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Abstract

Many learning applications are characterized
by high dimensions. Usually not all of these
dimensions are relevant and some are redun-
dant. There are two main approaches to re-
duce dimensionality: feature selection and
feature transformation. When one wishes to
keep the original meaning of the features, fea-
ture selection is desired. Feature selection
and transformation are typically presented
separately. In this paper, we introduce a gen-
eral approach for converting transformation-
based methods to feature selection methods
through �1/�∞ regularization. Instead of
solving feature selection as a discrete opti-
mization, we relax and formulate the prob-
lem as a continuous optimization problem.
An additional advantage of our formulation
is that our optimization criterion optimizes
for feature relevance and redundancy removal
automatically. Here, we illustrate how our
approach can be utilized to convert linear dis-
criminant analysis (LDA) and the dimension-
ality reduction version of the Hilbert-Schmidt
Independence Criterion (HSIC) to two new
feature selection algorithms. Experiments
show that our new feature selection meth-
ods out-perform related state-of-the-art fea-
ture selection approaches.

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

1. Introduction

Many applications are characterized by high-
dimensional data, where not all of the features are
important. Dimensionality reduction can be achieved
either by feature selection or transformation to a low
dimensional space. Feature selection also known as
variable selection is the problem of selecting a subset
of the original features. In contrast to transformation-
based methods which allow modification of the input
features to a new feature space; in feature selection,
the original representation of the variables is not
changed. Feature selection is typically preferred over
transformation when one wishes to keep the original
meaning of the features and wishes to determine
which of those features are important. Moreover, once
features are selected, only these features need to be
calculated or collected; whereas, in transformation-
based methods all input features are still needed to
obtain the reduced dimension.

Feature selection algorithms (Kohavi & John, 1997;
Guyon & Elisseeff, 2003; Yu & Liu, 2004) can be or-
ganized into three main families: filter, wrapper,
and embedded methods. These three basic fami-
lies differ in how the learning algorithm is incorpo-
rated in evaluating and selecting features. In fil-
ter methods (Kira & Rendell, 1992; Yu & Liu, 2004;
Peng et al., 2005; He et al., 2006; Zhao & Liu., 2007;
Song et al., 2007), features are pre-selected without
running the learning algorithm and are evaluated only
through the intrinsic properties of the data. Wrapper
methods (Kohavi & John, 1997; Guyon et al., 2002)
select features by “wrapping” the search around
the learning algorithm and evaluate feature subsets
based on the learning performance of the classifier
in each candidate feature subset. Embedded meth-
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ods (Vapnik, 1998; Zhu et al., 2003) incorporate fea-
ture search and the learning algorithm (e.g., classifier)
into a single optimization problem formulation. Con-
trary to filter methods, wrapper and embedded meth-
ods select features specific to the classifier. Hence,
they are most likely to be more accurate than filter
methods on a particular classifier, but the features
they choose may not be appropriate for other clas-
sifiers. Another limitation of wrapper methods is that
wrappers are computationally expensive because they
need to train and test the classifier for each feature
subset candidate, which can be prohibitive when work-
ing with high-dimensional data (such as text, image,
gene). Thus, the recent interest in developing fast filter
methods (Yu & Liu, 2004; Peng et al., 2005; He et al.,
2006; Zhao & Liu., 2007; Song et al., 2007).

Filter methods evaluate features based on some cri-
terion. The goal is to select a subset of features
that optimizes this criterion. An exhaustive search
of 2d possible feature subsets (where d is the number
of features) is computationally impractical. Heuristic
search strategies such as greedy approaches (e.g., se-
quential forward/backward search (Kittler, 1978)) are
commonly used (Song et al., 2007) but can lead to
local optima. Random search methods, such as ge-
netic algorithms, add some randomness in the search
procedure to help escape from local optima. Exhaus-
tive, greedy and random searches are subset search
methods because they evaluate each candidate sub-
set. In some cases when the dimensionality is very
high, one can only afford an individual search. In-
dividual search methods evaluate each feature indi-
vidually according to a criterion (Guyon & Elisseeff,
2003; He et al., 2006; Zhao & Liu., 2007). They then
select features, which either satisfy a condition or are
top-ranked. The problem with individual search tech-
niques is that they ignore feature interaction and de-
pendencies. In (Yu & Liu, 2004), they select relevant
features individually and then add a separate redun-
dancy removal step to account for linear correlation
between features.

