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Abstract

Most existing algorithms for clinical risk
stratification rely on labeled training data.
Collecting this data is challenging for clin-
ical conditions where only a small percent-
age of patients experience adverse outcomes.
We propose an unsupervised anomaly detec-
tion approach to risk stratify patients with-
out the need of positively and negatively la-
beled training examples. High-risk patients
are identified without any expert knowledge
using a minimum enclosing ball to find cases
that lie in sparse regions of the feature space.
When evaluated on data from patients ad-
mitted with acute coronary syndrome and on
patients undergoing inpatient surgical pro-
cedures, our approach successfully identi-
fied individuals at increased risk of adverse
endpoints in both populations. In some
cases, unsupervised anomaly detection out-
performed other machine learning methods
that used additional knowledge in the form
of labeled examples.

1. Introduction

For many clinical conditions, patients experiencing ad-
verse outcomes represent a small minority in the popu-
lation. For example, the rate of cardiovascular mortal-
ity over a 90 day period following acute coronary syn-
drome (ACS) was found to be less than 2% in both the
SYMPHONY and DISPERSE2 trials (Newby et al.,
2003; Cannon et al., 2007). The corresponding rate
of myocardial infarction in these trials was below 6%.
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A similar case exists for patients undergoing surgical
procedures. The rate of many important clinical com-
plications, ranging from coma to bleeding, was well
below 1% in the National Surgical Quality Improve-
ments Program (NSQIP) data sampled at over 100
hospital sites (Khuri et al., 1998; Khuri, 2005). Less
than 2% of the patients undergoing general surgery at
these sites died in the 30 days following the procedure.

Identifying patients at risk of adverse outcomes in
such a setting is challenging because most existing
algorithms for clinical risk stratification rely on the
availability of positively and negatively labeled train-
ing data. For outcomes that are rare, using these al-
gorithms requires collecting data from a large num-
ber of patients to capture a sufficient number of pos-
itive examples for training. This process of collecting
data from a large number of subjects is slow, expen-
sive, and often burdens caregivers and patients. The
costs and complexity of extensive, expertly-labeled
data points have impeded the spread of even well val-
idated and effective health care quality interventions
(Schilling et al., 2008).

We address this issue by proposing an unsupervised
anomaly detection-based approach to risk stratify pa-
tients without the need for labeled training examples.
Our hypothesis is that patients at high risk of adverse
outcomes can be detected as anomalies in a popula-
tion. In the absence of any expert knowledge, we use a
minimum enclosing ball (MEB) to find patients that lie
in sparse regions of the feature space. We demonstrate
the utility of this approach on data from over 4,000
patients admitted following ACS and from over 18,000
patients undergoing inpatient surgical procedures. In
both cases, the MEB-based approach was able to suc-
cessfully identify patients at increased risk of adverse
events. In some cases, unsupervised anomaly detec-
tion even outperformed other machine learning meth-
ods using additional knowledge in the form of labeled
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examples.

The main contributions of this paper are: (1) we
present the hypothesis that patients at risk of many
different future conditions can be discovered in a uni-
form manner as anomalies in a population, (2) we de-
scribe a risk stratification approach based on this hy-
pothesis that is unsupervised and can be used to prog-
nosticate patients for rare clinical outcomes, (3) we
provide a detailed set of experimental results from two
real-world applications and a variety of different ad-
verse outcomes to rigorously evaluate the clinical util-
ity of unsupervised anomaly detection, and (4) we con-
trast risk stratification for future adverse outcomes us-
ing anomaly detection with supervised machine learn-
ing methods applied to the same data.

2. Related Work

An extensive literature exists on the application of
machine learning to prognosticate patients for adverse
outcomes. Most of the existing work in this area relies
on the availability of positively and negatively labeled
examples for training. In contrast to these methods,
which attempt to develop models for individual dis-
eases, we focus on an unsupervised anomaly detection
approach to identify high-risk patients. The hypothe-
sis underlying our work is that patients who differ the
most from other patients in a population are likely to
be at an increased risk of adverse outcomes.

Anomaly detection has been studied in the broad
context of medicine in earlier work. Hauskrecht et
al. (2007) described a probabilistic anomaly detection
method to detect unusual patient-management pat-
terns and identify decisions that are highly unusual
with respect to patients with the same or similar con-
ditions. More closely related to our research are efforts
to use anomaly detection to evaluate patient data. For
example, Tarassenko et al. (1995) applied novelty de-
tection to the detection of masses in mammograms,
Campbell et al. (2001) to blood samples, Roberts
et al. (1994) to electroencephalographic signals, and
Laurikkala et al. (2000) to vestibular data.

