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Abstract

We investigate the sparse eigenvalue problem
which arises in various fields such as machine
learning and statistics. Unlike standard ap-
proaches relying on approximation of the l0-
norm, we work with an equivalent reformula-
tion of the problem at hand as a DC program.
Our starting point is the eigenvalue problem
to which a constraint for sparsity require-
ment is added. The obtained problem is first
formulated as a mixed integer program, and
exact penalty techniques are used to equiva-
lently transform the resulting problem into a
DC program, whose solution is assumed by a
customized DCA. Computational results for
sparse principal component analysis are re-
ported, which show the usefulness of our ap-
proach that compares favourably with some
related standard methods using approxima-
tion of the l0-norm.

1. Introduction

Eigenvalue problem is a popular problem and has
many applications in science and engineering. One of
the uses of eigenvalue problem is the principal compo-
nent analysis (PCA) in statistics which is a powerful
and popular tool for factor analysis and modeling of
data. The main aim in PCA is to extract principal
components corresponding to directions of maximal
variance in data, each principal component being a
linear combination of the input variables. Generally,
in practice each principal component given by PCA
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contains all the input variables (i.e. all the coefficients
of the input variables in the linear combination are
typically non-zero), what raises problem of interpre-
tation and human understanding in several cases. To
by-pass this problem several techniques, called sparse
PCA techniques, were developed in the literature to
obtain principal components with a small nonzero co-
efficients that explain most of the variance present in
the data.

The first work we are aware concerning sparse PCA
is that of (Cadima & Jolliffe, 1995) who proposed a
simple axis rotation and component thresholding for
subset selection. Later (Jolliffe et al., 2003) proposed
SCoTLASS by enforcing a sparsity constraint on the
principal directions by bounding their l1-norm, lead-
ing to a nonconvex procedure. Recent years have wit-
nessed a flurry of research on algorithms and theory
for sparse PCA, (Zou et al., 2006) proposed SPCA,
a l1-penalized regression algorithm for PCA using
least regression, convex relaxed solutions leading to
semidefinite programs (like DSPCA) are proposed by
(d’Aspremont et al., 2007; 2008). (Moghaddam et al.,
2005) proposed GSPA, a combinatorial optimization
algorithm based on bidirectional greedy search, (Sripe-
rumbudur et al., 2007) proposed DC-PCA, a DC pro-
gramming algorithm (DCA) obtained by penalizing
the approximation term proposed by (Weston et al.,
2003).

In this paper, we propose a new solution for the sparse
eigenvalue problem using DC programming, which
does not approximate the l0-norm as usually, but uses
it completely. Our approach sheds a new light on the
use of l0-norm and is particularly interesting for re-
lated problems for which approximating l0-norm is not
satisfactory. We first formulate the problem as a mixed
integer program and by using an appropriate penalty
function, we show that the problem can be reformu-
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lated as a DC program (minimization of a DC function
over a closed convex set) by exact penalty techniques
in DC programming. The resulting DC program is
handled by the DCA which consists of solving a se-
quence of quadratically constrained linear programs
(QCLP) with a complexity O(n2) for each (QCLP).
DC Programming and DCA were first introduced, in
their preliminary form, by Pham Dinh Tao in 1985,
and have been extensively developed since 1994 by Le
Thi Hoai An and Pham Dinh Tao. It becomes now
classic and increasingly popular (see e.g. (Pham Dinh
& Le Thi, 1997; 1998; Le Thi et al., 1999; Le Thi &
Pham Dinh, 2001; 2005) and http://lita.sciences.univ-
metz.fr/∼lethi/). DCA was applied successfully to
many large scale (smooth and nonsmooth) nonconvex
programs in various domains of applied sciences for
which it proved to be very robust and very efficient(see
e.g. (Le Thi & Pham Dinh, 2003; Weber et al., 2006;
Pham Dinh et al., 2008)). For the sparse eigenvalue
problem, we specialize a suitable DCA, taking into
account its specific structure. Computational exper-
iments demonstrate that DCA gives correct solution
on the artificial data proposed in (Zou et al., 2006).
On the well known standard pit props (Jeffers, 1967),
benchmark dataset, very used to estimate the perfor-
mances of the methods for the principal component
analysis because of its lack of sparseness and subse-
quent difficulty of interpretation, DCA performs bet-
ter in term of sparsity, explained variance and practical
use than SPCA, DSPCA and DC-PCA. Finally, DCA
gives better results than SPCA and DC-PCA while
estimating its performance in high-dimension data by
using the well known colon tumor data (Alon et al.,
1999).