Feature selection is an NP-hard optimization prob-
lem over a discrete space. Transformation-based di-
mensionality reduction methods, on the other hand, is
as an optimization problem over a continuous feature
space. Inspired by shrinkage techniques (Tibshirani,
1996; Yuan & Lin, 2006; Donoho, 2004), instead of
solving feature selection as a discrete optimization, we
relax and formulate the problem as a continuous opti-
mization problem. However, contrary to least absolute
shrinkage and selection operator (LASSO) (Tibshirani,
1996; Yuan & Lin, 2006) where variable selection
is based on regression, our approach is based on

transformation-based dimensionality reduction crite-
ria. Research on feature selection and transforma-
tion methods are typically presented separately. In
this paper, we show a general approach for con-
verting transformation-based methods to filter fea-
ture selection methods; thereby, inheriting the rich
source of transformation dimensionality reduction al-
gorithms in the literature. In feature selection, it is
important to select relevant features and to remove
the redundant ones (Kohavi & John, 1997; Yu & Liu,
2004; Peng et al., 2005). Another benefit of our fea-
ture selection based on transformation approach is
that we optimize both simultaneously in our for-
mulation. Although the formulation in this paper
can be applied to either supervised or unsupervised
transformation methods, due to clarity and space
limitation reasons, we focus this paper to the su-
pervised case. Extension to the unsupervised case
will be explored in an extended version of this pa-
per. More specifically, we show how our approach
can be utilized to convert linear discriminant anal-
ysis (LDA) (Fukunaga, 1990) and the dimensional-
ity reduction version of the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) (Gretton et al., 2005) to two
new continuous filter feature selection algorithms, we
call linear discriminant feature selection (LDFS) and
Hilbert-Schmidt feature selection (HSFS) respectively.

This paper is organized as follows. In Section 2,
we provide our general formulation for converting
transformation-based dimensionality reduction algo-
rithms to do feature selection. In Section 3, we de-
scribe how to optimize our general formulation. Then,
in Section 4, we show how to build a feature selec-
tion algorithm with a linear transformation-based al-
gorithm, in particular LDA, using our formulation;
and, in Section 5, we illustrate our formulation on a
non-linear HSIC criterion. We report and discuss our
experimental results in Section 6. Finally, we summa-
rize and conclude in Section 7.

2. Transformation-Based Feature
Selection

In this work, we propose a general approach for trans-
lating transformation-based dimensionality reduction
methods to solve the feature selection problem. Let
the original data be X = [x1,x2, . . . ,xn]T with n sam-
ples and each sample xi ∈ R

d, where X is an n × d
matrix. Transformation-based methods can be either
linear or non-linear.

In linear transformation-based methods (such as,
LDA), the goal is to find a transformation matrix,
W = [w1,w2, . . . ,wq] ∈ R

d×q to transform the origi-
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nal high-dimensional data xi into a lower-dimensional
form yi ∈ R

q, where q � d, yi = WT xi. W is selected
such that some criterion, J (XW ) is optimized.