We supplement these efforts by developing and evalu-
ating the use of unsupervised anomaly detection more
broadly for clinical risk stratification. In contrast to
previous work focusing on detecting existing disease,
our research uses anomaly detection to identify pa-
tients at increased risk of adverse future outcomes. In
addition, while most earlier research focuses on a spe-
cific clinical condition, we explore the more general
idea of identifying patients at increased risk of many
different adverse outcomes using a uniform approach

where patients are compared with the rest of the pop-
ulation.

We develop and evaluate our MEB-based approach us-
ing larger datasets than any of the earlier studies we
found in the literature (both in the number of patients
and the different clinical conditions studied). As part
of this evaluation, we also include a comparison of our
work to other machine learning methods that use ad-
ditional information in the form of historical patient
labels. This comparison is intended to provide insight
into the extent to which unsupervised anomaly detec-
tion can achieve the accuracy possible with supervised
approaches that require large volumes of training data
to be collected with examples of rare events.

3. Methods

3.1. Finding the Minimum Enclosing Ball

Given the normalized feature vectors xi for patients
i = 1, ..., n, we identify anomalies by first learning the
minimum volume hypersphere that encloses the data
for all patients, i.e., the MEB (Tax & Duin, 2004).
This task can be formulated as minimizing the error
function:

F (R,a, ξi) = R2 + C
∑
i

ξi (1)

over R,a, ξi subject to the constraints:

∥xi − a∥2 ≤ R2 + ξi, ξi ≥ 0, ∀i (2)

where a is the center and R is the radius of the MEB.
The slack variables ξi ≥ 0 account for errors corre-
sponding to outliers in the data that do not fit within
the radius R of the MEB. The parameter C controls
the trade-off between the volume of the MEB and the
number of errors.

The dual of the MEB problem is given by:

L(R,a, αi, γi, ξi) = R2 + C
∑
i

ξi

+
∑
i

αi(∥xi∥2 − 2a · xi + ∥a∥2)

−
∑
i

αi(R
2 + ξi)−

∑
i

γiξi (3)

where αi ≥ 0 and γi ≥ 0 correspond to the Lagrange
multipliers. L is minimized with respect to R,a, ξi
and maximized with respect to αi and γi. This can be
simplified to:
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L =
∑
i

αi(xi · xi)−
∑
i,j

αiαj(xi · xi) (4)

subject to the constraints:

0 ≤ αi ≤ C (5)

The inner products in Equation 4 can be replaced
by a kernel function to obtain a more flexible data
description than a rigid hypersphere (Vapnik, 1998).
In our work, we use the Gaussian kernel function
K(xi, xj) = exp(−∥xi − xj∥2/2s2), which is indepen-
dent of the position of the dataset with respect to the
origin, and only depends on the distances between ob-
jects.

3.2. Identifying Anomalies in the Population

To test if patient k is an anomaly in the population,
we compare the distance from the feature vector xk

to the center of the hypersphere a. The patient is
declared to be an anomaly in the population if xk has
a distance that is greater than the radius R of the
MEB (Tax & Duin, 2004):

∥xk − a∥ = (xk · xk)− 2
∑
i

αi(xk · xi)

+
∑
i,j

αiαj(xi · xj) > R2 (6)

Consistent with the discussion in Section 3.1, we re-
place the inner product in Equation 6 with the Gaus-
sian kernel function. This leads to the patient k being
declared an anomaly if:

∑
i

αi exp(
−∥xk − xi∥2

2s2
) ≥ −R2/2 + C (7)

While Equation 7 can be used to assign binary labels
to patients by categorizing them as anomalies or non-
anomalies, the distance of each patient’s feature vec-
tor from the center of the MEB can also be used as
a continuous anomaly score. In our work, we favor
this approach, since it allows for a more fine-grained
assessment of patient risk.

4. Evaluation

We evaluated our MEB-based unsupervised anomaly
detection scheme on two separate datasets.

We used data from 4,189 patients in the MERLIN trial
(Scirica et al., 2007), who were admitted to a hospital
with non-ST-elevation ACS. The endpoint of sudden
cardiac death was adjudicated by a blinded Clinical
Events Committee for a median follow-up of 348 days
following the index event. During the follow-up period
77 sudden cardiac deaths occurred.

