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Abstract

We introduce a novel graph kernel called the
Neighborhood Subgraph Pairwise Distance
Kernel. The kernel decomposes a graph into
all pairs of neighborhood subgraphs of small
radius at increasing distances. We show that
using a fast graph invariant we obtain signif-
icant speed-ups in the Gram matrix compu-
tation. Finally, we test the novel kernel on a
wide range of chemoinformatics tasks, from
antiviral to anticarcinogenic to toxicological
activity prediction, and observe competitive
performance when compared against several
recent graph kernel methods.

1. Introduction

Since the introduction of convolution kernels in (Haus-
sler, 1999), the decomposition approach has been the
the guiding principle in kernel design for structured
objects. According to such approach, a similarity func-
tion between discrete data structures can be obtained
by decomposing each object into parts and by devis-
ing a valid local kernel between the subparts. For
over ten years machine learning researchers have ex-
ploited the remarkable property that it is possible to
efficiently compute this type of kernels even when ob-
jects admit an exponential number of decompositions.
This is possible if an efficient method to enumerate
the parts can be produced and if the sum over a po-
tentially exponential number of local kernel can be
performed in polynomial time (e.g. through dynamic
programming). However, as the dimension of the fea-
ture space associated with the kernel becomes expo-
nentially larger, there is an increasing probability that
a significant fraction of the feature space dimensions
will be poorly correlated with the target function. As a
consequence, even when using large margin classifiers,
one can fail to obtain models with good generalization
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performance (Ben-David et al., 2002). Possible reme-
dies include down-weighting the contribution of larger
fragments and/or bounding a priori their size. Alter-
natively one can try to identify a strong bias, relevant
to the task at hand, and consider only a selected sub-
set of structures to limit the dimension of the feature
space without degrading the prediction performance.
Here we limit the extracted substructures by design,
following the physico-chemical intuition that the full
molecule’s behavior is contained in its electron density
field. The continous field can be discretized using the
notion of functional group, empirically discovered by
chemists since a long time. In essence, a functional
group is a specific molecular subgraph which can be
viewed as characteristic local electron density distribu-
tion that remains fairly constant, independent of the
environment. In the same spirit, we employ pairs of
neighborhood subgraphs of increasing sizes (i.e. sub-
graphs induced by all “nearby” vertices, see Section 2).
Since each vertex in a molecular graph gives rise to a
constant, small number of such subgraphs, the neigh-
borhood graphs can be efficiently enumerated in lin-
ear time. In Section 2.4 we show how to perform
quick equality matches between large neighborhood
subgraphs, which allows us to obtain very fast Gram
matrix computation runtimes. We empirically verify
in Section 4 that the proposed approach yields predic-
tive models with competitive performance on a wide
range of bio- and chemoinformatics tasks.

2. Method

2.1. Graph Definitions and Notation

We closely follow the notation in (Gross & Yellen,
2003). A graph G = (V,E) consists of two sets V and
E. The notation V (G) and E(G) is used when G is
not the only graph considered. The elements of V are
called vertices and the elements of E are called edges.
The distance between two vertices, denoted D(u, v), is
the length of the shortest path between them. The
neighborhood of radius r of a vertex v is the set of ver-
tices at a distance less than or equal to r from v and is
denoted by Nr(v). In a graph G, the induced-subgraph



Fast Neighborhood Subgraph Pairwise Distance Kernel

on a set of vertices W = {w1, . . . , wk} is a graph that
has W as its vertex set and it contains every edge of G
whose endpoints are in W . The neighborhood subgraph
of radius r of vertex v is the subgraph induced by the
neighborhood of radius r of v and is denoted by N v

r .
A labeled graph is a graph whose vertices and/or edges
are labeled, possibly with repetitions, using symbols
from a finite alphabet. We denote the function that
maps the vertex/edge to the label symbol as L. Two
simple graphs G1 = (V1, E1) and G2 = (V2, E2) are
isomorphic, which we denote by G1 ' G2, if there
is a bijection φ : V1 → V2, such that for any two
vertices u, v ∈ V1, there is an edge uv if and only if
there is an edge φ(u)φ(v) in G2. An isomorphism is a
structure-preserving bijection. Two labeled graphs are
isomorphic if there is an isomorphism that preserves
also the label information, i.e. L(φ(v)) = L(v). An
isomorphism invariant or graph invariant is a graph
property that is identical for two isomorphic graphs
(e.g. the number of vertices and/or edges). A cer-
tificate for isomorphism is an isomorphism invariant
that is identical for two graphs if and only if they are
isomorphic.