In general non-linear transformation-based methods
(such as, kernel LDA (Mika et al., 1999)), the goal is
to find a non-linear mapping to a lower-dimensional
yi ∈ R

q, yi = Φ(xi) that optimizes some criterion
J (Φ(X)). We do not operate directly on these types of
transformation, instead we work on subspace versions
of these algorithms. The idea is to find a lower di-
mensional central subspace of X (XW ) that captures
the same information with respect to the target as
that of the full dimensional X. This can be expressed
as finding W that optimizes a criterion of the form
J (Φ(XW )). An example of a central subspace method
is kernel dimensionality reduction (Fukumizu et al.,
2004). The advantage of working on the central sub-
space is that the data may contain dimensions irrele-
vant to the task, applying Φ(XW ) avoids those noisy
subspaces. The other reason is that the projection W
operates on are the original features X rather than
on the non-linearly transformed features Φ(X), which
makes it more amenable for interpreting which of the
original features are important.

General Formulation. To explain our general for-
mulation, we find it useful to define dataXn×d in terms
of its features (columns), fj , as well as its samples
(rows), xi, X = [x1,x2, . . . ,xn]T = [f1, f2, . . . , fd]. In
feature selection, it is important to have information
about the original data space. Let W be a transfor-
mation matrix of size d × q (in our experiments, we
set q = d). Given a transformation dimensionality
reduction method with criterion J (XW ), to perform
feature selection, we optimize the following modified
criterion with respect to W :

min
W∈Rd×q

J (XW ) + λ
d∑

j=1

||wj ||∞, (1)

where wj is the j-th row of matrix W and ||wj ||∞
stands for the infinity norm of wj , and λ is a regular-
ization parameter.

To understand why this optimization formulation
leads to a feature selection solution, let us first de-
scribe how the structure of W should be to achieve
feature selection. Let wjk be the elements of trans-
formation matrix W . If feature fj is not selected by
the algorithm, all the elements of the the j-th row of
W should be zero, ∀k,wjk = 0. Thus, feature fj , the
j-th column of X will not contribute to the criterion
J (XW ). If feature fj is selected by the algorithm, it
means that at least one of the elements of the j-th

row of W is nonzero for the feature fj to contribute to
the criterion, J (XW ). Therefore, forcing W to have
more zero rows can be interpreted as selecting less fea-
tures. Using this idea, we enforce sparsity on the rows
of W by adding an �1/�∞ regularization term to our
criterion J (XW ). �∞ norm of a vector wj is the max-
imum of the absolute value of the elements of wj . The
�1 norm induces sparsity (Tibshirani, 1996; Donoho,
2004). Basically, we are inducing sparsity on the max-
imum absolute value (the bounding hypercube) of the
elements of each row; thereby, pushing all the elements
of each row to zero.

Sparse dimensionality reduction methods, such as
sparse principal component analysis (Zou et al., 2006)
and sparse LDA (Moghaddam et al., 2006), only ap-
ply an �1 norm regularization on W . This would set
individual sparsity on the elements of W but would
not necessarily achieve feature selection. In order to
impose sparsity on W and reach the desired config-
uration to decide what features to keep, an �1/�∞ is
added where λ is a regularization coefficient. In gen-
eral, one can set the regularizer term to be in the form
of �1/�p with 1 ≤ p ≤ ∞. Choosing p = 1 would
result in individual sparsity patterns for each row of
W . In the case of using transformation matrix W as
a means for feature selection, however, we need to
push for all-zero rows in W to decide to remove the
corresponding features. Therefore, having individual
sparsity patterns for each row is not suitable. Increas-
ing p increases the sparsity sharing between the ele-
ments in each row. Because we need the zeros to be
shared for elements in each row of W corresponding to
a specific feature, we set our regularizer to be p = ∞,
which promises full sharing of the elements. The gen-
eral combination of norms �m/�p type of regularizer
is a case of block-norm regularization, such as Grou-
pLASSO (Yuan & Lin, 2006). However, our focus is
different from their’s in the sense that they are con-
cerned with grouping predictor variables in regression,
whereas our focus is to group the coefficients of rows
in a transformation matrix.

