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Abstract

We propose a novel boosting algorithm which
improves on current algorithms for weighted
voting classification by striking a better bal-
ance between classification accuracy and the
sparsity of the weight vector. In order to jus-
tify our optimization formulations, we first
consider a novel integer linear program as
a model for sparse classifier selection, gen-
eralizing the minimum disagreement half-
space problem whose complexity has been
investigated in computational learning the-
ory. Specifically, our mixed integer prob-
lem is that of finding a separating hyper-
plane with minimum empirical error subject
to an L0-norm penalty. We note that com-
mon “soft margin” linear programming for-
mulations for robust classification are equiv-
alent to the continuous relaxation of our for-
mulation. Since the initial continuous relax-
ation is weak, we suggest a tighter relaxation,
using novel cutting planes, to better approxi-
mate the integer solution. To solve this relax-
ation, we propose a new boosting algorithm
based on linear programming with dynamic
generation of variables and constraints. We
demonstrate the classification performance of
our proposed algorithm with experimental re-
sults, and justify our selection of parameters
using a minimum description length, com-
pression interpretation of learning.

1. Introduction

Consider a binary classification problem with M ob-
servations, each consisting of N real-valued attributes,
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represented as a matrix A ∈ RM×N whose rows corre-
spond to observations and whose columns correspond
to attributes. We are also given a vector of labels
y ∈ {−1, 1}M . We have a potentially large set of base
classifiers hu : RN → {−1, 0, 1} indexed by the set
U = {1, . . . , U}, and would like to train a weighted
voting classifier g(x) =

∑
u∈U λuhu(x); we classify a

new observation x ∈ RN as either positive or negative
based on sgn(g(x)).

To determine λ, the empirical risk minimization strat-
egy minimizes the sum over the observations of the 0/1
loss

`(Ai, yi, g(Ai)) = I(yi 6= g(Ai)), (1)

where I(·) is the 0/1 indicator function and Ai is the
ith row of A. Empirical risk minimization can result in
overfitting and significantly larger losses with respect
to unseen test data; robust algorithms for classification
mitigate this problem by considering other loss func-
tions such as the soft margin loss (with margin fixed
to 1):

`(Ai, yi, g(Ai)) = max{1− yig(Ai), 0}, (2)

and adding a model complexity penalty: a simple com-
plexity penalty is the number of features used by the
the classifier, that is, the number of u ∈ U for which
λu 6= 0. This quantity is denoted ‖λ‖0 and called the
L0-norm (although it is not a true norm).

In order to avoid hard combinatorial optimization
problems, methods such as “soft margin” LPs (Grae-
pel et al., 1999; Rätsch et al., 2001; Demiriz et al.,
2002) and SVMs (Cortes & Vapnik, 1995) use the L1

or L2 norms of λ, respectively, instead of L0. This
approach has the computational advantage of yielding
a convex optimization problem, provided one is using
an appropriate loss function such as (2).

Demiriz et al. (2002) solve the following linear pro-
gramming (LP) problem, based on previous formula-
tions of Graepel et al. (1999) and Rätsch et al. (2001):
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max
ρ,ξ,λ≥0

{
ρ−D

M∑
i=1

ξi

∣∣∣∣ diag(y)Hλ + ξ ≥ ρ1∑U
u=1 λu = 1

}
,

(3)
where diag(y) is the diagonal matrix with entries
y1, . . . , yM . In this formulation, each observation i ∈
{1, ...,M} has a variable ξi which allows it to have a
margin smaller than ρ. The margin of observation i
is equal to yiHiλ, where Hi is the ith row of H, an
M ×U matrix whose elements are Hiu = hu(Ai). The
parameter D penalizes the magnitude of each margin
deviation ξi = max{ρ − yiHiλ, 0}. In (3), the objec-
tive is to maximize the margin of separation, minus a
misclassification penalty; however, this formulation is
known to be equivalent, for some appropriate choice
of the constant D′, to

min
λ,ξ≥0

{
U∑

u=1

λu + D′
M∑
i=1

ξi | diag(y)Hλ + ξ ≥ 1

}
;

(4)
see for example Bennett & Bredensteiner (2000). Here,
the margin is fixed to 1, and one minimizes the L1-
norm of λ, plus a misclassification penalty.

