, Y ) =
1
N

∑N
i=1 P (C|di)P (Y |di), where d1, . . . ,dN are the

samples in testing data.

A model resulting from PLTM analysis contains a set
Y of latent variables. Each of the latent variables rep-
resents a partition of the data. Each combination of
the latent variables also represents a partition of the
data. In practice, the user may find several of the par-
titions interesting and use them all in his work. In this
section, however, we are talking about comparing dif-
ferent clustering algorithms in terms of the ability to
recover the original class partition. So, the user needs
to choose one of the partitions as the final result. The
question becomes whether PLTM analysis provides the
possibility for the user to recover the original class par-
tition. Consequently, we assume that the user chooses,
among all the partitions produced by PLTM analysis,
the one closest to the class partition and we evaluate
the performance of PLTM using this quantity:

max
W⊆Y

NMI(C;W ).

This quantity is difficult to compute when the number
of latent variables is large. We resort to a greedy search
that adds one latent variable Y to the setW at a time.

Among the four GMM-based methods, CVS and LFJ
make explicit efforts to perform variable selection,
while GMM and MCLUST do not. PLTM does not
make explicit effort to perform variable selection ei-
ther. However, it produces multiple partitions of data
and some of the partitions may depend only on subsets
of attributes. Consequently, it allows the user to ex-
amine the clustering results based on various subsets
of attributes and choose the ones he deems interest-
ing. In this sense, we can view PLTM as a method

to facilitate variable selection. So, our empirical work
can be viewed as a comparison between two different
approaches to variable selection: to do (CVS and LFJ)
or to facilitate (PLTM). This explains the title of the
paper.

5.3. Results

The results of our experiments are given in Table 2.
Let us first compare the results of PLTM with those of
the two variable selection methods, CVS and LFJ. The
performances of PLTM are clearly superior. Specif-
ically, it outperformed CVS on all the 10 data sets
except that it was beaten by CVS on iris data. It
outperformed LFJ on all the data sets except that it
tied with LFJ on wine data. In most cases, PLTM
outperformed CVS and LFJ by large margins.

PLTM also has clear advantages over GMM and
MCLUST, the two methods that do not do variable
selection. PLTM outperformed GMM on all the data
sets except for ionosphere and wdbc data. It outper-
formed MCLUST on all the data sets except for iris
and wdbc data. In most cases, PLTM outperformed
GMM and MCLUST by large margins.

5.4. Explaining the Results

We next examine models produced by the various
methods to gain insights about the superior perfor-
mance of PLTM. Evidently it is not possible to look
at all models produced during cross validation. We
examine the models learned from the entire synthetic
data and those learned from the entire image data.

5.4.1. Models from Synthetic Data

Before examining models obtained from synthetic
data, we first take a look at the data set itself. The
data were sampled from the model shown in Fig-
ure 1(c), with information about the two latent vari-
ables Y1 and Y2 removed. Nonetheless, the latent vari-
ables represent two natural ways to partition the data.
To see how the partitions are related to the attributes,
we plot the NMI5 between the latent variables and the
attributes in Figure 2. We call the curve for a latent
variable its feature curve. We see that Y1 is strongly
correlated with X1–X3, but not with the other at-
tributes. Hence it represents a partition based on those
three attributes. Similarly, Y2 represents a partition of
the data based on attributes X4–X9. So, we say that

5To compute NMI(X;Y ) between a continuous vari-
able X and a latent variable Y , we discretized X into 10
equal-width bins, so that P (X,Y ) could be estimated as a
discrete distribution.
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Table 2. Clustering performances as measured by NMI. Results that are significantly better than all others are highlighted
in bold. The first row is a categorization of the methods in terms of the approach to variable selection (VS).

Facilitate VS Perform VS No VS
Data Set PLTM CVS LFJ GMM MCLUST
synthetic .81 (.04) .07 (.01) .54 (.02) .14 (.08) .59 (.02)
image .71 (.04) .45 (.21) .54 (.03) .48 (.03) .55 (.07)
sonar .29 (.04) .02 (.02) .03 (.03) .00 (.00) .03 (.07)
vehicle .39 (.04) .26 (.01) .31 (.03) .25 (.08) .30 (.08)
yeast .26 (.03) .10 (.07) .17 (.04) .17 (.02) .12 (.02)
zernike .57 (.02) .34 (.06) .48 (.03) .48 (.06) .40 (.07)
ionosphere .41 (.02) .27 (.10) .12 (.09) .49 (.12) .32 (.03)
wine .91 (.11) .73 (.10) .90 (.06) .53 (.22) .71 (.02)
iris .76 (.00) .87 (.05) .68 (.04) .73 (.09) .76 (.00)
wdbc .47 (.04) .27 (.16) .41 (.05) .49 (.05) .60 (.07)
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Figure 2. Feature curves of the partitions obtained by var-
ious methods and that of the original class partition on
synthetic data.

the data has two facets, one represented by X1–X3 and
another by X4–X9. The designated class partition Y1
is a partition along the first facet.

The model produced by PLTM analysis have the same
structure as the generative model. We name the two
latent variables in the model Z1 and Z2 respectively.
Their feature curves are also shown in Figure 2. We
see that the feature curves of Z1 and Z2 match those of
Y1 and Y2 well. This indicates that PLTM analysis has
successfully recovered the two facets of the data. It has
also produced a partition of the data along each of the
facets. If the user chooses the partition Z1 along the
facet X1–X3 as the final result, then the original class
partition is well recovered. This explains the good
performance of PLTM (NMI=0.81).