LASSO (Tibshirani, 1996) selects variables by adding
an �1 norm regularizer on the predictor weights. Un-
like LASSO, our formulation learns a transformation
matrix W that can create q new features that op-
timizes a criterion. However, unlike transformation
methods, W only has nonzero weights on the selected
original features (rows); thus, performing feature selec-
tion. Interestingly, assuming the same objective crite-
rion, a LASSO-type or �1 penalty is a degenerate ver-
sion of our formulation which selects the input features
for generating only one new feature (i.e., q = 1) that
optimizes the objective.
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The regularization parameter λ controls the trade-off
between the criterion J (XW ) and sparsity. Increas-
ing λ means forcing more rows to be zero which will
result in removing more features. The extreme case,
where λ = 0, results in selecting all of the features.
Conversely, for very large λ, no features are selected
(W ≡ 0). Therefore, ranging λ from zero to infinity
can be interpreted as ranging the number of selected
features from d to zero.

To solve the feature selection problem, it is important
to find the most relevant features and remove redun-
dancy. Note that feature selection can also be achieved
by simply limiting W of size d × d to be a diagonal
matrix and adding an �1 norm penalty. However, this
does not take redundancy among the features into ac-
count. The formulation we provide is more general.
The diagonal W case can be derived from our gen-
eral formulation as a special case. Moreover, by allow-
ing the off-diagonal elements of W to be nonzero, we
do not only select the features but also learn the lin-
ear transformations using only these features that can
lead to the optimal criterion value. We thus consider
interactions among the features into account in this
way. Our formulation also automatically removes re-
dundancy. Since we consider the criterion value of the
linear subspace in which our selected features reside,
features that are correlated to the selected features
will not decrease J (XW ) but will increase the �1/�∞
norm, thereby these redundant features are automat-
ically removed. Our general formulation thus takes
both feature relevance and redundancy into account.

3. Optimization Algorithm

To optimize for the �∞ norm, we utilize a vector of
dummy variables, s = [sj ] to represent the maximum
absolute value of the elements of rows wj , j = 1, . . . , d.
This means that the absolute value of every element in
row j, |wjk| should be smaller than or equal to sj and
that all sj should be non-negative. Hence, Formulation
(1) can be rewritten as the following formulation:

min
W,s

J (XW ) + λ

d∑
j=1

sj

s.t. |wjk| ≤ sj ,
sj ≥ 0,∀j, k

(2)

This is equivalent to finding a solution to the following
linear constraint problem:

min
W,s

J (XW ) + λ

d∑
j=1

sj

s.t. −sj ≤ wjk ≤ sj

sj ≥ 0,∀j, k

(3)

which we solved using a Quasi-Newton method as im-
plemented in Mark Schmidt’s optimization toolbox.1

We used part of the toolbox that implements a two-
metric projection method for optimization with box
constraints, where limited-memory BFGS (L-BFGS
(Nocedal & Wright, 2003)) updates are used (no Hes-
sian information required) in computing the step di-
rection, and a backtracking line search is used to find
a step satisfying an Armijo condition that guaranties
improvement at every iteration. Since computing and
storing the Hessian are both computationally expen-
sive, the L-BFGS algorithm is a good candidate to
do the optimization, avoiding high computational cost
while achieving super-linear convergence. The algo-
rithm only needs the value of the function and its
derivative at each point to approximate the Hessian
(via low-rank updates) and to find the updates of the
solution at each iteration.

4. Linear Discriminant Feature
Selection

A popular supervised dimensionality reduction
method is linear discriminant analysis (LDA)
(Fukunaga, 1990). LDA finds the optimal linear
transformation W , which minimizes the within-class
distance and maximizes the between-class distance
simultaneously. The criterion J (XW ) it optimizes is:

J (XW ) = −LDA(XW ) = −WTSBW

WTSWW
(4)

where SB is the between class scatter matrix and SW

is the within class scatter defined by:

SB =
∑

c

(µc − x̄)(µc − x̄)T

SW =
∑

c

∑
xi∈c

(xi − µc)(xi − µc)T (5)

in which x̄ is the mean of the data points X, and µc

is the mean of the data points that belongs to class c.