The paper is organized as follows: In the following
two sections we present the variational formulations
for the eigenvalue and sparse eigenvalue problems re-
spectively and state different reformulations in order to
get appropriate equivalent DC programs for the orig-
inal problems . We outline the DC programming and
DCA in section 4, while section 5 is devoted to the
description of the customized DCA for solving the re-
lated DC program. Some extensions are reported in
section 6. Computational experiments on the datasets
mentioned previously are reported in the last section
where we analyse the performance of DCA with related
standard methods using approximation of the l0-norm.

Notation. In this paper, e = (1, ..., 1)T ∈
Rn, and e1, ..., en are the standard basis vectors of
Rn. I denotes the n × n identity matrix, Sn ={
X ∈Mn(R) : X = XT

}
, Sn

+ = {X ∈ Sn : X positive
semidefinite}. λmax(A) denotes the maximal eigen-
value of A and ‖x‖0 := card {i ∈ {1, ..., n} : xi 6= 0}.

2. Eigenvalue Problem

The variational formulation for the eigenvalue problem
is given by

max
{
xTAx : xTx = 1

}
, (1)

where x ∈ Rn, and A = (Aij)i,j=1,...,n a n-by-n sym-
metric real matrix. (1) is nonconvex, however efficient
methods exist which can find a global solution in poly-
nomial time.

In the principal component analysis (PCA) setting, the
goal is to extract the r leading eigenvectors of the sam-
ple covariance matrix, A0 symmetric positive semidef-
inite, as its eigenvectors are equivalent to the loadings
of the first r principal components. Usually Hotelling
deflation method (White, 1958; Saad, 1998) is used to
sequentially extract these eigenvectors. On the t-th
iteration, we extract the leading eigenvector of At−1,

xt ∈ arg max
{
xTAt−1x : xTx = 1

}
,

At = At−1−xtx
T
t At−1xtx

T
t , and the (t+ 1)-st leading

eigenvector of A0 is the leading eigenvector of At.

3. Sparse Eigenvalue Problem

The variational formulation for the sparse eigenvalue
problem is given by

max
{
xTAx : xTx = 1, ‖x‖0 ≤ k

}
, (2)

where k ∈ N , 1 ≤ k < n. It is nonconvex, discon-
tinuous, combinatorial and NP-hard. Because of the
difficulty to directly handle the cardinality constraint,
usually relaxed problems are considered. In SCoT-
LASS (Jolliffe et al., 2003) the l1-approximation for
the l0-norm is used. Convex relaxations using semidef-
inite relaxation are proposed in the literature as the
DSPCA of (d’Aspremont et al., 2007). There exists
another methods in which the cardinality constraint is
absorbed into the objective function as the SPCA of
(Zou et al., 2006) and the DC-PCA of (Sriperumbudur
et al., 2007). All these methods propose solutions of
approximated problems which are not equivalent to
the original problem. In this work we propose an exact
reformulation of (2) by directly minimizing a quadratic
objective function over closed convex constraints.

Without loss of generality we assume that A ∈ Sn
+,

A 6= 0 afterward, indeed if A /∈ Sn
+, then we choose

µ > 0 such that µI+A ∈ Sn
+ and we consider the prob-

lem max
{
xT (µI +A)x : xTx = 1, ‖x‖0 ≤ k

}
, which is

equivalent to (2).

By replacing the quadratic equality constraint xTx =
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1 in (2) by the inequality constraint xTx ≤ 1, we ob-
tain the following problem

max
{
xTAx : xTx ≤ 1, ‖x‖0 ≤ k

}
, (3)

which is equivalent to (2) by the following proposition.