The feature curves of the partitions obtained by LFJ
and CVS are also shown in Figure 2. We see that the
LFJ partition is not along any of the two natural facets
of the data. Rather it is a partition based on a mixture
of those two facets. Consequently, the performance of
LFJ (NMI=0.54) is not as good as that of PLTM. CVS
did identify the facet represented by X4–X9, but it is
not the facet of the designated class partition. In other
words, it picked the wrong facet. Consequently, the

Figure 3. Structure of the PLTM learned from image data.

performance of CVS (NMI=0.07) is the worst among
all the methods considered.

5.4.2. Models from Image Data

In image data, each instance represents a 3× 3 region
of an image. It is described by 18 attributes. The
feature curve of the original class partition is given
in Figure 4(a). We see that it is a partition based on
10 color-related attributes from intensity to hue and
the attribute centroid.row.

The structure of the model produced by PLTM analy-
sis is shown in Figure 3. It contains 4 latent variables
Y1–Y4. Their feature curves are shown in Figure 4(a).
We see that the feature curve of Y1 matches that of
the class partition beautifully. If the user chooses the
partition represented by Y1 as the final result, then the
original class partition is well recovered. This explains
the good performance of PLTM (NMI=0.71).

The feature curves of the partitions obtained by LFJ
and CVS are shown in Figure 4(b). The LFJ curve
matches that of the class partition quite well, but not
as well as the feature curve of Y1, especially on the
attributes line.density.5, hue and centroid.row.
Consequently, the performance of LFJ (NMI=0.54) is
not as good as that of PLTM. Similar things can be
said about the partition obtained by CVS. Its feature
curve differs from the class feature curve even more
than the LFJ curve on the attribute line.density.5,
which is irrelevant to the class partition. Conse-
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(a) PLTM analysis
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(b) GMM-based methods

Figure 4. Feature curves of the partitions obtained by various methods and that of the original class partition on image
data.

quently, the performance of CVS (NMI=0.45) is even
worse than that of LFJ.

Two remarks are in order. First, the 10 color-
related attributes semantically form a facet of the
data. PLTM analysis has identified the facet in the
pouch below Y1. Moreover, it obtained a partition
based on not only the color attributes, but also the
attribute centroid.row, the vertical location of a re-
gion in an image. This is interesting. It is because
centroid.row is closely related to the color facet. In-
tuitively, the vertical location of a region should cor-
relate with the color of the region. For example, the
color of the sky occurs more frequently at the top of an
image and that of grass more frequently at the bottom.

Second, the latent variable Y2 is strongly correlated
with the two line density attributes. This is another
facet of the data that PLTM analysis has identified.
PLTM analysis has also identified the edge-related
facet in the pouch below Y3. However, it did not ob-
tained a partition along the facet. The partition repre-
sented by Y3 depends on not only the edge attributes
but others as well. The two coordinate attributes
centroid.row and centroid.col semantically form
one facet. The facet has not been identified probably
because the two attributes are not correlated.

5.4.3. Discussions

We have also performed PLTM analysis on each of the
the other data sets as a whole. The last column of Ta-
ble 1 lists the numbers of latent variables obtained. We
see that multiple latent variables have been identified
except on iris data, which has only four attributes.
Many of the latent variables represent partitions of
data along natural facets of the data.

In general, PLTM analysis has the ability to identify

natural facets of data and cluster data along those
facets. In practice, a user may find several of the clus-
terings useful. In the setting where clustering algo-
rithms are evaluated using labeled data, PLTM per-
forms well if the original class partition is also along
some of the natural facets, and poorly otherwise.

6. Related Works

There are some recent works that produce multiple
clusterings. Caruana et al. (2006) generate numer-
ous clusterings by applying random weights on the at-
tributes. The clusterings are presented in an organized
way so that a user can pick the one he deems the best.
Cui et al. (2007) search for a collection of clustering
solutions that are mutually orthogonal and collabo-
ratively capture all the variance in data. Subspace
clustering (e.g. Kriegel et al., 2009) tries to identify all
clusters in all subspaces. Biclustering (e.g. Madeira &
Oliveria, 2004) attempts to find groups of objects that
exhibit the same pattern (e.g., synchronous rise and
fall) over a subset set of attributes. Unlike our ap-
proach, these methods are distance-based rather than
model-based.

7. Concluding Remarks

In this paper, we have proposed PLTMs as a gen-
eralization of GMMs and have empirically compared
PLTM analysis with several GMM-based methods.
Real-world high-dimensional data are usually multi-
faceted and interesting clusterings in such data often
are relevant only to subsets of attributes. One way to
identify such clusterings is to perform variable selec-
tion. Another way is to perform PLTM analysis. Our
work has shown that PLTM analysis is often more ef-
fective than the first approach.
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One drawback of PLTM analysis is that the training
is slow. For example, one fold of cross-validation took
around 5 hours on data sets of moderate size (e.g.,
image, sonar, and wdbc data) and around 2.5 days on
zernike data, the largest data set in our experiments.
The learning of PLTMs can possibly be speeded up by
parallelization or a better heuristic search. We plan to
work on this direction in the future.
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