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Abstract

Deep Belief Networks (DBNs) are hierarchi-
cal generative models which have been used
successfully to model high dimensional visual
data. However, they are not robust to com-
mon variations such as occlusion and random
noise. We explore two strategies for improv-
ing the robustness of DBNs. First, we show
that a DBN with sparse connections in the
first layer is more robust to variations that
are not in the training set. Second, we de-
velop a probabilistic denoising algorithm to
determine a subset of the hidden layer nodes
to unclamp. We show that this can be ap-
plied to any feedforward network classifier
with localized first layer connections. Recog-
nition results after denoising are significantly
better over the standard DBN implementa-
tions for various sources of noise.

1. Introduction

Deep Belief Networks (DBNs) are hierarchical gener-
ative models with many latent variables that effec-
tively model high dimensional visual image data (Hin-
ton et al., 2006). A DBN is trained by a greedy layer-
by-layer unsupervised learning algorithm on a series
of bipartite Markov Random Field (MRF) known as
a Restricted Boltzmann Machine (RBM). Fine tuning
by the up-down algorithm or discriminative optimiza-
tion results in a deep network capable of fast feed-
forward classification (Hinton & Salakhutdinov, 2006;
Salakhutdinov & Hinton, 2009).

DBNs model all the pixels in the visible layer proba-
bilistically, and as a result, are not robust to images
with “noise” which are not in the training set. We
include occlusions, additive noise, and “salt” noise in
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our definition of noise in this paper.

To improve the robustness of the DBN, we introduce
a modified version of the DBN termed a sparse DBN
(sDBN) where the first layer is sparsely (and locally)
connected. This is in part inspired by the proper-
ties of the human visual system. It is well-established
that the lower cortical levels represent the visual in-
put in a local, sparsely connected topographical man-
ner (Hubel & Wiesel, 1959). We show that a sDBN
is more robust to noise on the MNIST (LeCun et al.,
1998) dataset with noise added to the test images. We
then present a denoising algorithm which combines
top-down and bottom-up inputs to “fill in” the sub-
set of hidden layer nodes which are most affected by
noise. (Lee & Mumford, 2003) proposed that the hu-
man visual cortex performs hierarchical Bayesian in-
ference where “beliefs” are propagated up and down
the hierarchy. Our attention-esque top-down feedback
can be thought of as a type of “belief” that helps to
identify object versus non-object (noise) elements in
the visible layer.

2. Related Work

Sparsely connected weights have been widely used in
visual recognition algorithms (Fukushima, 1983; Le-
Cun et al., 1998; Serre et al., 2005). Most of these al-
gorithms contain a max-pooling stage following a con-
volutional stage to provide a certain amount of trans-
lational and scale invariance. Recently there has been
work combining the convolutional approach with the
DBN (Lee et al., 2009; Norouzi et al., 2009). These
efforts enforce sparse connections similar in spirit to
those enforced here. However, unlike those methods,
our main motivation is not to provide translational
invariance and/or to reduce the number of model pa-
rameters, but rather to diminish the effect of noise on
the activations of hidden layer nodes. In addition, our
algorithm does not require weight sharing (applying
the same filter across an image), which would increase
the total number of hidden layer nodes and increase
the computational complexity of our denoising algo-
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rithm.

(Welling et al., 2002; Roth & Black, 2005) also learned
MRFs to model the prior statistics of images for de-
noising and inpainting. Whereas those methods model
at the pixel level and explicitly specify a noise likeli-
hood, our proposed algorithm uses the prior over the
first hidden layer to estimate the subset of nodes which
are affected by noise. This allows the method to be ag-
nostic about the noise likelihood distribution.

Finally, we evaluate our methods on the widely-
used MNIST handwritten digit classification task,
where the state-of-the-art performance is currently
0.53% (Jarrett et al., 2009) for domain knowledge
based methods and 0.95% (Salakhutdinov & Hinton,
2009) for permutation invariant methods.

3. Sparsely Connected DBN

While the first layer weights of a standard DBN are
somewhat spatially localized, they are not forced to be
zero past a given radius. Consequently, the small but
significant weight values affect a given hidden node’s
activation if any noise are present anywhere in the im-
age. Classification results are likewise affected, mak-
ing DBNs not robust to various types of noise. For
instance, figure 1 gives examples of noisy images and
their respective classification errors of a DBN. This
DBN was trained according to (Hinton et al., 2006),
followed by 30 epochs of discriminative optimization
and achieves 1.03% test error on the clean images.
However, error dramatically increased under various
types of noise.