The matrix H, in which each column corresponds to
the vector of labels assigned by a base classifier u ∈ U ,
usually has too many columns to be written in full as
a part of the LP formulation. Instead, Demiriz et al.
(2002) propose, in their LP-Boost algorithm, a col-
umn generation procedure that creates columns of H
as they are needed; to be exact, they generate cuts for
the dual formulation, which is essentially equivalent.

Here, we propose a related approach for an enhanced
formulation of the learning problem. Instead of (4),
which minimizes the sum of (2) over the observations,
plus D′ ‖λ‖1, we consider the combinatorial problem
which minimizes the sum of the loss (1) over the ob-
servations, plus a penalty proportional to the density
of the vector λ. Specifically, for any scalar C ≥ 0, we
consider the problem

min
λ≥0

{
M∑
i=1

I(yiHiλ ≤ 0) + C ‖λ‖0

}
, (5)

Even special cases of (5) are known to be NP-hard
(see Section 2). First, we formulate the problem as a
mixed integer program (MIP) and point out that the
continuous relaxation of this MIP is in fact equiva-
lent to (4). Rather than attempting to solve our MIP
formulation, which is a potentially difficult combinato-
rial problem, or solving its weak continuous relaxation,
which would be equivalent to (4) and thus to (3) and
prior work, we propose a computationally tractable
“middle ground”: we solve a version of the continuous
relaxation augmented by a large class of inequalities

that are satisfied by all integer-feasible solutions of the
MIP; see Section 3. We propose an algorithm which
solves our relaxation formulation by dynamically gen-
erating not only variables (as in LP-Boost), but also
constraints, and investigate the properties of the clas-
sifiers it constructs. Previous related work such as
Weston et al. (2003) proposes methods based on find-
ing a local minimum of a non-convex approximation
of (5). Since our method’s approximation of (5) is a
true relaxation which may be solved to optimality, our
approach, unlike this earlier work, yields a lower bound
for (5), and its output is not dependent on which of
potentially many local minima might be encountered.

Before exploring the details of our proposed approach,
we briefly discuss some learning-theoretic motivations
for starting from a formulation like (5), as well as some
analysis which can suggest how to choose the penalty
parameter C; these issues are explored in greater de-
tail in Goldberg & Eckstein (2010). First, it has
been known dating back to Freund & Schapire (1997)
that there are bounds on the classifier prediction risk
which can be expressed in terms of ‖λ‖0. Another ap-
proach to prediction risk and model selection uses the
minimum prediction length (MDL) principle, which
views learning as a problem of optimally compress-
ing the data (Grünwald, 2007). The promise of using
compression-based risk bounds is suggested, for exam-
ple, in Von Luxburg et al. (2004) in the case of SVMs.
In particular, we consider a two-part-code MDL ap-
proach which views the selection of the classifier func-
tion g as a problem of minimizing the length of a code
used to transmit the vector of labels; the first part of
the code describes the classifier g, and the second part
encodes which observations are misclassified by g. In
particular, Blum & Langford (2003) provide a classifi-
cation risk bound proportional to the code length

L̄[y, g] = L[g] + L[y|g],

where L[g] denotes the number of bits required to en-
code g, and L[y|g] is the number of bits needed to
encode those labels y that are incorrectly predicted by
g. One can derive an upper bound on L[g] that is pro-
portional to ‖λ‖0, and an upper bound on L[y|g] that
is proportional to

∑M
i=1 I(yiHiλ ≤ 0). Therefore, with

an appropriate choice of C, problem (5) minimizes a
bound on L̄[y, g], which in turn corresponds to a bound
on the prediction risk. In some applications, the bound
on L[g] can be tightened by minimizing an objective
function that applies potentially different penalties cu

to different features u. We will explore such a gener-
alization of the penalty term C ‖λ‖0 below.
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2. Sparse Weighted Voting Classifier
Selection (SWVC)

Finding λ ∈ RU that minimizes
∑M

i=1 I(yiHiλ ≤ 0) is
known as the minimum disagreement halfspace (MDH)
problem, and is NP-hard (Höffgen et al., 1995). We
call problem (5), which generalizes MDH by includ-
ing an L0 penalty and also requires λ ≥ 0, the sparse
weighted voting classifier (SWVC) problem. Requiring
λ ≥ 0 is without loss of generality, since at the cost of
U being at most twice as large, we may include in U the
negative “mirror image” hu− = −hu of any base clas-
sifier hu. Considering the special case C = 0, existing
MDH complexity and inapproximability results clearly
also apply to SWVC. These computational complex-
ity results also extend to other values of C (Goldberg
& Eckstein, 2010); for example, the problem remains
NP-hard for C ∈ O(M1−ε) for all ε > 0. We now
formulate SWVC as a mixed integer program (MIP),
using binary variables µu to indicate whether feature
u is used, and binary variables ξi to indicate whether
observation i is misclassified:

min
ξ,µ,λ


M∑
i=1

ξi + C

U∑
u=1

µu

∣∣∣∣∣∣
(ξ, µ, λ) ∈ QH,y

ξ ∈ {0, 1}M
µ ∈ {0, 1}U

 , (6)

where QH,y is the soft margin classification polytope
defined as:

QH,y =

(ξ, µ, λ)

∣∣∣∣∣∣∣∣
diag(y)Hλ + (ME + 1)ξ ≥ 1

λ ≤ Eµ
ξ ∈ RM , ξ ≥ 0
µ, λ ∈ RU , µ, λ ≥ 0

 ,

and E is a suitably large constant. We can show that
formulation (6) correctly models SWVC if E ≥MM/2

(Goldberg & Eckstein, 2010).

We next consider the continuous relaxation of (6),

min
ξ,µ,λ

{∑M
i=1 ξi + C

∑U
u=1 µu | (ξ, µ, λ) ∈ QH,y

}
.

(7)

Theorem 2.1. (ξ, λ) is an optimal solution of (4) if
and only if (ξ/(ME + 1), λ/E, λ) is an optimal solu-
tion of (7) with penalty C = 1/(D′(M + 1/E)).

Our proof of this result (Goldberg & Eckstein, 2010)
is based on a one-to-one mapping, which scales objec-
tive values by a positive constant, between solutions
that are feasible for (4) and solutions that are feasible
for (7). An immediate consequence of Theorem 2.1 is
that the SWVC relaxation (7) is equivalent to the soft
margin formulation (4) for appropriate choices of the
penalties C and D′. Since formulation (4) is known

to be equivalent to the soft margin maximization for-
mulation (3), it also follows that formulation (3) is
equivalent to the SWVC relaxation (7).

3. Relaxing the Hard Problem and
Strengthening the Relaxation

The standard continuous relaxation (7) of the MIP (6)
can be very weak. Although we omit the details here,
one can construct a family of examples in which the
optimal integral and continuous relaxation objective
values of (6) differ by a multiplicative factor of ME. In
Goldberg & Eckstein (2010), we prove that one should
have E ∈ Ω(2M ) in order to maintain the general cor-
rectness of formulation (6), implying that there are
cases in which the ratio between the optimal value
of (6) and the value of its continuous relaxation (7)
is Ω(M2M ).

We propose to solve a natural generalization of the
SWVC relaxation which applies a potentially different
penalty cu to each feature u ∈ U , replacing the objec-
tive function of (7) with (8a) below. Also, for the pur-
pose of comparison with formulation (3), we introduce
the normalization constraint (8c) below, and treat the
classifier margin ρ as a parameter, rather than fixing
it at 1 as in (7):

min
λ,µ,ξ

MX
i=1

ξi +

UX
u=1

cuµu (8a)

s.t.:
X
u∈U

yiHiuλu + (1 + ρ)ξi ≥ ρ i = 1, ..., M (8b)

X
u∈U

λu = 1 (8c)

µu − λu ≥ 0 u ∈ U (8d)

λu, µu, ξi ≥ 0
u ∈ U
i = 1, ..., M.

(8e)

This approach also eliminates the large constant E
from the formulation, thus avoiding practical numeri-
cal difficulties. We now consider adding valid inequal-
ities to (8a)-(8e) in order to strengthen its relaxation.
We say that a base classifier h distinguishes between
observations i and i′ if it classifies i correctly and dif-
ferently from i′, that is, hu(Ai) = yi 6= hu(Ai′). Let
Si,i′ = {u ∈ U | ht(Ai) = yi 6= hu(Ai′)} denote the
set of base classifiers that correctly classify observation
i and distinguish it from i′. Let Φ = {(i, i′) | yi 6= yi′ }
and consider the inequalities

ξi + ξi′ +
∑

u∈Si,i′

µu ≥ 1 (i, i′) ∈ Φ. (8f)

Intuitively, these inequalities assert that for each
(i, i′) ∈ Φ, we must either misclassify at least one of
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the observations i and i′, or we need to use at least
one of the distinguishing features in Si,i′ .
Theorem 3.1. The inequalities (8f) hold for all
integer-feasible solutions of (8a)-(8e).