Proposition 1 (2) and (3) are equivalent.

Proof It suffices to show that x̄T x̄ = 1, for any solu-
tion x̄ of (3). Assume by contradiction that x̄T x̄ < 1.
As A ∈ Sn

+ and A 6= 0, we have x̄TAx̄ ≥ maxiAii > 0,
thus x̄ 6= 0 and x̃ := x̄√

x̄T x̄
is a feasible point of (3).

x̃TAx̃ = x̄T Ax̄
x̄T x̄

> x̄TAx̄ in contradiction with the fact
that x̄ is a solution of (3). �

A mixed-integer formulation for (3) is given by
max(x,u) xTAx
s.t. xTx ≤ 1,

|xj | ≤ uj , j = 1, ..., n,
eTu ≤ k, u ∈ {0, 1}n .

(4)

In the aim of writing (4) under a continuous formula-
tion, we define

q(u) :=
n∑

j=1

uj(1− uj) = eTu− uTu. (5)

Property 1 q is a finite nonnegative concave function
and u ∈ {0, 1}n ⇔ (q(u) ≤ 0, u ∈ [0, 1]n).

3.0.1. Formulation 1

Let t > 0 and let us consider the penalty program
min(x,u) ft(x, u) = −xTAx+ tq(u)
s.t. xTx ≤ 1,

|xj | ≤ uj , j = 1, ..., n,
eTu ≤ k, u ∈ [0, 1]n.

(6)

The following proposition shows the equivalence be-
tween (3) and (6).

Proposition 2 Let

c := maxj=1,...,n

[
2
∑n

k=1,k 6=j |Akj |+Ajj

]
,

t > t0(A) := 2 max {c, λmax(A)−maxj Ajj} ,

(3) and (6) are equivalent in the following sense:

• if x̄ is a solution of (3), then there exists ū such
that (x̄, ū) is a solution of (6).

• if (x̄, ū) is a solution of (6), then x̄ is a solution of
(3).

Proof It suffices to show that q(ū) = 0, for any so-
lution (x̄, ū) of (6). Assume by contradiction that
q(ū) > 0. We point out how to compute a feasible
point (x, u) of (6) such that ft(x̄, ū) > ft(x, u), in
contradiction with the fact that (x̄, ū) is a solution
of (6). Put J := {j ∈ {1, ...n} : 0 < ūj < 1− ūj} and
I := {j ∈ {1, ...n} : 0 < 1− ūj ≤ ūj} and consider the
following cases:
Case J 6= ∅. Choose j0 ∈ J and put xj := x̄j , uj :=
ūj ,∀j 6= j0 and xj0 = uj0 := 0.
Case J = ∅, and I 6= ∅. If eT ū < k, then choose
i0 ∈ I and ε > 0 such that eT ū+ ε ≤ k and ūi0 + ε ≤ 1
and put x := x̄, ui := ūi,∀i 6= i0 and ui0 := ūi0 + ε,
else choose i such that Aii = maxj Ajj and put
(x, u) := (ei, ei). �

From formulation 1 we derive a second formulation by
replacing the constraint eTu ≤ k by eTu = k and by
removing eTu of the objective function.

3.0.2. Formulation 2

Consider the problem
min(x,u) f1

t (x, u) := −xTAx− tuTu
s.t. xTx ≤ 1,

|xj | ≤ uj , j = 1, ..., n,
eTu = k, u ∈ [0, 1]n,

(7)

with t > t0(A).

Proposition 3 (3) and (7) are equivalent in the same
sense as in the proposition 2.

Proof It suffices to show that (6) has a solution (x̄, ū)
that satisfies eT ū = k. Let (x̃, ũ) be a solution of (6),
thus we have eT ũ ≤ k and ũ ∈ {0, 1}n. To construct
these solution (x̄, ū), we set x̄ := x̃, ūj := ũj ,∀j such
that ũj = 1 and complete the rest of components of ū
by 0 or 1 to obtain eT ū = k. �

Even if the constraints are convex, the objective func-
tions of (6) and (7) are nonconvex (concave). The
particular structure of the objective functions suggest
us to use the DC programming, which is one of the
optimization tools to solve this type of problems, that
we will introduce in the next section.