2.2. Kernel Definition and Notation

We follow the notation in (Haussler, 1999). Given
a set X and a function K : X × X → R, we say
that K is a kernel on X × X if K is symmetric,
i.e. if for any x and y ∈ X K(x, y) = K(y, x),
and if K is positive-semidefinite, i.e. if for any N ≥
1 and any x1, . . . , xN ∈ X, the matrix K defined
by Kij = K(xi, xj) is positive-semidefinite, that is∑
ij cicjKij ≥ 0 for all c1, . . . , cN ∈ R or equiv-

alently if all its eigenvalues are nonnegative. It is
easy to see that if each x ∈ X can be represented as
φ(x) = {φn(x)}n≥1 such that K is the ordinary l2 dot
productK(x, y) = 〈φ(x), φ(y)〉 =

∑
n φn(x)φn(y) then

K is a kernel. The converse is also true under reason-
able assumptions (which are almost always verified) on
X and K, that is, a given kernel K can be represented
as K(x, y) = 〈φ(x), φ(y)〉 for some choice of φ. In par-
ticular it holds for any kernel K over X × X where
X is a countable set. The vector space induced by φ
is called the feature space. Note that it follows from
the definition of positive-semidefinite that the zero-
extension of a kernel is a valid kernel, that is, if S ⊆ X
and K is a kernel on S × S then K may be extended
to be a kernel on X × X by defining K(x, y) = 0 if
x or y is not in S. It is easy to show that kernels
are closed under summation, i.e. a sum of kernels is a
valid kernel.

Let now x ∈ X be a composite structure such that we

can define x1, . . . , xD as its parts1. Each part is such
that xd ∈ Xd for d = 1, . . . , D with D ≥ 1 where each
Xd is a countable set. Let R be the relation defined on
the set X1×. . .×XD×X, such that R(x1, . . . , xD, x) is
true iff x1, . . . , xD are the parts of x. We denote with
R−1(x) the inverse relation that yields the parts of x,
that is R−1(x) = {x1, . . . , xD : R(x1, . . . , xD, x)}. In
(Haussler, 1999) it is demonstrated that, if there ex-
ist a kernel Kd over Xd × Xd for each d = 1, . . . , D,
and if two instances x, y ∈ X can be decomposed in
x1, . . . , xd and y1, . . . , yd, then the following general-
ized convolution:

K(x, y) =
∑

x1, . . . , xd ∈ R−1(x)

y1, . . . , yd ∈ R−1(y)

D∏
d=1

Kd(xd, yd)

is a valid kernel called a convolution or decomposition
kernel2. In words: a decomposition kernel is a sum
(over all possible ways to decompose a structured in-
stance) of the product of valid kernels over the parts
of the instance.

2.3. The Neighborhood Subgraph Pairwise
Distance Kernel

Given the notation introduced in the previous sections,
in the following we define the Neighborhood Subgraph
Pairwise Distance Kernel (NSPDK) as an instance of
a decomposition kernel.

We define the relation Rr,d(Av, Bu, G) between two
rooted graphs Av, Bu and a graph G to be true iff both
Av and Bu are in {N v

r : v ∈ V (G)}, where we require
that Av (Bu) be isomorphic to some Nr to verify the
set inclusion, and that D(u, v) = d. In words: the
relation Rr,d selects all pairs of neighborhood graphs
of radius r whose roots are at distance d in a given
graph G.

We define κr,d over G ×G as the decomposition kernel
on the relation Rr,d, that is:

κr,d(G,G′) =
∑

Av, Bu ∈ R−1
r,d(G)

A′
v′ , B

′
u′ ∈ R

−1
r,d(G′)

δ(Av, A′v′)δ(Bu, B
′
u′)

where the exact matching kernel δ(x, y) is 1 if x ' y
(i.e. if the graph x is isomorphic to y) and 0 otherwise.
In words: κr,d counts the number of identical pairs of

1Note that the set of parts needs not be a partition for
the composite structure, i.e. the parts may “overlap”.

2To be precise, the valid kernel is the zero-extension of
K to X × X since R−1(x) is not guaranteed to yield a
non-empty set for all x ∈ X.
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neighboring graphs of radius r at distance d between
two graphs (see Figure 1).
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Figure 1. Illustration of pairs of neighborhood graphs for
radius r = 1, 2, 3 and distance d = 5. Note that neighbor-
hood graphs can overlap.

