
Analysis of a Classification-based Policy Iteration Algorithm

Alessandro Lazaric alessandro.lazaric@inria.fr

Mohammad Ghavamzadeh mohammad.ghavamzadeh@inria.fr

Rémi Munos remi.munos@inria.fr

SequeL Project, INRIA Lille-Nord Europe, 40 avenue Halley, 59650 Villeneuve d’Ascq, France

Abstract

We present a classification-based policy itera-
tion algorithm, called Direct Policy Iteration,
and provide its finite-sample analysis. Our
results state a performance bound in terms
of the number of policy improvement steps,
the number of rollouts used in each iteration,
the capacity of the considered policy space,
and a new capacity measure which indicates
how well the policy space can approximate
policies that are greedy w.r.t. any of its mem-
bers. The analysis reveals a tradeoff between
the estimation and approximation errors in
this classification-based policy iteration set-
ting. We also study the consistency of the
method when there exists a sequence of pol-
icy spaces with increasing capacity.

1. Introduction

Policy iteration (Howard, 1960) is a method of com-
puting an optimal policy for any given Markov deci-
sion process (MDP). It is an iterative procedure that
discovers a deterministic optimal policy by generating
a sequence of monotonically improving policies. Each
iteration k of this algorithm consists of two phases:
policy evaluation in which the action-value function
Qπk of the current policy πk is computed, and pol-
icy improvement in which the new (improved) policy
πk+1 is generated as the greedy policy w.r.t. Qπk ,
i.e., πk+1(x) = argmaxa∈A Qπk(x, a). Unfortunately,
in MDPs with large (or continuous) state and action
spaces, the policy evaluation problem cannot be solved
exactly and approximation techniques are required. In
approximate policy iteration (API), a function approx-
imation scheme is usually employed in the policy eval-
uation phase. The most common approach is to find
a good approximation of the value function of πk in a
real-valued function space (see e.g., Bradtke & Barto

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

1996; Lagoudakis & Parr 2003a). The main drawbacks
of this approach are: 1) the action-value function,
Qπk , is not known in advance and its high quality sam-
ples are often very expensive to obtain, if this option
is possible at all, 2) it is often difficult to find a func-
tion space rich enough to represent the action-value
function accurately, and thus, careful hand-tuning is
needed to achieve satisfactory results, 3) for the suc-
cess of policy iteration, it is not necessary to estimate
Qπk accurately at every state-action pair, what is im-
portant is to have a performance similar to the greedy
policy, and 4) this method may not be the right choice
in domains where good policies are easier to represent
and learn than the corresponding value functions.

To address the above issues, mainly 3 and 4,1 variants
of API have been proposed that replace the usual value
function learning step (approximating the action-value
function over the entire state-action space) with a
learning step in a policy space (Lagoudakis & Parr,
2003b; Fern et al., 2004). The main idea is to cast the
policy improvement step as a classification problem.
The training set is generated using rollout estimates
of Qπ over a finite number of states D = {xi}Ni=1,
called the rollout set, and for any action a ∈ A.2 For
each x ∈ D, if the estimated value Q̂π(x, a∗) is greater
than the estimated value of all other actions with high
confidence, the state-action pair (x, a∗) is added to the
training set with a positive label. In this case, (x, a) for
the rest of the actions are labeled negative and added
to the training set. The policy improvement step thus
reduces to solving a classification problem to find a
policy in a given hypothesis space that best predicts
the greedy action at every state. Although whether
selecting a suitable policy space is any easier than a
value function space is highly debatable, we can argue
that the classification-based API methods can be ad-
vantageous in problems where good policies are easier
to represent and learn than their value functions.

1The first drawback is shared by all reinforcement learn-
ing algorithms and the second one is common to all prac-
tical applications of machine learning methods.

2It is worth stressing that Qπ is estimated just on states
in D and not over the entire state-action space.