4. D.C. Programming and DCA

Let Γ0(Rn) denote the convex cone of all lower semi-
continuous proper convex functions on Rn. The vector
space of DC functions, DC(Rn) = Γ0(Rn)−Γ0(Rn), is
quite large to contain many real-life objective functions
and is closed under all operations usually considered
in optimization. Consider the standard DC program

(Pdc) α = inf {f(x) := g(x)− h(x) : x ∈ Rn} ,
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where g, h ∈ Γ0(Rn). A DC program (Pdc) is called
polyhedral DC program when either g or h is polyhe-
dral convex function(i.e. the pointwise supremum of a
finite collection of affine functions). Note that a poly-
hedral convex function is almost always differentiable,
say, it is differentiable everywhere except on a set of
measure zero.
Let C be a nonempty closed convex set. Then, the
problem

inf {F (x) := g(x)− h(x) : x ∈ C} , (8)

can be transformed into an unconstrained DC program
by using the indicator function of C (χC(x) = 0 if
x ∈ C,+∞ otherwise), i.e.,

inf {f(x) := φ(x)− h(x) : x ∈ Rn} , (9)

where φ := g + χC is in Γ0(Rn).
Let

g∗(y) := sup
{
yTx− g(x) : x ∈ Rn

}
(10)

be the conjugate function of g. The dual problem of
(Pdc) is defined by

(Ddc) β = inf {h∗(y)− g∗(y) : y ∈ Rn} . (11)

Under the natural convention in DC programming that
is +∞−(+∞) = +∞, and by using the fact that every
function h ∈ Γ0(Rn) is characterized as a pointwise
supremum of affine functions, more precisely

h(x) := sup
{
yTx− h∗(y) : y ∈ Rn

}
, (12)

it can be proved that α = β. There is a perfect symme-
try between primal and dual DC programs: the dual
of (Ddc) is (Pdc).

Recall that, for θ ∈ Γ0(Rn) and x0 ∈, domθ :=
{x ∈ Rn : θ(x) < +∞}, the subdifferential of θ at x0,
denoted by ∂θ(x0), is defined as

∂θ(x0) :={
y ∈ Rn : θ(x) ≥ θ(x0) + (x− x0)T y : ∀x ∈ Rn

}
(13)

which is a closed convex subset of Rn. It generalizes
the derivative in the sense that θ is differentiable at x0

if and only if ∂θ(x0) is reduced to a singleton which is
exactly {∇θ(x0)}.
The necessary local optimality condition for the primal
DC program, (Pdc), is

∂h(x∗) ⊂ ∂g(x∗). (14)

The condition (14) is also sufficient for many impor-
tant classes of DC programs, for example, for DC poly-
hedral programs, or when the function f is locally con-
vex at x∗ (Pham Dinh & Le Thi, 1997; 1998; Le Thi
et al., 1999; Le Thi & Pham Dinh, 2001; 2005).

A point that x∗ verifies the generalized Kuhn-Tucker
condition

∂h(x∗) ∩ ∂g(x∗) 6= ∅ (15)

is called a critical point of g − h. It follows that if h
is polyhedral convex, then a critical point of g − h is
almost always a local solution to (Pdc).
The transportation of global solutions between (Pdc)
and (Ddc) is expressed by:

Property 2 ⋃
y∗∈D

∂g∗(y∗)

 ⊂ P, [ ⋃
x∗∈P

∂h(x∗)

]
⊂ D, (16)

where P and D denote the solution sets of (Pdc) and
(Ddc) respectively. The first inclusion becomes equal-
ity if h is subdifferentiable in P ⊂ domg, and the
second inclusion becomes equality if g∗ is subdiffer-
entiable in D ⊂ domh∗. Under certain technical con-
ditions, this property also holds for the local solutions
of (Pdc) and (Ddc). For example see (Pham Dinh &
Le Thi, 1997; 1998; Le Thi et al., 1999; Le Thi &
Pham Dinh, 2001; 2005) for more informations.