The Neighborhood Subgraph Pairwise Distance Kernel
is finally defined as:

K(G,G′) =
∑
r

∑
d

κr,d(G,G′).

For efficiency reasons however, in this work we con-
sider the zero-extension of K obtained by imposing an
upper bound on the radius and the distance parame-
ter: Kr∗,d∗(G,G′) =

∑r∗

r=0

∑d∗

d=0 κr,d(G,G
′), that is,

we are limiting NSPDK to the sum of the κr,d ker-
nels for all increasing values of the radius (distance)
parameter up to a maximum given value r∗ (d∗). Fur-
thermore we consider a normalized version of κr,d, that
is: κ̂r,d(G,G′) = κr,d(G,G′)√

κr,d(G,G)κr,d(G′,G′)
, to ensure that

relations of all orders are equally weighted regardless
of the size of the induced part sets3.

Finally, it is easy to show that the Neighborhood Sub-
graph Pairwise Distance Kernel is a valid kernel as: 1)
it is built as a decomposition kernel over the countable
space of all pairs of neighborhood subgraphs of graphs
of finite size; 2) the kernel over parts (the exact match-
ing kernel) is a valid kernel; 3) the zero-extension to
bounded values for the radius and distance parame-
ters preserves the kernel property; and 4) so does the
normalization step.

3As the number of neighborhood graphs grows exponen-
tially with the radius, large (infrequent) subgraphs tend to
dominate the kernel value with negative effects on the gen-
eralization performance of predictive systems.

2.4. Graph Invariant

The NSPDK includes an exact matching kernel over
two graphs which is equivalent to solving the graph iso-
morphism problem (ISO). Since the existence of (de-
terministic) polynomial algorithms for ISO is still an
open problem, we have to resort to one of two strate-
gies: 1) limit the class of graphs under consideration
and solve ISO exactly; or 2) give an approximate (fast)
solution of ISO on general graphs. Here we opt for
the latter solution since we are mainly concerned with
application domains where the number of graphs to
be processed are in the range of tens to hundreds of
thousands and application specific pre-processing (see
Section 3.2) might alter the class of the input graphs
(making them non-outerplanar for example).

In this work we implement the exact matching kernel
δ(Gh, G′h′) in two steps: 1) we compute a fast graph
invariant encoding for Gh and G′h′ via a label function
Lg : Gh → Σ∗, where Gh is the set of rooted graphs and
Σ∗ is the set of strings over a finite alphabet Σ; 2) we
make use of a hash function H : Σ∗ → N to confront
H(Lg(Gh)) and H(Lg(G′h′)). In words: we produce
an efficient string encoding of graphs from which we
obtain a unique identifier via a hashing function from
strings to natural numbers. In this way the isomor-
phism test between two graphs is reduced to a fast
numerical identity test. Note that we cannot hope to
exhibit an efficient certificate for isomorphism in this
way, but only an efficient graph invariant at most, i.e.
there will be cases where two non-isomorphic graphs
are assigned the same identifier.

The graph encoding Lg(Gh) that we propose is best
described by introducing new label functions for ver-
tices and edges, denoted Ln and Le respectively.
Ln(v) assigns to vertex v the concatenation of the
lexicographically sorted listed of distance-label pairs
〈D(v, u),L(u)〉 for all u ∈ Gh. Since Gh is a rooted
graph we can exploit the knowledge about the iden-
tity of the root vertex h and include, for each vertex
v, the additional information of the distance from the
root node D(v, h). Le(uv) assigns to edge uv the label
〈Ln(u),Ln(v),L(uv)〉. Lg(Gh) assigns to the rooted
graph Gh the concatenation of the lexicographically
sorted list of Le(uv) for all uv ∈ E(Gh). In words: we
relabel each vertex with a string that encodes the ver-
tex distance from all other labeled vertices (plus the
distance from the root vertex); the graph encoding is
obtained as the sorted edge list, where each edge is
annotated with the endpoints’ new labels.