Analysis of a Classification-based Policy Iteration Algorithm

The classification-based API algorithms can be viewed
as a type of reduction from reinforcement learning
(RL) to classification, i.e., solving a MDP by gener-
ating and solving a series of classification problems.
There have been other proposals for reducing RL to
classification. Bagnell et al. (2003) introduced an al-
gorithm for learning non-stationary policies in RL. For
a specified horizon h, their approach learns a sequence
of h policies. At each iteration, all policies are fixed ex-
cept for one, which is optimized by forming a classifica-
tion problem via policy rollout. Langford & Zadrozny
(2005) provided a formal reduction from RL to classi-
fication, showing that ǫ-accurate classification implies
near optimal RL. This approach uses an optimistic
variant of sparse sampling to generate h classification
problems, one for each horizon time step. The main
limitation of this work is that it does not provide a
practical method for generating training examples for
these classification problems.

Although the classification-based API algorithms
have been successfully applied to benchmark prob-
lems (Lagoudakis & Parr, 2003b; Fern et al., 2004)
and have been modified to become more computa-
tionally efficient (Dimitrakakis & Lagoudakis, 2008b),
a full theoretical understanding of them is still lacking.
Fern et al. (2006) and Dimitrakakis & Lagoudakis
(2008a) provide a preliminary theoretical analysis of
their algorithm. In particular, they both bound the
difference in performance at each iteration between
the learned policy and the true greedy policy. Their
analysis is limited to one step policy update (they do
not show how the error in the policy update is prop-
agated through the iterations of the API algorithm)
and either to finite class of policies (in Fern et al.
(2006)) or to a specific architecture (a uniform grid
in Dimitrakakis & Lagoudakis (2008a)). Moreover,
the bound reported in (Fern et al., 2006) depends in-
versely on the minimum Q-value gap between a greedy
and a sub-greedy action over the state space. In some
classes of MDPs this gap can be arbitrarily small so
that the learned policy can be arbitrarily worse than
the greedy policy. In order to deal with this prob-
lem Dimitrakakis & Lagoudakis (2008a) assume the
action-value functions to be smooth and the proba-
bility of states with a small Q-value gap to be small.

In this paper, we derive a full finite-sample analysis
of a classification-based API algorithm (called direct
policy iteration (DPI)) based on a cost-sensitive loss
function weighing each classification error by its actual
regret, i.e., the difference between the action-value of
the greedy action and the action chosen by DPI. Using
this loss, we are able to derive a performance bound
with no dependency on the Q-value gaps and no as-

sumption on the probability of small-gap states. Our
analysis further extends the one in Fern et al. (2006)
and Dimitrakakis & Lagoudakis (2008a) by consider-
ing arbitrary policy spaces. We also analyze the con-
sistency of DPI when there exists a sequence of policy
spaces with increasing capacity. We first use a coun-
terexample and show that it is not consistent in gen-
eral, and then prove that its consistency for the class
of Lipschitz MDPs. We conclude the paper with a dis-
cussion on different theoretical and practical aspects
of DPI.

2. Preliminaries

In this section we set the notation used throughout the
paper. A discounted Markov Decision Process (MDP)
M is a tuple 〈X ,A, r, p, γ〉, where the state space X
is a bounded closed subset of a Euclidean space R

d,
the set of actions A is finite (|A| < ∞), the reward
function r : X×A → R is uniformly bounded by Rmax,
the transition model p(·|x, a) is a distribution over X ,
and γ ∈ (0, 1) is a discount factor. Let BV (X ;Vmax)
and BQ(X×A;Qmax) be the space of Borel measurable
value functions and action-value functions bounded by
Vmax and Qmax (Vmax = Qmax = Rmax

1−γ), respectively.

We also use Bπ(X) to denote the space of deterministic
policies π : X → A. The value function of a policy π,
V π, is the unique fixed-point of the Bellman operator
T π : BV (X ;Vmax) → BV (X ;Vmax) defined by

(T π
V)(x) = r

(
x, π(x)

)
+ γ

∫

X

p
(
dy|x, π(x)

)
V (y).

The action-value function Qπ is defined as

Q
π(x, a) = r(x, a) + γ

∫

X

p(dy|x, a)V π(y).