Property 3 Let x∗ be a local solution to (Pdc) and
let y∗ ∈ ∂h(x∗). If g∗ is differentiable at y∗ then y∗

is a local solution to (Ddc). Similarly, let y∗ be a lo-
cal solution to (Ddc) and let x∗ ∈ ∂g∗(y∗). If h is
differentiable at x∗ then x∗ is a local solution to (Pdc).

Based on local optimality conditions and duality in
DC programming, the DC Algorithm (DCA) consists
in constructing of two sequences

{
xl
}

and
{
yl
}

of trial
solutions of the primal and dual programs, respec-
tively, such that the sequences

{
g(xl)− h(xl)

}
and{

h∗(yl)− g∗(yl)
}

are decreasing, and
{
xl
}

(resp.
{
yl
}

)
converges to a primal feasible solutions x̃ (resp. a dual
feasible solution ỹ) satisfying the local optimality con-
dition and

x̃ ∈ ∂g∗(ỹ), ỹ ∈ ∂h(x̃). (17)

The DCA then yields the next simple scheme:

yl ∈ ∂h(xl); xl+1 ∈ ∂g∗(yl). (18)

In other words, these two sequences
{
xl
}

and
{
yl
}

are
determined in the way that xl+1 and yl+1 are solutions
of the convex primal program (Pl) and dual program
(Dl+1), respectively. These are defined as

(Pl) min
{
g(x)− h(xl)− (x− xl)T yl : x ∈ Rn

}
,
(19)

(Dl+1) min
{
h∗(y)− g∗(yl)− (y − yl)Txl+1 : y ∈ Rn

}
.

(20)
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At each iteration, the DCA performs a double lin-
earization with use of the subgradients of h and g∗. In
fact, at each iteration, one replaces in the primal DC
program, (Pdc), the second component h by its affine
minorization hl(x) := h(xl) + (x− xl)T yl to construct
the convex program (Pl) whose the solution set is noth-
ing but ∂g∗(yl). Likewise, the second DC component
g∗ of the dual DC program, (Ddc), is replaced by its
affine minorization g∗l (y) := g∗(yl) + (y − yl)Txl+1 to
obtain the convex program (Dl+1) whose ∂h(xl+1) is
the solution set. One sees thus the DCA works with
the convex DC components g and h but not with the
DC function f itself. Moreover, a DC function f has
infinitely many DC decompositions which have crucial
impacts on the performance of the DCA in terms of
speed of convergence, robustness, efficiency, and glob-
ality of computed solutions. Convergence properties
of the DCA and its theoretical basis are described in
(Pham Dinh & Le Thi, 1997; 1998; Le Thi et al., 1999;
Le Thi & Pham Dinh, 2001; 2005). However, it is
worthwhile to summarize the following properties for
the shake of completeness :

• DCA is a descent method (without line search).
The sequences (g(xl)−h(xl)) and (h∗(yl)−g∗(yl))
are decreasing such that

g(xl+1)−h(xl+1) ≤ h∗(yl)−g∗(yl) ≤ g(xl)−h(xl).
(21)

• If g(xl+1) − h(xl+1) = g(xl) − h(xl), then xl is
a critical point of g − h and yl is a critical point
of h∗ − g∗. In this case, DCA terminates at lth

iteration.

• If the optimal value α of problem (Pdc) is fi-
nite and the infinite sequences

{
xl
}

and
{
yl
}

are
bounded, then every limit point x̃(resp. ỹ) of the
sequence

{
xl
}

(resp.
{
yl
}

) is a critical point of
g − h (resp. h∗ − g∗).

• DCA has a linear convergence for general DC pro-
grams. Especially, for polyhedral DC programs
the sequences

{
xl
}

and
{
yl
}

contain finitely many
elements and the algorithm convergences to a so-
lution in a finite number of iterations.

We shall apply all DC enhancement features to solve
(7).