We finally resort to a Merkle-Damg̊ard construction
based hashing function for variable-length data to map
the graph encoding string to a 32-bit integer.
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2.5. Algorithmic Complexity

The time complexity of the NSPDK depends on two
key procedures: 1) the extraction of all pairs of neigh-
borhood graphs N v

r at distance d = 0, . . . , d∗, and 2)
the computation of the graph invariant for those sub-
graphs. The first procedure can be efficiently imple-
mented by factoring it into a) the extraction of N v

r for
all v ∈ V (G) and b) the computation of distances be-
tween pairs of vertices whose pairwise distance is less
than d∗. For this latter step we can repeat a breadth-
first (BF) visit up to distance d∗ for each vertex in
O(|V (G)||E(G)|). Note that, on graphs with bounded
(low) degree, the complexity is more realistically mod-
eled as a linear function of |V (G)| since a small d∗ im-
plies, in practice, that each bounded BF visit can be
performed in constant time. The complexity of point
a) is linear in the number of edges in the neighbor-
hood (constant in practice for small r). Finally, the
complexity of point 2) (the computation of the graph
invariant for neighborhood graphs) can be analyzed
in terms of i) the computation of the string encod-
ing Lg(Gh) and ii) the computation of the hash func-
tion H(Lg(Gh)). Part i) is dominated by the compu-
tation of all pairwise distances in O(|V (Gh)||E(Gh)|)
and the sorting of the relabeled edges, which has com-
plexity O(|V (Gh)||E(Gh)| log |E(Gh)|) since edges are
relabeled with strings containing the distance infor-
mation of the endpoints from all other vertices. The
hash function complexity (part ii)) is linear in the size
of the string. We conclude that the overall complexity
O(|V (G)||V (Gh)||E(Gh)| log |E(Gh)|) is dominated by
the repeated computation of the graph invariant for
each vertex of the graph. Since this is a constant time
procedure for small values of d∗ and r∗, we conclude
that the NSPDK complexity is in practice linear in the
size of the graph.

Note finally that, to reduce space complexity, we do
not manage the hash collisions, as this would force the
algorithm to keep in memory all the encoding key -
hashed value pairs.

2.6. Related Work

The NSPDK combines in a kernel fashion ideas present
in two popular chemoinformatics fingerprint methods:
the circular substructure and the atom pair represen-
tation.

A circular substructure representation encodes the im-
mediate neighborhood of an atom. It does so by as-
signing an initial code to an atom based on the atom
type and other information such as the number of
bonds, the electric charge, donor/acceptor tendency,
etc. The code for an atom and all its neighborhood is

then hashed to produce second order encodings. The
process is then iterated a given number of times k. The
order k corresponds to the radius in bonds up to which
features are generated and typically k = 1 or 2. Popu-
lar descriptors of this type are the Extended Connec-
tivity Fingerprints (ECFP) and the Functional Con-
nectivity Fingerprints developed at SciTegic/Accelrys
which have been shown to be effective in similarity
search operations (Hert et al., 2004).

The atom pair representation is an adaptation of the
pharmacophore points technique to the 2D rather than
3D structural representation. Here all pairs of atoms
are encoded together with the length of the shortest
path between them. Each atom is typically described
by its type and the number of non-hydrogen atoms to
which it is bonded or in terms of its binding properties
such as being a cation, anion, neutral, hydrogen bond
donor/acceptor, hydrophobic, etc . Popular descrip-
tors of this type are the CATS (Chemically Advance
Template Search) (Schneider et al., 1999) and the Sim-
ilog keys (Schuffenhauer et al., 2003) where the num-
ber of occurrences of a particular pair (rather than
its presence or absence as it is more usual in conven-
tional fingerprint representations) is used. Typically
only pairs for distances up to 10 bonds are used (Hert
et al., 2004).

3. Empirical Evaluation

We primarily want to answer two questions about the
proposed kernel:
Q1 How does the generalization performance of
NSPDK compare to other recent graph kernels?
Q2 How does the experimental runtime of NSPDK
compare to other fast graph kernels?

3.1. Data sets

NCI-60: The Developmental Therapeutics Program
(DTP) at the U.S. National Cancer Institute (NCI) has
checked a large number of compounds for evidence of
the ability to inhibit the growth of human tumor cell
lines4. The roughly balanced subset used by (Swami-
dass et al., 2005) has become a popular benchmark for
QSAR algorithm research, often referred to as either
NCI-60 or just NCI. The data set contains growth in-
hibition measurements on 60 cell lines. Each cell line
has inhibition data on about 3500 compounds. There
are 3910 compounds in the set in total.