Similarly, the optimal value function, V ∗, is the
unique fixed-point of the optimal Bellman operator
T : BV (X ;Vmax) → BV (X ;Vmax) defined as

(T V)(x) = max
a∈A

[
r(x, a) + γ

∫

X

p(dy|x, a)V (y)

]
,

and the optimal action-value function Q∗ is defined by

Q
∗(x, a) = r(x, a) + γ

∫

X

p(dy|x, a)V ∗(y).

We say that a deterministic policy π ∈ Bπ(X) is
greedy w.r.t an action-value function Q, if π(x) ∈
argmaxa∈A Q(x, a), ∀x ∈ X . Greedy policies are im-
portant because any greedy policy w.r.t. Q∗ is op-
timal. We define the greedy policy operator G :
Bπ(X) → Bπ(X) as3

(Gπ)(x) = argmax
a∈A

Q
π(x, a). (1)

3In Eq. 1, the tie among the actions maximizing
Qπ(x, a) is broken in an arbitrary but consistent manner.

Analysis of a Classification-based Policy Iteration Algorithm

Input: policy space Π ⊆ Bπ(X), state distribution ρ
Initialize: Let π0 ∈ Π be an arbitrary policy
for k = 0, 1, 2, . . . do

Construct the rollout set D = {xi}
N
i=1, xi

iid
∼ ρ

for all states xi ∈ D and actions a ∈ A do
for j = 1 to M do

Perform a rollout according to policy πk and
return R

πk
j (xi, a) = r(xi, a)+

∑
t≥1 γtr

(
xt, πk(x

t)
)
,

xt ∼ p
(
· |xt−1, πk(x

t−1)
)
and x1 ∼ p(·|xi, a)

end for
Q̂πk(xi, a) =

1

M

∑M

j=1
R

πk
j (xi, a)

end for
πk+1 = argminπ∈Π ‖ℓ̂πk

(π)‖1,ρ̂ (classifier)
end for

Figure 1. The Direct Policy Iteration (DPI) algorithm.

In the analysis of this paper, G plays a role similar
to the one played by the optimal Bellman operator,
T , in the analysis of the fitted value iteration algo-
rithm (Munos & Szepesvári 2008, Section 5).

3. The DPI Algorithm

In this section, we outline the Direct Policy Itera-
tion (DPI) algorithm. DPI shares the same structure
as Lagoudakis & Parr (2003b) and Fern et al. (2004).
Although the algorithm can benefit from improve-
ments in 1) selecting states for the rollout set D, 2) the
criteria used to add a sample to the training set, and 3)
the rollout strategy, as discussed in Lagoudakis & Parr
(2003b) and Dimitrakakis & Lagoudakis (2008b), here
we consider its basic form in order to ease the analysis.

In DPI, at each iteration k, a new policy πk+1 is com-
puted from πk as the best approximation of Gπk, by
solving a cost-sensitive classification problem. More
formally, DPI is based on the following loss function.

Definition 1. The loss function at iteration k for a
policy π is denoted by ℓπk

(·;π) and is defined as

ℓπk
(x;π) = max

a∈A
Q

πk(x, a)−Q
πk

(
x, π(x)

)
, ∀x ∈ X .

Given a distribution ρ over X , we define the expected
error as the L1,ρ-norm of the loss function ℓπk

(·;π),

||ℓπk
(π)||1,ρ =

∫

X

(
max
a∈A

Q
πk(x, a)−Q

πk
(
x, π(x)

))
ρ(dx).

(2)

While in Lagoudakis & Parr (2003b) the goal is to
minimize the number of misclassifications (i.e., they
use 0/1 loss function), DPI learns a policy which aims
at minimizing the loss ℓπk

. Similar to other algorithms
in classification-based RL (Fern et al., 2004; Li et al.,
2007; Langford & Zadrozny, 2005), DPI does not fo-
cus on finding a uniformly accurate approximation of
the actions taken by the greedy policy, but rather on
finding actions leading to a similar performance. This

is consistent with the final objective of policy iteration,
which is to obtain a policy with similar performance
to an optimal policy and not taking similar actions. 4