5. Sparse eigenvalue by D.C.
Programming and DCA

We consider a new approach based on DC program-
ming and DCA to solve (3). The DCA requires a refor-
mulation of the problem so that the objective function

Algorithm 1 DCA for sparse eigenvalue problem
Input: A ∈ Sn

+, 1 ≤ k < n, t > 0, (x0, u0) ∈
Rn ×Rn

+ and ε the tolerance
Output: (x, u)
Initialize l := 0
repeat
X l := 2Axl, U l := 2tul

Compute (xl+1, ul+1) solution of (25)
until

∣∣f1
t (xl+1, ul+1)− f1

t (xl, ul)
∣∣ ≤ ε

x := xl and u := ul.

is represented by the difference of two convex func-
tions. Then the original problem becomes a DC pro-
gram in which the DC function is minimized over a
convex set. In this section, we introduce a DC refor-
mulation and then present the corresponding DCA.

According to the previous section a DC formulation of
(7) is given by

min {G(x, u)−H(x, u) : (x, u) ∈ Rn ×Rn} , (22)

where G(x, u) := χC(x, u), H(x, u) := xTAx + tuTu
and C is the feasible set of (7). Then performing DCA
for problem (22) amounts to computing the two se-
quences

{
(xl, ul)

}
and

{
(X l, U l)

}
defined by

(X l, U l) ∈ ∂H(xl, ul), (xl+1, ul+1) ∈ ∂G∗(X l, U l).
(23)

In other words, we have to compute the subdifferen-
tials ∂H and ∂G∗.

(X l, U l) ∈ ∂H(xl, ul)⇔ X l = 2Axl, U l = 2tul, (24)

and ∂G∗(X l, U l) is the solution set of the following
convex program

min
{
−(X l)Tx− (U l)Tu : (x, u) ∈ C

}
, (25)

of which a solution can be computed in polynomial
complexity O(n2) by using the KKT conditions (Thiao
et al., 2009).

The algorithm 1 summarizes the DCA applied to (7)
and the following proposition shows that for k = n,
our DCA algorithm is reduced to the power iteration
algorithm.

Proposition 4 Let k = n. Then our DCA algorithm
is reduced to the power method for eigenvalue compu-
tation.

Proof As eTul = k = n and ul ∈ [0, 1]n, we
have ul = e for all l ≥ 1, thus (25) is reduced
to min

{
−(Axl)Tx : xTx ≤ 1

}
, and by applying the

KKT conditions to this problem we obtain xl+1 =
Axl/

∥∥Axl
∥∥

2
. �
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6. Extensions

In this section we present exact penalty techniques
for some sparse eigenvalue formulations. First, con-
sider the formulation proposed in (El Ghaoui, 2006),
in which the l0-norm term is absorbed in the objective
function

max
{
xTAx− ρ ‖x‖0 : xTx = 1

}
, (26)

where ρ > 0. By a similar reasoning, as in the section
3, we show that (26) is equivalent to min(x,u) −xTAx+ ρeTu+ tq(u)

s.t. xTx ≤ 1, |xj | ≤ uj ,
j = 1, ..., n, u ∈ [0, 1]n,

(27)

in the sense as in proposition 2 for all

t > 2 max

ρ, max
j=1,...,n

2
n∑

k=1,k 6=j

|Akj |+Ajj

 .

Second, even if we used the quadratic concave penalty
function q(u) =

∑n
j=1 uj(1 − uj) in our previous re-

formulations (6) and (27), another polyhedral concave
penalty function p(u) :=

∑n
j=1 min(uj , 1 − uj) could

be used to obtain similar reformulations.

7. Experiments and Results

In this section, we illustrate the effectiveness of the
proposed method in the context of sparse principal
component analysis. We present experiments on an
artificial data and different real-life datasets.