These particular kinds of noise were chosen to reflect
various possible sources of error for which biological
visual systems are robust. The first is the simple in-
troduction of a border that does not overlap with the
foreground of the digits. The second is the occlusion
by a rectangular block random in size and location.
The third is the corruption of the images by random
noise.

Figure 1. DBN fails to be robust to various noise. The
noise include added borders, randomly placed occluding
rectangles, and random pixels toggled to white.

The poor classification performance on the noisy test

images is expected since a DBN models the joint prob-
ability of 28x28 = 784 pixels, all with black borders.
Therefore, test images with white borders are not
probable and the ensuing classification is not very ac-
curate. Of course, when images with these variations
were to added to the training set, we obtained better
recognition results. However, due to the impractical
nature of adding all possible noise that might exist in
a real world environment, it is desirable to have a DBN
which is more robust to out-of-sample test data before
resorting to enlarging the training set.

3.1. Why Sparseness

In this paper we use V , H1, H2, H3 to refer to each of
the layers (see figure 3), and V = v to denote a specific
activation of layer V . We will also use q(·) to refer to
the approximate posterior computed by the recogni-
tion weights. Specifically, q(h1|v) = σ

(
(W1

rec)
Tv + c

)
and σ(·) is the logistic function.

We improve the robustness of the DBN by first reduc-
ing the effect that a noisy image V = ṽ has on the
hidden layer activation q(h1|ṽ). We accomplish this
by specifying sparse connections between each hidden
layer node and a spatially local group of visible layer
nodes in the first RBM. We use sRBM to refer to
this even more restricted type of RBM. For example,
each h1 node is randomly assigned a 7x7 receptive field
(RF), and it has no connections to visible nodes out-
side of its RF. With local connections, noise or occlu-
sion in one subset of V nodes will only affect a subset of
H1 nodes. The main motivation here is to reduce the
change between H1 activation given the noisy image,
q(h1|ṽ), and H1 activation given the original image,
q(h1|v).

3.2. Sparse RBM Learning

The basic building block of a DBN is the RBM. A
full account of RBM training and DBN formation is
described in (Hinton et al., 2006; Bengio et al., 2007).

An RBM with visible layer nodes V = v and hidden
layer nodes H = h is defined by an energy function

E(v,h; θ) = −bTv − cTh− vTWh (1)

where θ = {W,b, c} are the model parameters. The
probability distribution of the system {v,h} can be
written as:

p(v,h) =
p∗(v,h)
Z(θ)

=
exp−E(v,h)

Z(θ)
(2)

where Z(θ) is the normalization constant: Z(θ) =∑
v,h exp−E(v,h). Exact maximum likelihood learning



Deep networks for robust visual recognition

is intractable due to the computation of an expectation
w.r.t. the model’s distribution. In practice, learning is
often performed using n-step Contrastive Divergence
(CD) (Hinton, 2002), where the weights are updated
as:

∆Wij ∝ Edata[vihj ]− Erecons[vihj ] (3)

Erecons[·] represent the expectation w.r.t. the distri-
bution after n steps of block Gibbs sampling starting
at the data1.

When learning a sRBM, the only modification needed
is to zero out the weights connecting each hidden node
to visible nodes that are outside of its RF:

∆Wij ∝ (Edata[vihj ]− Erecons[vihj ])W̃ij (4)

where

W̃ij =
{

1 if vi is in hj ’s RF
0 otherwise (5)

Additional computational efficiency can be obtained
by using sparse matrix operations for learning and in-
ference.

3.3. Sparse RBM Evaluation

As the RF approaches 28x28 (the dimension of the vis-
ible layer for the MNIST digits), the sRBM approaches
the standard RBM. Using a 7x7 RF instead of the stan-
dard 28x28 reduces the number of weights for the first
layer RBM by a factor of 16. Certainly a concern is
whether or not this sRBM would still be a good gener-
ative model of the data. To find the average log prob-
ability of the test set, we estimated the normalization
constant Z(θ) for each sRBM by using the Annealed
Importance Sampling algorithm (Neal, 2001). Follow-
ing (Salakhutdinov & Murray, 2008), we performed
100 annealing runs using around 15,000 intermediate
distributions.