For a proof, see Goldberg (2010). Theorem 3.1 implies
that appending constraints of the form (8f) to the for-
mulation (8a)-(8e) or (7) does not eliminate any inte-
ger solutions; however, it may well eliminate solutions
for which ξ or µ are not integral.

4. The L0-RBoost Boosting Algorithm

We now describe a boosting algorithm, which we call
L0-RBoost, that effectively solves (8), including (8f).
The overall approach is similar to Demiriz et al. (2002),
in that we use a column generation method to itera-
tively generate elements of U as they are needed. At
each iteration, the set of features is restricted to some
subset Γ ⊆ U that have been generated so far, with
all variables corresponding to features u 6∈ Γ implic-
itly set to 0. Due to the potentially large number of
constraints (8f), our algorithm, unlike (Demiriz et al.,
2002), also dynamically generates not only variables,
but also constraints. In particular, at each iteration,
it solves the following LP problem:

LP(Γ,A): the problem (8), but fixing λu = µu = 0
for all u ∈ U\Γ, and including constraints of the
form (8f) only for (i, i′) in some subset A ⊆ Φ.

When Γ and A are relatively small sets, LP(Γ,A)
is equivalent to an LP of much smaller dimension
than (8), as variables fixed to 0 may be dropped from
the formulation.

Let wi, α, and vii′ denote the LP dual variables (or La-
grange multipliers) of constraints (8b), (8c), and (8f),
respectively. Each iteration of L0-RBoost proceeds as
follows: first, we solve LP(Γ,A), and next we attempt
to use the resulting dual variable information to iden-
tify a feature u∗ ∈ U whose addition to the set of
features Γ would improve the optimal objective func-
tion value (8a). This step, which invokes the base or
“weak” learning algorithm, coincides with the notion
of a “pricing” step in LP column generation. The LP-
Boost algorithm (Demiriz et al., 2002) operates in a
similar manner, but solves (the dual of) the LP for-
mulation (3). In LP-Boost, one would ideally like
to execute the pricing/base learning step by solving
the problem maxu∈U

∑M
i=1 yiHiuwi, which is known

as the maximum agreement problem (Kearns et al.,
1994). In L0-RBoost, the pricing problem is more gen-
eral than maximum agreement, due to the additional
constraints (8f) and their corresponding dual variables

vii′ : we would like to minimize, over all u ∈ U , the
quantity

c̄(u) = cu −
∑

(i,i′)∈A:
Sii′3u

vii′ −
M∑
i=1

yiHiuwi − α. (9)

If c̄(u) ≥ 0 for all u ∈ U , then any optimal solution
of the problem LP(Γ,A) is also optimal for the larger
problem LP(U ,A) including all possible features. For
brevity, we omit the formal proof of this assertion,
which involves merging two constraints in the dual of
LP(U ,A), while preserving all optimal solutions. On
the other hand, if solving (9) identifies some u∗ ∈ U\Γ
with c̄(u∗) < 0, we expand Γ to include this new fea-
ture.

Next, the L0-RBoost iteration performs an operation
with no direct analog in LP-Boost: it attempts to ex-
pand the set of pairs A for which constraints of the
form (8f) are included in the formulation. The algo-
rithm augmentsA with pairs of observations (i, i′) that
are distinguished by the new feature u∗, and in some
cases, when termination is imminent, by all (i, i′) ∈ Φ
for which (8f) is violated. It then proceeds to the next
iteration, re-solving LP(Γ,A) with the expanded set Γ
and A. Algorithm 1 gives a complete description of
L0-RBoost.

Algorithm 1 L0-RBoost
1: Input: M ×N matrix A and labels y ∈ {−1, 1}M
2: Output: (ξ, µ, λ)
3: Γ ← {1, 2}, where h1(Ai) = 1 and h2(Ai) = −1

for all i ∈ {1, . . . ,M}
4: A ← ∅
5: repeat
6: Solve LP(Γ,A), obtaining the solution (ξ, µ, λ)

and dual variables w, α, and vii′ , (i, i′) ∈ A
7: Solve the base learning problem: with c̄(u) de-

fined as in (9), find u∗ ∈ Arg minu∈U{c̄(u)}
8: Γ← Γ ∪ {u∗}
9: A ← A∪{(i, i′) | yi′ 6= yi = hu∗(Ai) 6= hu∗(Ai′)}