In the sparse PCA setting, usually, the sparse eigen-
vectors of the covariance matrix A are obtained by
applying algorithm on the sequence of deflated matri-
ces with the same (or different) k depending on the
sparsity requirement. Here we use an orthogonalized
projection deflation technique (see (Mackey, 2008) for
more details in deflation techniques for sparse PCA):
A0 = A, vi = (I − Vi−1V

T
i−1)xi/

∥∥(I − Vi−1V
T
i−1)xi

∥∥,
Ai = (I − viv

T
i )Ai−1(I − viv

T
i ), where v1 = x1, and

v1,...,vi−1 form the columns of Vi−1. Since v1,...,vi−1

form an orthonormal basis for the space spanned by
x1,...,xi−1 ((x1, u1),...,(xi−1, ui−1) are the output of
the Algorithm DCA with A0,...,Ai−1), we have Pi−1 =
Vi−1V

T
i−1, the orthogonal projection. The cummula-

tive variance is then calculated as
∑

i v
T
i Aivi.

7.1. Artificial Data

We consider the simulation example proposed in (Zou
et al., 2006), in this example three hidden factors are
created:

V1 ∼ N (0, 290), V2 ∼ N (0, 300),
V3 = −0.3V1 + 0.925V2 + ε, ε ∼ N (0, 1),

Table 1. Loadings and explained variance for the first two
principal components of the artificial example for DCA.

PC X1 X2 X3 X4 X5 X6
1 0 0 0 0 .5 .5

DCA 2 .5 .5 .5 .5 0 0

PC X7 X8 X9 X10 Explained variance
1 .5 .5 0 0 40.9%

DCA 2 0 0 0 0 39.5%

with V1, V2 and ε independent. Afterward, 10 observed
variables are generated as follows:

Xi = Vj + εji , ε
j
i ∼ N (0, 1),

with j = 1 for i = 1, ..., 4, j = 2 for i = 5, ..., 8, and
j = 3 for i = 9, 10 and εji independent for j = 1, 2, 3,
i = 1, ..., 10.

The variance of the three underlying factors is 290, 300
and 283.8, respectively. The number of variables asso-
ciated with the three factors are 4, 4 and 2. Therefore
V2 and V1 are almost equally important, and they are
much more important than V3. The first two principal
components together explain more than 99% of the to-
tal variance. These facts suggest that we only need to
consider two derived variables with sparse representa-
tions. Ideally, the first derived variable should recover
the factor V2 only using (X5, X6, X7, X8), and the sec-
ond derived variable should recover the factor V1 only
using (X1, X2, X3, X4).

Quite as DSPCA, SPCA and SCoTLASS (see
(d’Aspremont et al., 2007)) and by taking k = 4 for
the first two principal components, our DCA algorithm
finds the correct sparse principal components of the
two first principal components and the results are sum-
marized in Table 1.

7.2. Pit Props Data

The pit props dataset (Jeffers, 1967) has become a
standard benchmark example to test sparse PCA al-
gorithms. The first six principal components (PCs)
capture 87% of the total variance and so all these
other methods compare their explanatory power us-
ing six sparses principal components. As it was shown
in (Sriperumbudur et al., 2007) that DC-PCA gave a
better result than DSPCA and SPCA with 13 non-zero
loadings and 77.1% of the total variance for the six first
sparse principal components, we are going to use it for
our comparison. Table 2 shows the first 3 PCs for
SPCA, DSPCA, DC-PCA and the first 6 PCs for our
DCA algorithm for sparse PCA. With the same car-
dinality pattern (k1, k2, k3, k4, k5, k6) := (6, 2, 2, 1, 1, 1)
with 13 non-zero loadings, our DCA captures almost
the same variance (77.05%). We observe that all of
the principal components C1, ..., C6 generated by DCA
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Table 2. Pit Props: Loadings for the first three princi-
pal components for SPCA, DSPCA, and DC-PCA and
the six PCs for our DCA algorithm. SPCA, DSPCA,
and DC-PCA loadings are taken from (Zou et al., 2006),
(d’Aspremont et al., 2007) and (Sriperumbudur et al.,
2007) respectively.