Table 1 shows the estimated average test log proba-
bility for various sparse RBMs. It also shows the er-
ror rate of the DBNs built from these sparse RBMs
(section 3.4). The log probability is positively corre-
lated with RF size and the number of hidden layer
nodes. While not shown on this table, it is worth not-
ing that the best 12x12 sRBM achieves a log proba-
bility that is only about 3 nats below an equivalently
trained standard RBM. In addition, the worst sRBM
considered here (7x7, 500 hidden nodes), is still about
11 nats better than a standard RBM trained using 3-
step CD (Salakhutdinov & Murray, 2008). Figure 2
shows some of the filters learned by a 7x7 sRBM on
MNIST.

1In our experiments, we use 25-step CD for sRBM train-
ing, with a learning rate of 0.1 for 50 epochs.

Table 1. Sparse RBM and sparse DBN evaluations

RF size # hidden log probability sDBN error
7x7 500 -94.62 1.19%

1000 -92.50 1.20%
1500 -91.77 1.60%

10x10 500 -91.53 1.17%
1000 -90.16 1.24%
1500 -89.78 1.55%

12x12 500 -90.30 1.18%
1000 -89.72 1.16%
1500 -89.56 1.63%

Figure 2. Filters from a sRBM with 7x7 RF learned on
MNIST.

3.4. Sparse DBN

A DBN can be constructed with a hierarchical series
of RBMs. We train our 2nd level RBM in the stan-
dard way and allow for full connectivity between layers
H1 and H2. A greedy layer-wise training procedure is
used where q(h1|v) is treated as the visible layer data
for the 2nd level RBM. A sDBN is then formed by
stacking together the RBMs and fine tuning the entire
network using the up-down algorithm (Hinton et al.,
2006). Alternatively, we can convert the sDBN into
a deterministic feedforward network and minimize the
cross-entropy error (Bengio et al., 2007). An exam-
ple of such a network is shown in figure 3, where the
the rec weights, W1,2,3,4

rec form a feedforward classifier.
Layer Z, W2

denoise and W1
gen are part of the denoising

process described in section 4.

Specifically, the sDBN in our experiments has the same
size and depth as the DBN in (Hinton et al., 2006), but
its first layer is sparse with 7x7 RFs. It is fine tuned
using the up-down algorithm for 300 epochs before dis-
criminatively optimized for 30 more epochs2. Figure 4
shows the recognition errors on the noisy test set of
the sDBN using only feedforward weights. Significant
improvements can be seen for all types of noise.

2We use Conjugate gradient method to minimize the
cross-entropy error with training data divided into batches
of 5K each.
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Output

Figure 3. A deep network for feedforward recognition with
denoising. Upward arrows are feedforward recognition
weights, the downward dashed arrow is the generative
weight, and the bidirectional dashed arrow is the weight
of the denoising RBM. W1

gen is part of the DBN and is
used to calculate p(v|h1). If the network is not a DBN we
can easily learn W1

gen to predict the data v given h1.

Figure 4. A sparse DBN is more robust to noise than the
standard DBN, and only slightly worse on the clean images.

4. Probabilistic Denoising

When noise is present during recognition, the affected
H1 nodes increase the error rate. This is an out-of-
sample problem, where an affected q(h1|ṽ) have low
probability as defined by the training set. Classifi-
cation boundaries in regions of state space with low
probability cannot be trusted due to the lack of train-
ing data in those regions. Therefore, we seek to re-
duce the error rates by denoising h1 using a generative
model of q(h1|v)3.

We accomplish this by learning a separate denoising
RBM that uses q(h1|v) as its visible data4. W2

denoise

3While denoising can also be done at the V layer, we
prefer H1 due to its more abstract representation of the
input and smaller dimensionality.