We also used data from the American College of
Surgery NSQIP (Khuri et al., 1998; Khuri, 2005) for
18,248 patients undergoing inpatient surgical proce-
dures in 2005. This data was sampled at over 100
different hospital sites and consisted of patients un-
dergoing both general and vascular surgery. Patients
were followed for 30 days post-surgery for mortality
and various morbidities. We studied the ten most rare
morbidity outcomes: coma>24 hours (21 events); pe-
ripheral nerve injury (25); myocardial infarction (41);
stroke or cerebrovascular accident (56); pulmonary
embolism (76); failure of extracardiac graft or pros-
thesis (80); renal insufficiency (83); cardiac arrest (94);
renal failure (127); and bleeding requiring transfusion
(150). We also studied the endpoint of mortality (369).

In both these datasets, we used baseline clinical char-
acteristics as features. This corresponded to 20 vari-
ables collected at randomization for the MERLIN
trial, and 45 variables collected preoperatively for the
NSQIP data. The MEB was learned using the Sta-
tistical Pattern Recognition Toolbox (Czech Technical
University). We experimented with different values
of the Gaussian kernel parameter (log2 s = 0, ..., 10)
while fixing C=1. Each patient’s anomaly score was
defined to be the distance of the patient’s feature vec-
tor from the center of the MEB. We assessed the pre-
dictive ability of unsupervised anomaly detection by
calculating the area under the receiver operating char-
acteristic curve (AUROC) for these scores relative to
the different endpoints. The AUROC is widely used in
medicine, and is generally considered the standard for
evaluating risk stratification methods (Altman, 1991).
The results of this process were interpreted as follows:
an AUROC less than 0.6 has no clinical utility, 0.6
to 0.7 limited clinical utility, 0.7 to 0.8 modest clin-
ical utility, and 0.8 or higher genuine clinical utility
(Ohman et al., 2000).

We compared unsupervised anomaly detection with
different supervised learning methods in an attempt
to study the extent to which unsupervised anomaly
detection can achieve results similar to other methods
requiring the collection of large volumes of training
data with positive and negative examples. For each
dataset and endpoint, we trained and evaluated the
accuracy of a logistic regression (LR) model using five-
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fold cross-validation (Hosmer & Lemeshow, 2000). We
also studied the accuracy of support vector classifica-
tion (SVC) and support vector regression (SVR) using
five-fold cross-validation (Gunn, 1998). The results of
unsupervised anomaly detection were compared with
the best results obtained for LRV, SVC and SVR. For
both SVC and SVR, we experimented with different
choices of the Gaussian kernel parameter as described
earlier. For SVR, we additionally varied ϵ between
0.1 and 0.5. LR training was carried out using Mat-
lab (Mathworks Inc.) while both SVC and SVR were
trained using LIBSVM (National Taiwan University).

We conducted two additional analyses. First, we mea-
sured the AUROC when the MEB was trained for each
endpoint using data from patients known to be event
free. This experiment attempted to study the extent
to which anomaly detection could identify patients at
risk of future rare outcomes using data only from pa-
tients known to be free of these outcomes. Second, we
also studied the binary categorization of patients by
the MEB into anomaly and non-anomaly groups. This
was done by means of Kaplan-Meier survival analysis
(Efron, 1988) to compare event rates for patients de-
clared to be anomalies and non-anomalies. Hazard
ratios (HR) and 95% confidence intervals (CI) were
estimated using a Cox proportional hazards regression
model (Cox, 1972). Consistent with the medical liter-
ature, findings were considered to be significant for a
p-value less than 0.05. In contrast to the AUROC,
Kaplan-Meier survival analysis does not provide an
overall measure of the discriminative ability of a risk
variable. Instead, it typically measures relative dif-
ferences in the rate of events across different patient
groups once the variable has been dichotomized. It
accounts for both the timing of events (i.e., whether
events occur at the start of the study or late into the
study) as well as censoring (i.e., patients dropping out
before the study is complete). This experiment there-
fore focused on supplementing the AUROC results by
studying whether patients categorized as high or low
risk had different rates of adverse outcomes.

5. Results

5.1. ACS and NSQIP Data

Figure 1 presents the AUROC for unsupervised
anomaly detection as the kernel parameter s was var-
ied. MEB-based discrimination of patients at risk of
sudden cardiac death was maximized for log2s = 1.
This corresponded to an AUROC of 0.67.