Plugging −LDA(XW ) to Formulation (3), we intro-
duce a new convex feature selection algorithm, Linear
Discriminant Feature Selection(LDFS) based on LDA:

min
W∈Rd×q

−WTSBW

WTSWW
+ λ

d∑
j=1

||wj ||∞ (6)

Since we only need J (XW ) and its gradient to opti-
mize using the two-metric projection L-BFGS method,

1http://www.cs.ubc.ca/∼schmidtm/Software/minFunc
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here we show the expansion of ∇J (XW ).

∇J (XW ) = −2
SBW

WTSWW
+ (

SWW

WTSWW
)
WTSBW

WTSWW
(7)

5. Hilbert-Schmidt Feature Selection

In this second example, we show how a non-linear di-
mensionality reduction based on the central subspace
can be converted to a feature selection algorithm. In
particular, we apply it to the Hilbert-Schmidt Inde-
pendence Criterion (HSIC). Recently, (Gretton et al.,
2005) suggest a way for measuring dependence be-
tween variables without explicitly estimating the joint
distribution of the random variables. They measure
dependence by mapping variables in reproducing ker-
nel Hilbert spaces (RKHS) to test high order moments
which enables them to measure the non-linear depen-
dence between variables without the need for knowing
the probability distributions of these variables. HSIC
is a criterion that belongs to this class of dependence
criterion. This criterion is based on a cross-covariance
operator on RKHS to test for dependence.

We define a mapping φ(x) ∈ F from every x in the
sample domain, X , to the RKHS F . F is called an
RKHS if the inner product of the mappings of the
data points can be represented by a kernel function,
k(x, xT ) :=

〈
φ(x), φ(xT )

〉
. Another RKHS, G, can be

defined on another data space, Y, similarly with the
mapping ψ(y). To represent the dependency between
the two introduced domains, a cross-covariance oper-
ator is defined as

C(x, y) = Exy[(φ(x) − µx) ⊗ (ψ(y) − µy)]

where ⊗ is the tensor product. The HSIC criterion is
defined as the square of the Hilbert-Schmidt norm of
C(x, y), HSIC(Px,y,F ,G) = ||Cxy||2HS .

However, we do not have the distribution Px,y. Given
n observations Z := {(x1, y1), ..., (xn, yn)} from Px,y,
HSIC can be empirically estimated as:

HSIC2(Z,F ,G) :=
1
n2
tr(KHLH)

s.t.
H,K,L ∈ Rn×n,
Kij := k(xi, xj), Lij := l(yi, yj)
H = I − 1

n1n1T
n .

(8)

For simplicity, let us use the notation HSIC(X,Y ) =
HSIC2(Z,F ,G). Here, we use −HSIC(XW,Y ) as
J (XW,Y ) to measure the dependency between the

transformed X and class labels, Y . The Hilbert-
Schmidt Feature Selection (HSFS) objective is now:

min
W∈Rd×q

−HSIC(XW,Y ) + λ

d∑
j=1

||wj ||∞ (9)

In this paper, we use a Gaussian kernel as the kernel
function in HSIC. The kernel function in the projected
space is then, kij = exp[ −1

2σ2 wT
l Rijwl], where Rij =

(xi − xj)(xi − xj)T , where xi is the i-th observation
and wl is a row of the W matrix. Next, we explicity
show the derivatives needed to solve Formulation (9)
using the two-metric projection L-BFGS method. The
gradient of J (XW,Y ) is:

∇J (XW,Y ) = − 1
n2

∂tr(KHLH)
∂W

= − 1
n2

[
∂tr(KHLH)

∂w1
. . .