PC x1 x2 x3 x4 x5 x6 x7
C1 -.477 -.476 0 0 .177 0 -.250

SPCA C2 0 0 .785 .620 0 0 0
C3 0 0 0 0 .640 .589 .492
C1 -.560 -.583 0 0 0 0 -.263

DSPCA C2 0 0 .707 .707 0 0 0
C3 0 0 0 0 0 -.793 -.610
C1 .449 .459 0 0 0 0 .374

DC-PCA C2 0 0 .707 .707 0 0 0
C3 0 0 0 0 0 .816 .578
C1 -.444 -.453 0 0 0 0 -.379

DCA C2 0 0 .707 .707 0 0 0
C3 0 0 0 0 .694 .721 0
C4 0 0 0 0 0 0 0
C5 0 0 0 0 0 0 0
C6 0 0 0 0 0 0 0

PC x8 x9 x10 x11 x12 x13
C1 -.344 -.416 -.400 0 0 0

SPCA C2 -.021 0 0 0 .013 0
C3 0 0 0 0 0 -.015
C1 -.099 -.371 -.362 0 0 0

DSPCA C2 0 0 0 0 0 0
C3 0 0 0 0 0 .012
C1 .332 .403 .419 0 0 0

DC-PCA C2 0 0 0 0 0 0
C3 0 0 0 0 0 0
C1 -.341 -.403 -.419 0 0 0

DCA C2 0 0 0 0 0 0
C3 0 0 0 0 0 0
C4 0 0 0 0 0 1
C5 0 0 0 1 0 0
C6 0 0 0 0 -1 0

Table 3. Pits Props: variation of the explained variance
following k for the first principal component.

k 1 2 3 4 5 6 7
Variance % 7.69 15.03 19.04 22.56 26.20 29.00 30.74

k 8 9 10 11 12 13
Variance % 31.30 31.83 32.10 32.37 32.44 32.45

satisfy the orthonormality property (CT
i Ci = 1 and

CT
i Cj = 0,∀i 6= j) which is not the case for DC-PCA.

Another advantage is that in DCA the sparsity require-
ment is explicitly mentioned and that in DC-PCA it is
difficult to set the regularization parameter to attain
a given sparsity. Table 3 shows the variation of the
explained variance following k for the first principal
component.

7.3. Colon Cancer Data

The colon cancer data (Alon et al., 1999) consist of 62
tissue samples (22 normal and 40 cancerous) with the
gene expression profiles of n = 2000 genes extracted
from DNA micro-array data. We consider its first 5
principal components which explain 70% of the total
variance. The figure 1 shows that DCA gives much
better results than SPCA and DC-PCA. DC-PCA ex-
plains only 62% of cumulative variance with more than

Table 4. Colon Cancer: variation of the explained variance
following k for the first principal component.

k 200 400 600 800 1000 1200 1400
Variance % 7.70 14.35 20.22 25.51 30.25 34.41 38.11

k 1600 1800 2000
Variance % 41.30 43.76 44.96

6000 for the cumulative cardinality, whereas our DCA
algorithm explains 65.94% of cumulative variance with
5000 for cumulative cardinality with the cardinality
pattern (k1, k2, k3, k4, k5) := (1800, 800, 800, 800, 800).
In Table 4 we represent the variation of the explained
variance following k for the first principal component.
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Figure 1. Colon Cancer (a) cumulative variance (b) cumu-
lative cardinality for the first 5 sparse principal compo-
nents.

8. Summary and Future Work

We have proposed a sparse eigenvalue algorithm using
the DC programming and DCA. Our method differs
substantially from previous works and approaches in
sparse PCA. A difference that begins with the exact
reformulation of the problem at hand as a DC pro-
gram (minimization of a DC function over a convex
closed set), that is original knowing that, because of
the discontinuity of the the l0-norm, standard meth-
ods must resort to its approximation (without having
equivalence between the problem and its approximated
one). The simplicity of the reformulations and the bet-
ter results provided by DCA on different well-known
data for testing methods for sparse PCA, show that
DCA is efficient and promising for sparse PCA. We
have also proposed some reformulations which could
allow various approaches.
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We are extending this technique to other problems in-
volving l0-norm and investigating global optimization
techniques.
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