HIV: The DTP also runs an AIDS antiviral screening,
which has checked a large number of compounds for
evidence of protection against HIV-1. The October

4
http://dtp.nci.nih.gov/docs/cancer/cancer data.html
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99 release of the database 5 contains the structures of
42687 molecules. Each of the compounds was tested
twice, and 422 were confirmed to be active (CA), 1081
are moderately active (CM), and 41184 inactive (CI).

PTC: The 2000-2001 Predictive Toxicology Challenge
(PTC) (Toivonen et al., 2003) was devised to stimu-
late the development of machine learning techniques
for predictive toxicology models. The data originates
from the US National Toxicology Program (NTP). The
training and test sets have a different class distribution
and a different prevailing mode of action , therefore we
only use the (corrected) training set, which contains
417 molecules. The aim is to predict the carcinogenic-
ity of the compounds in different rodents, in particular
male mice (MM), female mice (FM), male rats (MR),
and female rats (FR).

Bursi: (Kazius et al., 2005) have constructed a
dataset of 4337 molecular structures with correspond-
ing Ames data6. Ames is a short-term in vitro assay
designed to detect genetic damage caused by chemi-
cals and has become the standard test to determine
mutagenicity. The distribution is 2401 mutagens and
1936 nonmutagens.

D&D: This is dataset of 1178 protein structures con-
structed by (Dobson & Doig, 2003) and transformed
by (Shervashidze & Borgwardt, 2009) in a graph bi-
nary classification problem where the task is to distin-
guish enzymes from non-enzymes. Each protein has
been converted into a graph, considering the amino
acids as nodes7 and considering two nodes linked if
their 3D distance in the folded protein is less than
6 ångströms. Note that, while small molecules induce
graphs with ≈ 30 nodes, protein graphs result in much
larger graphs (≈ 300 nodes), with some instances ex-
hibiting several thousands of vertices.

3.2. Chemical Graph Augmentation

It can be argued that the compact representation of
molecular graphs may be too concise to achieve op-
timal generalization performance in graph based ma-
chine learning algorithms. A possible remedy is to
incorporate chemist domain knowledge, e.g. informa-
tion on important functional groups and ring struc-
tures. A simple method to do so is the following: insert
additional vertices representing each functional group
and ring structure identified in the molecule; connect
these new vertices to the vertices representing their

5
http://dtp.nci.nih.gov/docs/aids/aids data.html

6
http://www.cheminformatics.org/datasets/bursi

7The node label alphabet has size ≈ 90 rather than 20
as the various types of ambiguities are explicitly encoded
as additional labels.

constituent atoms; finally add a link for each pair of
new vertices when they share constituent atoms, or
when their constituent atoms share a bond. Note that
all kernel methods, capable of operating on simple con-
nected labeled graphs, can in principle benefit from
this type of domain knowledge encoding without in-
curring any algorithmic modification overhead.

3.3. Benchmarking Graph Kernels

In the following we introduce several other graph ker-
nels that will be used for benchmarking the proposed
approach. In particular we restrict our attention to
kernels that do not decompose the graph in walks
or paths as it has been shown in (Menchetti et al.,
2005) and (Shervashidze & Borgwardt, 2009) that they
tend to exhibit lower accuracy and have higher run-
times. Here we consider the Graph Fragment Kernel
(GFK) introduced in (Wale et al., 2008), the Weighted
Decomposition Kernel (WDK) by (Menchetti et al.,
2005), the Pairwise Maximum Common Subgraphs
Kernel (PMCSK) introduced in (Schietgat et al.,
2009), the Neighborhood Subgraph Kernel (NSK) sim-
ilar in spirit to the fast kernel presented in (Sher-
vashidze & Borgwardt, 2009), and the Pairwise Dis-
tance Kernel (PDK), similar to the Equal Length
Shortest-Path Kernel by (Borgwardt & Kriegel, 2005).

GFK: The GFK feature space is obtained consider-
ing all connected subgraphs up to a given maximum
number of edges. GFK differs from NSPDK as it
considers an unbiased (i.e. all possible) type of sub-
graph rather than neighborhood subgraphs. Note that
GFK induces larger explicit representations of molec-
ular graphs even when limiting the subgraph size to
relatively small values: on average more than 516 ±
381 features per molecule are generated when allow-
ing subgraphs with less than 8 edges on the NCI-60
dataset. NSPDK, in a comparable setting, generates
28 ± 9 different neighborhood subgraphs per molecule,
yielding 251 ± 143 features when considering subgraph
pairs up to maximum distance 5.