∂tr(KHLH)
∂wk

] (10)

The derivative with respect to each row is:

∂tr(KHLH)
∂wl

= vec(HLH)
( ∂K
∂wl

)T (11)

where ∂K
∂wl

=
[

∂k11
∂wl

. . . ∂k1n

∂wl

∂k21
∂wl

. . . ∂knn

∂wl

]
. For a Gaus-

sian kernel, the derivative with respect to wl is ∂kij

∂wl
=

−kij

σ2 wT
l R,∀i, j.

Note that we use HSIC as the example here, rather
than KDR (Fukumizu et al., 2004), which belongs to
the same family as HSIC because the HSIC crite-
rion has been applied to perform feature selection in
(Song et al., 2007). However, they applied heuristic
greedy search techniques, sequential forward and back-
ward search as the search technique. Here, we have a
filter method which uses the same criterion, considers
the whole set of features and does the feature selection
as a relaxed continuous optimization problem. We can
thus compare the performance of our formulation as a
search technique compared to sequential search using
the same criterion.

6. Experiments

In this section, we evaluate the performance of our
two new feature selection algorithms, LDFS (LDA-
�1/�∞) and HSFS (HSIC-�1/�∞), compared to the
following state-of-the-art feature selection algorithms:
FOHSIC (Song et al., 2007) which applies sequential
forward search with the HSIC criterion, Support Vec-
tor Machine (SVM) Recursive Feature Elimination
(RFE) (Guyon et al., 2002) which is a wrapper fea-
ture selection method around an SVM classifier with
backward elimination where features with the lowest
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Table 1. 5-fold Cross-Validated Classification Errors on Real Data
wine glass arcene gisette dexter madelon

Num. of original features 13 10 10000 5000 20000 500
Num. of selected features 2 2 10 6 20 10
HSFS (HSIC-�1/�∞) 4.58 24.8 11.99 14.97 26.54 24.72
FOHSIC 4.96 25.11 13.56 21.11 29.93 26.55
�1-SVM 6.89 41.3 23.52 21.15 35.23 35.22
SVM-RFE 8.94 45.32 23.76 18.73 35.08 39.92
Relief 8.98 48.93 21.94 19.92 42.9 33.42
LDFS (LDA-�1/�∞) 8.96 47.93 22.11 37.22 43.85 34.74
LS 9.24 52.26 28.49 46.86 45.55 37.22

SVM squared weights are recursively eliminated, �1-
SVM (Zhu et al., 2003) which is an embedded sparse
method that performs feature selection by utilizing an
�1 regularizer on a linear SVM formulation rather than
the standard �2 margin, Relief (Kira & Rendell, 1992)
which is a filter feature selection method that eval-
uates features based on how well the feature differ-
entiates between neighboring instances from different
classes versus from the same class, and the Lapla-
cian score (LS) (He et al., 2006) which is an indi-
vidual search-based filter feature selection approach
that utilizes the Fisher criterion. The algorithms were
implemented using the Spider machine learning tool-
box.2 We ran experiments on six data sets: glass,
wine, Arcene, Gisette, Dexter and Madelon. Glass
and wine are small data sets from the UCI reposi-
tory (Blake & Merz, 1998); Arcene with 10, 000 fea-
tures, Gisette with 5, 000, Dexter with 20, 000 and
Madelon with 500 features are from the NIPS 2003 fea-
ture selection challenge.3 These data sets provide us
with a wide range of feature dimensions. For datasets
with more than 1000 samples, we randomly subsam-
pled 1000 instances.