4When the sDBN is fine tuned as a generative model
by the up-down algorithm, we would ideally want to de-
noise using the p(h1) defined by all the higher layers
of the sDBN. However, we can only approximate the
lower variational bound on log p∗(h1) by drawing samples

are the weights of this new RBM, which has Z (with
1000 nodes) as its hidden layer (figure 3). This RBM’s
energy function and the marginal of h1 are

E(h1, z) = −dTh1 − eTz− (h1)TW2
denoisez (6)

p(h1) =
p∗(h1)∑

h1,z exp−E(h1,z)
=

∑
z exp−E(h1,z)∑

h1,z exp−E(h1,z)

(7)
Note that log p∗(h1) can be calculated analytically
due to the bipartite nature of the RBM. We trained
W2

denoise for 600 epochs by using 100 persistent
Markov chains to estimate the model’s expecta-
tions (Tieleman, 2008). This method is known as Per-
sistent CD and (compared to CD) can learn a better
model for a fixed amount of computation.

The idea of denoising before classification can be un-
derstood schematically as depicted in figure 5, which
shows a plot of noisy images above their unnormalized
log probability log p∗(h1). Not surprisingly, highly
noisy test images have much smaller log p∗(h1) and
would be farther away from regions of high density.
The dashed arrows indicate how we would like to de-
noise a noisy image by moving it (not necessarily one
shot) to a region in state space of higher probability,
putting it in a better region for classification.

Figure 5. A hypothetical state space with the dark band
being the region of high probability. See text for details.

4.1. Denoising via Unclamping

If we know which of the nodes in H1 are affected,
we can denoise by “filling in” their values by sam-
pling from the distribution conditioned on all other
H1 nodes in the denoising RBM. For example, in fig-
ure 6, the two left most nodes of H1 are unclamped
while the rest are clamped.

Let us use ψj ∈ {0, 1} = 1 to denote the unclamping
of node h1

j and ψj = 0 the clamping of h1
j . We run 50

from q(h2|h1) (see (Salakhutdinov & Murray, 2008)). In
contrast, a separate denoising RBM allows its model of
log p∗(h1) to be calculated exactly.
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Figure 6. The shaded nodes are clamped. Denoising is per-
formed by running block Gibbs sampling on the unclamped
nodes.

iterations of block Gibbs sampling to sample H1 nodes
using

p(zk|h1) = σ
(∑

j

W 2
jkh

1
j + ek

)
(8a)

p(hj |z) = σ
(∑

k

W 2
jkzk + dj

)
(8b)

where we only use 8b to update the unclamped (ψj =
1) nodes. After denoising, we denote the H1 acti-
vation as g. Figure 7 shows denoised results v̂ =
σ
(
W1

geng+b
)

using the above method when the noisy
hidden nodes or ψj are explicitly specified. It is clear
that if the noisy nodes are correctly identified, correct
classification will be much easier.

Figure 7. The first row are occluded images, the second row
are the denoised results, and the third row are the original
images.

4.2. Determining Which Nodes to Unclamp

During recognition, a DBN does not know which H1

nodes to unclamp. We present here an iterative de-
noising algorithm which uses the gradient of log p(h1)
of the RBM defined in eqs. 6 and 7 to determine
which hidden layer nodes to unclamp. Denoting h1

0 =
q(h1|ṽ) to be the initial H1 activation at time step 0,
we estimate ψ0 and compute g0. Setting h1

1 = g0, we
repeat this process for several time steps.

The discrete gradient of the log probability with re-
spect to ψj at time step t is given as:

∇ψj log p(h1
t ) = log p∗(h̃1

\j,t)− log p∗(h1
t ) (9)

which is evaluated at ψ = 0. We denote h1
\j to be the

set of all nodes in H1 except h1
j . h̃1

\j,t is h1
t with the

j-th node replaced by p(h1
j = 1|h1

\j), which is given
by

p(h1
j = 1|h1

\j) =

exp(dj)
QNz

k (1 + exp(φk +W 2
jk))

exp(dj)
QNz

k (1 + exp(φk +W 2
jk)) +

QNz
k (1 + exp(φk))

(10)

and
φ = (W2

\j)Th1
\j + e (11)

where W2
\j is W2

denoise omitting the j-th row, e is
the bias to layer Z, d is the bias to H1, and Nz is the
number of nodes in layer Z.