WDK: In the WDK the neighborhood of a given ra-
dius is first associated to each vertex in a graph. The
WDK is then computed as the product of an exact
matching kernel over the vertex label with a kernel over
the neighborhood edge multiset. Here the edge label
information is augmented with the endpoints labels.
Among the differences between WDK and NSPDK
there are: the single vs. pairwise subgraph approach,
and the “soft” similarity match vs. the “hard” isomor-
phism match of neighborhood subgraphs.

PMCSK: The PMCSK feature space is obtained con-
sidering the maximum common subgraph (MCS) be-
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tween all pairs of instances in the training set. The
authors show that, although the computation of the
maximum common subgraph in the general case is an
NP-hard problem, one can employ a polynomial-time
algorithm if only outerplanar graphs are considered in
combination with a special case of subgraph isomor-
phism called block-and-bridge-preserving (BBP) sub-
graph isomorphism (Schietgat et al., 2008). In addi-
tion to the pairwise vs. single subgraph approach, PM-
CSK differs from NSPDK in the specific type of sub-
graphs considered (MCSs vs. neighborhood graphs).

NSK: In the NSK the feature space is obtained consid-
ering the neighborhood subgraphs of increasing radii
up to a maximum radius r∗. The NSK features are
similar in spirit to those obtained by the circular sub-
structure approach (see Sec. 2.6).

PDK: The PDK computes the similarity between two
graphs by comparing all pairs of vertices annotated
with their pairwise distance. We consider the zero-
extension of PDK up to a maximum distance d∗. The
PDK features are similar in spirit to those obtained by
the atom pair representation approach (see Sec. 2.6).

The NSK and the PDK are special cases of NSPDK:
NSK is obtained considering the NSPDK with a maxi-
mum distance d∗ = 0 while PDK is obtained consider-
ing the NSPDK with a maximum radius r∗ = 0. The
optimal value for the remaining free parameter (r∗ for
NSK and d∗ for PDK) is experimentally determined
via cross-validation.

3.4. NSPDK Empirical Properties

We measured the size of the neighborhood graphs used
in the computation of NSPDK with radius ranging be-
tween 1 and 4 for the NCI-60 dataset, obtaining 3,
6, 10 and 13 vertices respectively (and approximately
the same values for the edge count). We observe that
NSPDK can consider significantly larger subgraphs if
compared to the GFK (7 edges) with comparable run-
times (see Section 4).

We tested whether the graph invariant proposed in
2.4 is in fact an isomorphism certificate on chemi-
cal graphs. On subgraphs extracted from the NCI-
60 dataset the answer is affirmative: we have never
found non-isomorphic graphs in the set of graphs that
received the same identifier. The exact isomorphism
test has been computed via the VFLib Graph Match-
ing Library8.

We computed the number of hash collisions when en-
coding pairs of neighborhood subgraphs at distances

8
http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html

ranging from 0 to 10, on the NCI-60 dataset: for neigh-
borhood subgraphs of radius 2 we do not have colli-
sions, for radius 3 we have 2 collisions out of 551198
unique pairs and for radius 4 we have 15 collisions out
of 667505 unique pairs. We conclude that the error in-
troduced by hashing collisions is in practice negligible.

3.5. Experimental setup

We tested the predictive performance of SVM-Light
(Joachims, 1999) by stratified 10-fold cross-validation,
keeping folds identical between kernels.

We evaluated the generalization performance of the
kernels and the augmentation method by the area
under the receiver operating characteristic (AUROC)
(the plot of the fraction of true positives versus the
fraction of false positives).

A number of parameters were optimized by inter-
nal cross-validation on the Bursi data. We allowed
each kernel to be optionally composed with a poly-
nomial kernel of degree 3, 5, or 7, or with an RBF
kernel with gamma equal to 0.1. The trade-off be-
tween training error and margin (“C”) was selected
from {1,10,100}. The maximum radius r∗ was se-
lected from {0,1,2,3,4,5}, and maximum distance d∗

from {3,4,5,6,8,10,12,14,20}. Augmented and unaug-
mented graphs were optimized separately. The most
frequently selected parameter values for each kernel as
found in Bursi were then used for the other datasets,
except for D&D where they were optimized separately
due to the different nature of the data. For D&D, only
radii up to three were considered.