10: V ←
{

(i, i′)
∣∣∣ ξi + ξi′ +

∑
u∈Si,i′∩Γ µu < 1

}
11: if c̄(u∗) ≥ 0 and V 6= ∅ then
12: A ← A∪ V
13: end if
14: until c̄(u∗) ≥ 0 and V = ∅

Note that unlike standard column generation and LP-
Boost, each iteration involves the generation of two
“coupled” variables λu∗ and µu∗ . We initialize Γ to
contain two simple elements, corresponding to the con-
stant base classifiers that classify all observations as
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respectively either positive or negative. Using LP du-
ality theory and the construction of the set V in step 1
of the algorithm, it can be shown that when L0-RBoost
terminates, (ξ, λ, µ) is optimal for (8). Note that it
would also be possible to add multiple features at each
iteration, and there are techniques for terminating the
algorithm early while still providing guarantees on the
quality of the solution; see Lübbecke & Desrosiers
(2005) and Goldberg (2010). We did not find either
technique necessary in the computational experiments
presented in Section 6 below.

The cuts added in step 9 are designed to increase the
value of the newly generated variable µu∗ , which could
otherwise be as small as λu∗ . In practice, it may be
possible to accelerate the algorithm by adding only a
carefully chosen subset of the cuts specified in step 9;
see the next section for an example. Step 12 augments
A by all currently violated cuts, ensuring that all con-
straints (8f) are satisfied at termination. In principle,
we could include such cuts at every iteration, but we
only do so if c̄(u∗) ≥ 0 and termination seems immi-
nent. The reason is that the number of misclassified
observation, which is strongly related to the number
of violated cuts, tends to drop as the algorithm pro-
gresses; delaying step 12 thus allows fewer cuts to be
generated in total. Finally, note that the number |Φ|
of cuts (8f) is at most quadratic in the number of ob-
servations. Thus, for data sets with very few observa-
tions, it may be possible to start the algorithm with
all possible cuts, initializing A = Φ.

5. Base Learning with Simple Rules

We now consider applying our boosting algorithm to
construct ensembles of simple rules (Cohen & Singer,
1999; Friedman & Popescu, 2008). For this example,
we assume that our given data matrix A is binary; note
that any data matrix A ∈ RM×N ′

can be “binarized”
using a number of attributes that is at most polyno-
mially larger than N ′ (Boros et al., 1997; Goldberg
& Shan, 2007). In this binary setting, we choose our
base classifiers to be signed Boolean monomials, that
is, functions hu+ , hu− : {0, 1}N → {−1, 0, 1} given by

hu+(x) =
∏
j∈J

xj

∏
c∈C

(1− xc) and hu− = −hu+ ,

with J,C ⊆ {1, . . . , N} and J ∩ C = ∅. The degree of
such a monomial is simply |J |+ |C|.

When the set of possible features U corresponds to
all possible monomial classifiers over the N variables,
minimizing the function (9) is a generalization of
the NP-hard maximum monomial agreement prob-
lem (Kearns et al., 1994). However, in most learn-

ing applications, it is reasonable to bound the degree
of the monomials considered by a constant K; the
monomial that maximally agrees with the data, in the
sense of minimizing (9), can then be found in polyno-
mial time. The base learning problem minimizing (9)
can be solved by trivial enumeration for simple classes
of base classifiers, such as monomials of some given
small degree or trees of small depth (e.g., “decision
stumps”). For monomials of a larger degree, we exper-
iment in Section 6 with an extension of the maximum
monomial agreement algorithm of Eckstein & Gold-
berg (2008); for more details, see Goldberg (2010).

The MDL/compression motivation discussed in Sec-
tion 1, together with the structural risk minimization
(SRM) approach to learning (Vapnik, 1998; Shawe-
Taylor et al., 1998), suggests an encoding scheme in
which the complexity penalty assigned to a monomial
feature varies with its degree. In particular, we set the
cost cu of using feature u to

cu =
k + log

(
N
k

)
+ log K

log M
+ κ, (10)

where k is the degree of the monomial corresponding
to u, and κ is a small positive constant. A detailed
account of this choice may be found in Goldberg &
Eckstein (2010), but in brief the motivation is as fol-
lows: we first encode the degree k of the monomial
corresponding to u, requiring approximately log K bits
since the maximum allowed degree is K. Then, we en-
code which of the 2k

(
N
k

)
possible monomials of degree

k is meant, which requires an additional log
(
2k

(
N
k

))
bits. We then divide this quantity by log M , which is
an upper bound on the number of bits needed to en-
code a misclassified observation; this normalization is
required since the objective coefficients of the misclas-
sification variables ξi in (8a) are all 1.