Figure 2 presents the AUROC for the different morbid-
ity endpoints and mortality in the NSQIP data. Sim-

Figure 1. MEB AUROC for sudden cardiac death following
ACS as the Gaussian kernel parameter s is varied.

ilar to the ACS case, performance was generally max-
imized at log2 s = 1. For eight of the ten morbidity
endpoints studied, this choice of the kernel parameter
resulted in an AUROC higher than 0.7 (in two of these
cases the AUROC was greater than 0.8). We obtained
analogous results for the endpoint of mortality. The
AUROC was maximized for log2 s = 1, corresponding
to a value of 0.86.

5.2. Comparison with LR, SVC and SVR

Figure 3 presents a comparison of the AUROC for the
MEB approach (with log2 s = 1) to the best results
obtained for LR, SVC and SVR.

For the ACS dataset, all three supervised methods had
a higher AUROC than unsupervised anomaly detec-
tion. This difference was significant for LR and SVC
(both 0.72), but only marginal for SVR (0.68 vs. 0.67).

For the NSQIP dataset, the predictive ability of un-
supervised anomaly detection was comparable to the
results obtained with LR, SVC and SVR. The MEB
AUROC was greater than or equal to 0.7 in ev-
ery case where one or more of the supervised ap-
proaches showed moderate or higher clinical utility. In
some cases (e.g., coma>24 hours, myocardial infarc-
tion, stroke or cerebrovascular accident, graft failure,
cardiac arrest and bleeding), the MEB AUROC was
higher than any of the other methods. Overall, the av-
erage MEB AUROC across all morbidities (0.74) was
higher than the corresponding average AUROC for LR
(0.72) and SVC (0.70), and marginally less than the
average AUROC for SVR (0.75).

5.3. Training on Negative Examples

Training the MEB only on patients known to be event
free improved performance for all endpoints in both
datasets (log2 s = 1). The AUROC for the sudden
cardiac death population increased from 0.67 to 0.69
when the MEB was trained only on negative examples.
Table 1 presents the corresponding changes in AUROC
for the NSQIP population. For six of the NSQIP end-
points, the resulting AUROC exceeded 0.8.
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Figure 2. MEB AUROC for inpatient surgical morbidities and mortality as the Gaussian kernel parameter s is varied.

Figure 3. Comparison of AUROC for MEB, LR, SVC and SVR.



Unsupervised Risk Stratification in Clinical Datasets

Table 1. AUROC for MEB trained on all patients (ALL) and MEB trained on negative examples (NEG).

Event AUROC MEB (all) AUROC MEB (neg)

Coma 0.82 0.84
Peripheral Nerve Injury 0.61 0.66
Myocardial Infarction 0.74 0.79
Stroke or Cerebrovascular Accident 0.73 0.78
Pulmonary Embolism 0.58 0.64
Graft Failure 0.78 0.85
Renal Insufficiency 0.70 0.75
Cardiac Arrest 0.80 0.85
Renal Failure 0.77 0.83
Bleeding 0.77 0.82
Mortality 0.86 0.91

5.4. Survival Analysis

Tables 2 and 3 present the hazard ratios of patients
categorized as being anomalies by the MEB approach
relative to patients categorized as being non-anomalies
(log2 s = 1).

For the ACS population, patients who were classified
as anomalies showed a statistically significant (p<0.05)
increase in their risk of sudden cardiac death. These
patients experienced more than a 50% increase in their
risk of adverse outcomes.

Our results on the NSQIP data paralleled these find-
ings. Patients identified as anomalies by the MEB
showed an elevated risk for all but two of the mor-
bidity endpoints, and for the outcome of death within
30 days postoperatively. For most morbidities, there
was a two- to three-fold increased risk of adverse out-
comes. This increase in risk was even higher in patients
outside the MEB for the endpoint of death.

6. Summary and Discussion

In this paper, we developed and evaluated the hypoth-
esis that patients who are anomalies in a population
are at an increased risk of adverse future outcomes.
We present this as a way to risk stratify patients with-
out using extensive a priori information or requiring
large volumes of training data with both positive and
negative examples. Collecting such data is often slow,
expensive, and difficult when only a minority of pa-
tients in a population experience events.

We proposed an MEB-based unsupervised anomaly
detection approach to identify potentially high-risk pa-
tients in a population. Our results on over 22,000 pa-
tients showed that patients who lie in sparse regions
of the feature space are at an increased risk of sudden
cardiac death following ACS and for both morbidity

and mortality following inpatient surgical procedures.
In some cases, this approach of risk stratifying patients
based on their anomaly score outperformed supervised
machine learning methods that used additional knowl-
edge in the form of both positively and negatively la-
beled examples. These cases can be attributed to su-
pervised methods being unable to generalize for com-
plex, multi-factorial clinical events when only a small
number of patients in a large training population ex-
perience events.