All kernels were normalized before composition. The
cost factor (-j) was set to the prevalence ratio of nega-
tive to positive examples in the training set. All other
SVM-Light parameters were left at their default value.

We used a radius of 4 for the WDK, motivated by the
results on the HIV dataset by (Menchetti et al., 2005).

For GFK, we used the AFGen program of (Wale et al.,
2008) to obtain the feature vector. The maximum sub-
graph size was set to the default value of 7 edges. We
did not implement the length-differentiated min-max
kernel but rather used the same extensive kernel pa-
rameter optimization as for all other kernels. We could
not run AFGen on augmented graphs because these
exceed its hard-coded maximum node degree.

The same code, with the appropriate parameter set-
tings, has been used for the NSPDK, NSK and PDK.

PMCSK was not optimized as described above, but
used a Tanimoto kernel, no cost factor, and internally
cross-validated C values as in (Schietgat et al., 2009).
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The third degree polynomial was chosen for all kernels
except for unaugmented PDK and WDK which used
fifth degree, and augmented NSPDK which used a lin-
ear kernel. “C” was always 1 except for augmented
NSPDK where it was 10. The optimal choice for r∗

was 3, except for augmented NSK where 2 was suffi-
cient. There was some variation in the choice of d∗: 12
for unaugmented PDK, 3 for augmented PDK, 5 for
unaugmented NSPDK and 4 for augmented NSPDK.

4. Results and Discussion

In Table 1, we present an overview of the AUROC
performance for an SVM model trained with differ-
ent graph kernels over unaugmented and augmented
molecular graphs (denoted G and Ga respectively). In
the same table we indicate in boldface the methods
with highest accuracy, or not significantly worse ac-
cording to the binomial sign test at p < 0.05. We ob-
serve that the proposed NSPDK is never significantly
worse than the most accurate method. We note more-
over that NSPDK performance compares favorably
with the best results reported in (Wale et al., 2008)
(the state-of-the-art on HIV and NCI-60 to the authors
knowledge). As a side note, we report that the relative
error reduction, when using the augmented molecular
graphs vs. the unaugmented ones, varies from 5% for
PDK, to 3% for WDK, to 1% for PMCSK, NSK and
NSPDK; this result is in agreement with the intuition
that graph methods sensible to larger fragments au-
tomatically capture most of the functional group re-
lated information. The error rates of augmented NSK
and NSPDK on Bursi are about 14.5%. Unaugmented
NSPDK and augmented PMCSK achieve 15%. Since
(Kazius et al., 2005) mention that the average interlab-
oratory reproducibility error of Ames tests is 15%, one
cannot hope, on this dataset, to do much better. Re-
sults for the D&D dataset have been computed only
for NSK and NSPDK due to infeasible runtimes for
WDK and PMCSK, and unmet hard-wired constraints
on the vertex labels and degree for GFK. NSK achieved
AUROC 81.4% with radius 0 (and around 80% with
higher radii), while NSPDK achieved 85.9% with ra-
dius 1 and maximum distance 3 (85.5% with higher
radii). The runtimes for the Gram matrix computa-
tion where 7.9 · 102 and 8.2 · 102 seconds respectively.
We observe that NSPDK achieves a 30.2% error reduc-
tion over the best results reported by (Shervashidze &
Borgwardt, 2009) with comparable runtimes. In Table
2 we report the runtime required for the Gram matrix
computation for the different kernels, normalized but
not composed. Augmented molecular graphs have a
significantly larger number of vertices and edges, hence
are slower to process. The time required for augmen-

Table 2. Net CPU time of graph kernels in seconds
NCI-60 HIV PTC Bursi

# of mol. 3910 42687 417 4337
Aug. time 3.5 · 102 3.4 · 103 3.4 · 101 1.2 · 102

GFK(G) 3.5 · 101 1.4 · 104 3.1 · 100 7.3 · 101

WDK(G) 1.8 · 103 1.6 · 105 8.0 · 100 1.1 · 103

WDK(Ga) 2.3 · 103 2.3 · 105 1.4 · 101 1.5 · 103

PMCSK(G) 2.8 · 105 3.3 · 104∗ 6.2 · 102 3.5 · 105

PMCSK(G′a) 2.8 · 105 3.3 · 104∗ 6.3 · 102 3.5 · 105

PDK(G) 4.2 · 101 3.9 · 103 1.0 · 100 3.6 · 101

PDK(Ga) 7.7 · 101 4.2 · 103 2.0 · 100 5.7 · 101

NSK(G) 6.2 · 101 3.1 · 103 2.8 · 100 5.1 · 101

NSK(Ga) 3.5 · 102 6.0 · 103 1.4 · 101 2.0 · 102

NSPDK(G) 1.2 · 102 1.0 · 104 3.4 · 100 1.1 · 102

NSPDK(Ga) 4.6 · 102 1.9 · 104 1.6 · 101 2.9 · 102

∗ MCSs derived only from the 1503 CA-CM molecules.