We can then estimate which of the H1 nodes to un-
clamp by using a threshold

ψj,t =
{

1 if ∇ψj
log p(h1

t ) > η(t)
0 otherwise (12)

where η(t) is a constant decreasing with time. ψj,t
is then used in the calculation of gt, as described in
section 4.1. We update the hidden layer activations in
the next time step to

h1
t+1 ←− gt (13)

The standard Bayesian approach to denoising is to
specify a prior over p(h) and then to find the MAP
estimate of p(h|h̃), where h̃ is the noisy H1 activation.
In contrast, we try to optimize log p(h) with respect to
the parameters ψ. In our algorithm, unclamping node
h̃j is similar to specifying the noise likelihood to be
flat for node j: p(h̃j |hj) ∝ constant; while clamping
node hj is similar to specifying the Dirac delta for the
noise likelihood of node j: p(h̃j |hj) = δ(h̃j − hj).

4.3. Combining with Visible Layer Inputs

Having obtained a denoised gt, we can simply use gt as
ourH1 activation and compute q(h2|gt), q(h3|h2), etc.
all the way up to the output for classification. How-
ever, it is much better if we also take into account the
bottom-up inputs from V . This idea comes naturally
for the Deep Boltzmann Machine (DBM) (Salakhut-
dinov & Hinton, 2009), where due to the fact that
H1 has undirected connections from both V and H2,
p(h1|h2,v) involves both v and h2.

Since V layer nodes contain noise, we do not want to
use the unreliable bottom-up influences directly. In-
stead, we would like to attenuate the noise part of V
with an attention-like multiplicative feedback gating
signal u = [0, 1]. The attenuated bottom-up influence
would be

q(h1|v; u) = σ
(
(W1

rec)
T(v � u) + c

)
(14)
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where we denote � to be element-wise multiplication.
v � u is the multiplicative interaction and partly in-
spired by visual neuroscience.

Recently, there are mounting neurophysiological evi-
dence for considerable attentional modulation of early
visual areas such as V1 (Posner & Gilbert, 1999;
Buffalo et al., 2010). fMRI studies of human sub-
jects performing recognition tasks with distractors
have suggested that attentional modulation could be
a delayed feedback to V1 from higher cortical ar-
eas (Mart́ınez et al., 1999). Attention can also
be stimulus dependent and has been shown to af-
fect visual processing both spatially and feature-
specifically (Treue & Mart́ınez Trujillo, 1999). In one
interesting study, (Lamme, 1995) showed that neurons
in Macaque V1 responded better to texture in the fore-
ground than to similar textures in the background 30-
40 ms after onset of activation. The nonlocality nature
and temporal latency of reponse differences strongly
suggest feedback from higher visual areas.

By using u in our algorithm, we introduce a very sim-
ple method for dealing with noisy V layer nodes. To
compute u we use5

u = 1− |v − p(v|g; W1
gen)| (15)

where W1
gen is the first layer’s generative weights. To

combine the modulated bottom-up input with the de-
noised activation g, we compute a weighted average
based on the amount of noise in the RF of a hidden
node

gcombined = q(h1|v; u)� uTW̃
γ2

+g�(1− uTW̃
γ2

) (16)

where γ is the size of the RF and W̃ is defined by eq. 5.
To update our hidden layer activation in the next time
step, we modify eq. 13 to be

h1
t+1 ←− gcombined,t (17)

The entire training and inference process for the sDBN
is summarized in Algorithm 1.

4.4. Denoising Results

In our experiments, we used 6 denoising iterations
(t = 1 to t = 6) with a linearly decaying η(t) from 1.0
to 0.0. Results were similar for other η(t) and num-
ber of iterations. Figure 8 shows the intermediate de-
noising results. The combination of the top-down and
bottom-up signals is vital to good results. Besides the
aforementioned types of noise, we also experimented
with pepper noise and occlusions by crossed lines.

5 We can interpret ui to be p(vi = noise|g).

Algorithm 1 Sparse DBN Training and Inference

Learning:
1: Learn sRBM using eq. 4.
2: Greedy pretraining of higher layer RBMs and stack

to form a sDBN.
3: Fine tune using the up-down algorithm.
4: Convert the sDBN into a discriminative classifier

and minimize cross-entropy error.
5: Learn W2

denoise using q(h1|v) as input.
6: Learn W1

gen by minimizing cross-entropy between
the data and p(v|q(h1|v)).