In our experiments applying Algorithm 1 to Boolean
monomial base classifiers, we found it beneficial to add
only a subset of the possible cuts in step 9. In par-
ticular, we found a small Hamming distance between
Ai and Ai′ to be a good indicator of the potential of
cut (i, i′) to tighten the relaxation. After adjoining
the base classifier u∗ to the formulation, we scan all
pairs (i, i′) for which yi = hu∗(Ai) 6= hu∗(Ai′), and use
only the cuts corresponding to pairs whose Hamming
distance is within a fixed factor of the minimum en-
countered. This technique reduces the amount of time
spent adding new rows to the LP constraint matrix
(which can be time-consuming, since LP solvers typi-
cally store the constraint matrix in a column-oriented
sparse form), and restrains the size of the LP. Steps
10-13 of the algorithm still ensure that there are no
remaining violated constraints upon termination.
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6. Experimental Work and Discussion

Using Boolean monomial base classifiers of maximum
degree K = 1 or K = 5, we compared the classifica-
tion performance of L0-RBoost (Algorithm 1) to LP-
Boost (Demiriz et al., 2002). We experimented with
five UCI datasets (Asuncion & Newman, 2007): BCW,
VOTE, CLVHEART, HUHEART, and SONAR. Ob-
servations with missing attribute values were deleted,
except for the congressional voting dataset (VOTE),
where a missing value was considered as a distinct
attribute value. The data were binarized using the
technique of Boros et al. (1997); the resulting number
of attributes ranged between 8 and 17, and varied by
cross-validation (CV) run as well as by dataset.

The optimization formulation used by LP-Boost is (3)
with D = 1/νM . In this work, the parameter ν cor-
responds to an upper bound on the fraction of margin
errors |{i | ξi > 0}| /M (Graepel et al., 1999); how-
ever, no method for choosing ν is suggested other than
intensive cross-validation, and making use of the clas-
sification results of other algorithms. The LP formu-
lation (3) is known to find sparse classifiers, but is also
sensitive to the choice of the tunable penalty param-
eter D. By choosing a small enough penalty D (i.e.,
a large enough ν) in (3), it is possible to find a sparse
“degenerate” classifier with large ρ by assigning a large
proportion of observations to be outliers.

In our experiments with L0-RBoost, we set the param-
eters cu of formulation (8) using (10) with κ = 1.5.
We then investigated the dependence of L0-RBoost
and LP-Boost on the tunable parameters ρ and ν, re-
spectively, examining both classifier performance and
sparsity. Figure 1 displays the the training accuracy,
testing accuracy, and ‖λ‖0 attained by L0-RBoost and
LP-Boost on the SONAR dataset, in relation to the al-
gorithms’ tunable parameters, for monomials of degree
K = 1 or up to K = 5. Each plot point corresponds
to 10 replications of a 10-fold CV experiment. For
both algorithms, the figure shows that the classifiers
selected tend to overfit the training data for small val-
ues of the parameters. This overfitting is by far the
most pronounced for LP-Boost with K = 5. The
experiments show that, over the entire range of pa-
rameter values, L0-RBoost generalizes well compared
with LP-Boost. We also find that the performance of
L0-RBoost is robust with respect to a wide range of
choices of the parameter ρ. In LP-Boost, the margin ρ
rises monotonically as one increases ν; so, in Figure 1,
we show ρ rather than ν on the horizontal axis to fa-
cilitate comparison with L0-RBoost. We found the
performance of LP-Boost to be highly sensitive to the
choice of the parameter, confirming the observations

of Demiriz et al. (2002). When the input data are not
linearly separable by the set of base classifiers U , as is
typically the case when K = 1, and ν is small, then a
non-separating hyperplane with zero margin becomes
optimal. Further, the value of ν that may be consid-
ered too small varied significantly between datasets.