For the NSQIP data, unsupervised anomaly detection
achieved an AUROC of 0.8 or higher for three out-
comes in NSQIP (mortality, coma, and cardiac ar-
rest), and between 0.7 and 0.8 for six other outcomes
(myocardial infarction, stroke or cerebrovascular acci-
dent, graft failure, renal insufficiency, renal failure, and
bleeding). We believe that these results (moderate or
genuine clinical utility) are quite encouraging as post-
operative morbidity outcomes are generally difficult
to predict. These results were reinforced by Kaplan-
Meier survival analysis. For mortality and most mor-
bidity outcomes, patients outside the MEB exhibited a
two- to three-fold increased risk of adverse endpoints.

For the ACS data, the results of AUROC and Kaplan-
Meier survival analysis were mixed. While Kaplan-
Meier survival analysis found that patients outside the
MEB had more than a 50% increase in their risk of sud-
den cardiac death over time, the AUROC suggested
only limited clinical utility. This difference may be at-
tributed to the AUROC being affected by censoring.
In NSQIP, this was not an issue since patients were
followed for all 30 days unless they died. In MER-
LIN, however, patients had a maximum follow-up of
two years but a median follow-up just under one year
due to censoring. The results of Kaplan-Meier sur-
vival analysis, which accounts for the timing of events
censoring, may therefore be more meaningful for this
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Table 2. Kaplan-Meier survival analysis of unsupervised anomaly detection for sudden cardiac death following acute
coronary syndrome.

Event # Outside MEB # Inside MEB HR CI P

Sudden Cardiac Death 34/922 43/3267 1.66 1.32-2.07 <0.001

Table 3. Kaplan-Meier survival analysis of unsupervised anomaly detection for morbidity and mortality following inpatient
surgical procedures.

Event # Outside MEB # Inside MEB HR CI P

Coma 15/5584 6/12664 2.38 1.48-3.83 <0.001
Peripheral Nerve Injury 11/5584 14/12664 1.34 0.90-1.98 0.152
Myocardial Infarction 28/5584 13/12664 2.12 1.59-3.07 <0.001
Stroke or Cerebrovascular Accident 32/5584 34/12664 1.74 1.34-2.27 <0.001
Pulmonary Embolism 31/5584 45/12664 1.25 0.99-1.57 0.056
Graft Failure 63/5584 17/12664 2.91 2.22-3.80 <0.001
Renal Insufficiency 53/5584 30/12664 2.01 1.60-2.51 <0.001
Cardiac Arrest 71/5584 23/12664 2.65 2.10-3.36 <0.001
Renal Failure 93/5584 34/12664 2.50 2.05-3.04 <0.001
Bleeding 103/5584 47/12664 2.24 1.88-2.66 <0.001
Mortality 311/5584 58/12664 3.53 3.07-4.07 <0.001

specific population. We present the AUROC largely
to maintain consistency between our evaluation of the
NSQIP and MERLIN datasets, and also to avoid con-
cealing the low AUROC in MERLIN.

In both of the patient populations studied, we found
that the performance of our unsupervised anomaly de-
tection approach could be improved by training the
MEB only on negative examples. This is likely due
to the ability of the MEB to better characterize nor-
mal patients when positive examples are excluded from
training. We believe that in applications where known
negative examples are available, this additional infor-
mation can allow for a better anomaly detection-based
method for risk stratification.

Our study does have limitations. For both the MER-
LIN and NSQIP data, most of the features available to
us corresponded to binary variables (e.g., male or fe-
male, hypertensive or non-hypertensive). For some of
these variables, the dichotomization process removed
information that may have been useful to identify
anomalies (e.g., systolic blood pressure). We also lim-
ited our choice of features to baseline clinical charac-
teristics, and did not use data such as imaging results
and biomarker laboratory values for patients. Prior
work has shown these data to have significant prog-
nostic value. However, these features were missing in
a majority of the patients in both study populations.
Finally, we note that while we evaluated the use of
unsupervised anomaly detection in two datasets, ad-

ditional studies are needed on a wider set of different
clinical conditions to fully explore and validate the re-
lationship of our risk stratification approach with ad-
verse outcomes.
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