Recognition:
1: For noisy input ṽ, compute h1

0 = q(h1|ṽ).
for t = 1 to n do

2: Estimate ψt using eq. 12
3: Gibbs sampling to obtain gt using eq. 8
4: Combine with bottom up input to obtain

gcombined,t using Eq. 16
5: h1

t+1 ←− gcombined,t
end for

6: Compute q(h2|h1
n+1), then feedforward to output.

4.5. Recognition Results

For recognition, we performed 10 iterations of denois-
ing with η(t) decaying from 2.0 to 0.2 for each test
image. After denoising, we proceeded with the feed-
forward recognition by computing q(h2|g10) and feed-
foward to the output using the rec weights. In table 2,
we summarize the error rates on MNIST for all the
networks. The 7x7+denoised line has the error rates
found after denoising. Denoising provides a large im-
provement over the accuracy of the sDBN for noisy
images. However, the denoising sDBN is slightly worse
than standard DBN on the clean images. This effect
is hard to avoid since denoising seeks to increase prob-
ability of h1 defined over all 10 digits and may cross
classification boundaries.

For comparison, we also trained a standard DBN and a
7x7 sDBN with noise added evenly to the 60K MNIST
training set. They are fine tuned with 300 epochs of
up-down algorithm followed by 30 epochs of discrimi-
native optimization. The results show that sparse con-
nections are better for recognition in this case as well.
It is also revealing that in comparison to the denoising
sDBN (trained only on clean images), the error rates
is only lower on the block occluded test images.

5. Discussion

It should be noted that the specific approach taken
here does not depend on our adoption of the DBN.
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(a) Successful examples

(b) Failed examples

Figure 8. Denoised results on various types of noise. The
first column from the left contains the original images, the
second column contains images with noise added. Sub-
squent columns represent the denoised images from t = 1
to t = 6.

That is, if the network is not a DBN fine tuned by the
up-down algorithm, W1

gen can be learned by maximum
likelihood estimation. Consequently, this denoising al-
gorithm can be easily adapted to any deep feedforward
classifier as long as the first layer has spatially local-
ized receptive fields.

There are several avenues for extending the present
model. For one, human visual recognition of partially
visible objects is more accurate if the occluding ob-
ject can be identified (Fukushima, 2001; Johnson &
Olshausen, 2005). In our experiments, when the block
occluded region is known, denoising is much better.
Compare the results of the block occlusion from fig-
ure 7 with those of failed examples from figure 8. Ac-
cordingly, recognition error is reduced from 19% to
10% for the block occlusion noise test set. We hypoth-
esize that the identification of the occluder is similar
to specifying ψ. Therefore, an important avenue for

Table 2. Summary of recognition results

Network clean border block random
28x28 DBN 1.03% 66.14% 33.78% 79.83%
7x7 sDBN 1.19% 2.46% 21.84% 65.50%

7x7+denoised 1.24% 1.29% 19.09% 3.83%
28x28+noise 1.68% 1.95% 8.72% 8.01%
7x7+noise 1.61% 1.77% 8.39% 6.64%

future work is in the improvement of estimating the
occluding object or ψ.

Currently, denoising takes place on the hidden layer.
It is also possible to denoise in the visible layer. Even
though preliminary results of applying our denoising
algorithm on the visible layer alone suggest that it is
quite difficult, the combination of denoising on both
the hidden and visible layers may give better results.
Denoising at higher layers is also possible. However,
due to the fact that the RFs of the first hidden layer
are chosen randomly, H1 is not topographically or-
dered. It is certainly possible to organize H1 to be
topographical and enforce sparse connections to H2,
thereby making denoising h2 effective.

6. Conclusions

In this paper, we have demonstrated that combining
sparsification with explicit denoising results in a DBN
that is much more robust to noise not in the training
set than a standard DBN. We introduced an algorithm
which is capable of denoising a test image by combin-
ing top-down influences with bottom-up inputs. Our
denoising process does not model the noise process at
all, but instead uses the log probability to estimate
which nodes should be unclamped. It is able to han-
dle a variety of noise and is inspired by findings in
neurophysiology. Finally, the denoising itself can be
adapted to a broad class of deep feedforward networks,
making such an approach likely to be useful for other
architectures not explored here.
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