tation is shown separately. Obviously, the augmenta-
tion step is of linear time complexity in the number
of molecules, while the Gram matrix computation is
quadratic. The programs were executed on a single
core of an Intel Core2 Quad Q9550 CPU (2.8GHz),
except for the HIV dataset which was run on an Intel
Xeon E5420 CPU (2.5GHz) due to 64-bit support of
the operating system.

We observe that: 1) the runtime for the WDK
neighborhood soft matching is one order of magni-
tude higher than the graph invariant identity test for
NSPDK; 2) the runtime for extracting and matching
maximum common subgraphs for all pairs of molecules
in PMCSK is three orders of magnitude higher than
the graph invariant extraction and identity test for
NSPDK; 3) runtimes for random walk kernels and tree
kernels are, as reported in (Shervashidze & Borgwardt,
2009), five to six orders of magnitude higher (esti-
mated on two NCI datasets) than for NSPDK.

5. Conclusions

In this paper we presented a novel fast graph kernel
based on exact matching between pairs of small sub-
graphs. Empirical results confirm the intuition that
using relatively large fragments in a pairwise fashion
improves generalization performance on a wide range
of bio- and chemoinformatics tasks. Moreover, the use
of fast graph invariant procedures allows a speed-up
of several orders of magnitude for Gram matrix com-
putations when compared with kernels based on soft
matching or more complex subgraph definition.

The source code of the kernel can be obtained from
http://dtai.cs.kuleuven.be/ml/systems.

http://dtai.cs.kuleuven.be/ml/systems
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Table 1. Generalization performance of kernels on unaugmented and augmented molecular graphs
NCI-60 HIV HIV HIV PTC Bursi

(avg.) CA vs. CM CACM vs. CI CA vs. CI (avg.)

AUROC (%)
GFK(G) 77.8 ± 2.3 82.0 ± 4.7 82.8 ± 1.9 93.9 ± 2.6 62.6 ± 10 89.6 ± 0.3
WDK(G) 71.1 ± 2.4 83.1 ± 4.3 82.9 ± 1.8 94.0 ± 3.4 62.1 ± 7.7 88.0 ± 0.4
WDK(Ga) 80.0 ± 2.3 84.2 ± 4.3 83.9 ± 1.7 95.0 ± 2.7 65.1 ± 8.7 90.8 ± 0.2
PMCSK(G) 79.6 ± 2.2 82.6 ± 6.2 81.8 ± 2.2 93.0 ± 3.7 64.5 ± 8.8 90.5 ± 1.3
PMCSK(G′a) 80.3 ± 2.2 82.8 ± 6.2 83.2 ± 2.1 93.4 ± 3.4 65.6 ± 8.8 91.5 ± 1.1
PDK(G) 73.4 ± 2.6 81.6 ± 4.6 77.7 ± 1.9 92.6 ± 3.2 61.2 ± 9.7 82.7 ± 0.3
PDK(Ga) 77.8 ± 2.4 82.1 ± 4.2 83.4 ± 2.1 94.5 ± 2.4 64.6 ± 9.9 89.3 ± 0.3
NSK(G) 79.1 ± 2.2 84.2 ± 4.9 84.3 ± 2.0 95.3 ± 1.5 67.4 ± 9.4 91.6 ± 0.2
NSK(Ga) 79.4 ± 2.2 84.4 ± 4.5 84.1 ± 2.2 94.9 ± 2.1 67.1 ± 9.3 91.8 ± 0.2
NSPDK(G) 79.5 ± 2.2 83.9 ± 5.6 83.8 ± 2.1 95.6 ± 1.3 69.3 ± 9.5 91.7 ± 0.3
NSPDK(Ga) 80.1 ± 2.2 84.1 ± 4.8 84.9 ± 2.1 95.1 ± 2.0 68.9 ± 9.8 92.0 ± 0.2
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