Figure 2 plots accuracy on the test set versus ‖λ‖0,
again for the SONAR dataset, summarizing the classi-
fication versus sparsity performance of the experiments
depicted in Figure 1. As in Figure 1, each point corre-
sponds to an average over 10 replications of a 10-fold
CV experiment. In general, the ‖λ‖0 values produced
by L0-RBoost are bounded within a smaller interval,
which is to be expected, given that the cost coeffi-
cients cu are fixed identically in all of the experiments.
However, it is apparent that the classifiers computed
by L0-RBoost tend to strike a better trade-off between
accuracy and sparsity than the classifiers computed by
LP-Boost.

Table 1 compares the average classification accuracy
and sparsity obtained by the classifiers computed
by L0-RBoost, LP-Boost, and SLIPPER (Cohen &
Singer, 1999). SLIPPER combines AdaBoost with a
heuristic base learner; in our case of binary data, the
rules produced by this heuristic are simply monomials
of arbitrary degree. The table entries in the top five
rows are our own computational results for 20 repli-
cations of 10-fold CV experiments. In these experi-
ments we compare L0-RBoost, with K = 1 or K = 5,
to LP-Boost using the same base classifiers, and to
SLIPPER with monomials of arbitrary degree. The
L0-RBoost results in the table use the fixed parame-
ter value ρ = 20/M , while the LP-Boost results in this
top portion of the table use ν = 0.50 for K = 5, and
ν = 0.56 for K = 1. These values of ν were chosen be-
cause they produced relatively sparse classifiers which
seemed to perform the best on the SONAR and CLV-
HEART datasets. The bottom portion of the table
shows a practical comparison of our results with the
previously published results for LP-Boost with C4.5
and stump decision trees (Demiriz et al., 2002), and
the previously published performance of the SLIPPER
algorithm (Cohen & Singer, 1999), which were also
based on a 10-fold CV setup. The LP-Boost results
of Demiriz et al. (2002) use values of ν individually
tuned for each dataset, so we did not expect to match
all of their classification results. We ran the SLIP-
PER algorithm using the publicly available implemen-
tation, with all parameters set to their default values.
The apparent discrepancy between our observation of
SLIPPER’s performance and the previously published
results may be due to the binarization of the datasets
in our experiments.
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The results of Table 1 indicate that L0-RBoost finds
classifiers that are approximately as sparse as the clas-
sifiers found by LP-Boost, but usually achieve supe-
rior classification performance. Finally, although we
demonstrate this classification performance based on
parameters that are justified analytically, without fine-
tuning, we can only expect to improve the performance
of L0-RBoost by using cross-validation to select the
margin parameter ρ or the penalty parameters cu.
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Lübbecke, M.E. and Desrosiers, J. Selected topics
in column generation. Operations Research, 53(6):
1007–1023, 2005.
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(a) L0-RBoost accuracy vs. margin
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(b) LP-Boost accuracy vs. margin

Figure 1. The classification performance of LP-Boost versus L0-RBoost with monomial base classifiers for the SONAR
dataset. Each point corresponds to the average of a 10-replication, 10-fold CV experiment.
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(a) K = 1
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(b) K = 5

Figure 2. Test accuracy vs. ‖λ‖0 on the SONAR dataset: each point corresponds to an average over 10 replications of a
10-fold CV experiment with a particular input parameter

Dataset

Name BCW VOTE CLVHEART HUHEART SONAR
Samples 683 435 297 294 208

Method Acc ‖λ‖0 Acc ‖λ‖0 Acc ‖λ‖0 Acc ‖λ‖0 Acc ‖λ‖0
L0-RBoost K = 1 0.963 9.1 0.950 6.0 0.846 10.3 0.812 10.4 0.712 7.2
L0-RBoost K = 5 0.950 9.4 0.960 3.0 0.833 38.9 0.807 27.4 0.725 21.3
LP-Boost K = 1 0.925 3.8 0.957 2 0.774 7.6 0.803 3.8 0.735 8.6
LP-Boost K = 5 0.937 5.5 0.957 2.1 0.810 25.3 0.797 11.2 0.734 30.8
SLIPPER 0.959 19.5 0.952 3.9 0.802 14 0.802 14.7 0.674 18.8
SLIPPER 0.958 0.752 0.806 0.745
LP-Boost stumps 0.966 0.795 70.8 0.870 85.7
LP-Boost C4.5 0.959 0.959 0.791 0.817

Table 1. Average accuracy and ‖λ‖0 for 20 replications of 10-fold cross-validation. The bottom three rows are as reported
for SLIPPER (Cohen & Singer, 1999) and LP-Boost (Demiriz et al., 2002). Gray cells indicate that the corresponding
data are unavailable from the given publication.