We compare the results of HSFS and LDFS versus
the other methods by showing plots of 5-fold cross-
validated errors when using a SVM classifier with the
features selected by these methods versus the number
of selected features in Figures 1 to 5. We ran SVM
with a Gaussian kernel with width 1 using LIBSVM.4

The SVM regularization parameter is tuned via cross-
validation. For our methods, we control the number of
selected features through λ. Since λ is the parameter
that tunes the sparsity of W and therefore the number
of selected features, in our algorithm λ is increased un-
til the desired number of rows of W (i.e., the number
of discarded features) are close to zero (the maximum

2http://www.kyb.tuebingen.mpg.de/bs/people/spider
3http://www.nipsfsc.ecs.soton.ac.uk/datasets/
4http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

value of the row is less than 0.01). We also provide
a “snap shot” of these errors in Table 1 by reporting
the 5-fold cross-validated errors for a fixed number of
selected features. The total number of features and
number of selected features for every data set is also
included in the table. For every dataset, the best per-
forming algorithm is highlighted in bold font.

These results show that the proposed HSFS algorithm
is consistently the best in all cases. It is followed
by FOHSIC which optimizes the same HSIC criterion
but utilizes a greedy sequential forward search strat-
egy. Notice in Figures 3 and 4, as a greedy strat-
egy, FOHSIC did better than HSFS for 4 features, but
then performed worse than HSFS later when we keep
more features (6 to 10). RELIEF, SVM-RFE and �1-
SVM performed worse than the two HSIC-based meth-
ods. The Laplacian score optimizes the same crite-
rion as LDA. Since the LDA criterion only captures
linear discriminant relationships, whereas HSIC can
capture nonlinear dependencies with the class labels,
the performance of the LDA-based methods (LDFS
and Laplacian score) are poorer compared to the two
HSIC-based methods. However, comparing the two
LDA-based feature selection approaches, the proposed
LDFS method performs consistently much better than
its counterpart, the Laplacian score. The reason is
that in the Laplacian score algorithm, features are
ranked one by one neglecting the relation between the
sets of features; but in LDFS, the interactions among
the whole set of features are considered. LDFS takes
both feature relevance and redundancy into account.

Time Complexity. Our formulation optimizes for
W which has d2 parameters, where d is the number of
original features. The computational complexity of an
iteration for the quasi-Newton method we are using is
O(m2), (with superlinear convergence) where m is the
number of parameters. The computational complexity
of our HSFS method is thus O(d4). However, in gen-
eral we can set W to be d × q, where q << d, which
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Figure 1. 5-fold cross-validated error as a function of the
number of features selected for the Glass data.
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Figure 2. 5-fold cross-validated error as a function of the
number of features selected for the Wine data.
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Figure 3. 5-fold cross-validated error as a function of the
number of features selected for the Arcene data.

leads to a reduced complexity O(d2q2). In compari-
son, FOHSIC has computational complexity O(d3n2),
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Figure 4. 5-fold cross-validated error as a function of the
number of features selected for the Gisette data.
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Figure 5. 5-fold cross-validated error as a function of the
number of features selected for the Madelon data.

where n is the number of samples.

7. Conclusion

Feature selection is an NP-hard combinatorial opti-
mization problem, whereas feature transformation is
an optimization over continuous space. In this pa-
per, we relaxed the feature selection problem into a
continuous optimization problem and showed how to
convert a general transformation-based dimensionality
reduction algorithm into a feature selection formula-
tion. In particular, we showed how our formulation
can be utilized to convert linear discriminant analysis
(LDA) (Fukunaga, 1990) and the dimensionality re-
duction version of the Hilbert-Schmidt Independence
Criterion (HSIC) (Gretton et al., 2005) to two new
continuous filter feature selection algorithms. Experi-
ments on real data show that our continuous optimiza-
tion formulation led to better performance compared
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to their discrete search counterparts. Moreover, the
ability of our approach to optimize for both relevance
and redundancy removal simultaneously, enabled it
to outperform competing feature selection methods.
Note that the formulation in this paper can be applied
to either supervised or unsupervised transformation
methods. Because of space limitations, we focused this
paper to the supervised case. In (Masaeli et al., 2010),
we show how this can be applied to principal compo-
nent analysis. We will explore other unsupervised di-
mensionality reduction methods in a future extension
of this work.
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