As illustrated in Figure 1, for each state xi ∈ D and
for each action a ∈ A, an estimate of the action-value
function of the current policy is computed through M
independent rollouts. Given the outcome of the roll-
outs, the empirical loss is defined as

Definition 2. For any x ∈ D, the empirical loss func-
tion at iteration k for a policy π is

ℓ̂πk
(x;π) = max

a∈A
Q̂

πk (x, a)− Q̂
πk

(
x, π(x)

)
,

where Q̂πk(x, a) is a rollout estimation of the Q-value
of πk in (x, a) as defined in Figure 1.5 Similar to Def-
inition 1, the empirical error is defined as the L1,ρ̂-
norm of the empirical loss function

‖ℓ̂πk
(π)‖1,ρ̂ =

1

N

N∑

i=1

[
max
a∈A

Q̂
πk (xi, a)− Q̂

πk
(
xi, π(xi)

)]
,

where ‖·‖1,ρ̂ denotes the L1-norm weighted by the em-
pirical distribution ρ̂ induced by the samples in D.

Finally, DPI makes use of a classifier which returns a
policy that minimizes the empirical error ‖ℓ̂πk

(π)‖1,ρ̂
over the policy space Π.

4. Finite-sample analysis of DPI

In this section, we first provide a finite-sample analysis
of the error incurred at each iteration of DPI in The-
orem 1, and then show how this error is propagated
through the iterations of the algorithm in Theorem 2.
In the analysis, we explicitly assume that the action
space contains only two actions, i.e., A = {a1, a2} and
|A| = 2. We will discuss this assumption and other
theoretical and practical aspects of DPI in Section 6.

4.1. Error Bound at Each Iteration

Here we study the error incurred at each iteration k of
the DPI algorithm. Before stating the main result, we
define the inherent greedy error of a policy space Π.

Definition 3. We define the inherent greedy error of
a policy space Π ⊆ Bπ(X) as

d(Π,GΠ) = sup
π∈Π

inf
π′∈Π

||ℓπ(π
′)||1,ρ.

In other words, the inherent greedy error is the worst
expected error that a loss-minimizing policy π′ ∈ Π

4Refer to (Li et al., 2007) for a simple example in which
an accurate polices might have a very poor performance
w.r.t. the greedy policy.

5Here we consider rollouts in which policy π is followed
for an infinite number of steps or until a terminal state is
reached. In practice, a finite horizon H is defined for the
rollout, and thus, an additional term γHQmax (vanishing
with H) appears in the final bound.

Analysis of a Classification-based Policy Iteration Algorithm

can incur in approximating the greedy policy Gπ, π ∈
Π. This measures how well Π is able to approximate
policies that are greedy w.r.t. any policy in Π.

Lemma 1. Let Π be a policy space with finite VC-
dimension h = V C(Π) < ∞, and Fk be the space of
the loss functions at iteration k induced by the poli-
cies in Π, i.e., Fk = {ℓπk

(·;π); π ∈ Π}. Note that all
functions ℓπk

∈ Fk are uniformly bounded by Qmax.
Let N > 0 be the number of states in the rollout set,
D, drawn i.i.d. from the state distribution ρ, then

P

[
sup

ℓπk
∈Fk

∣∣∣‖ℓπk
‖1,ρ̂ − ||ℓπk

||1,ρ

∣∣∣ > ǫ

]
≤ δ ,

with ǫ = 2

√
2
hQmax log 2eN

h
+log 2

δ

N .

Proof. (sketch) First we rewrite the loss function as
ℓπk

(x;π) = I {(Gπk)(x) 6= π(x)}∆πk(x), where

∆πk(x) = max
a∈A

Q
πk(x, a)− min

a′∈A
Q

πk(x, a′) (3)

is the gap between the two actions (the regret of choos-
ing the wrong action). Since the loss function depends
on the policy π only through the indicator function, we
can directly relate the complexity of Fk to the com-
plexity of Π. In particular, let

Fx1:xN
k =

{(
ℓk(x1;π), . . . , ℓk(xN ; π)

)
, π ∈ Π

}

be the set of possible values of the loss function on
the rollout set, D = {xi}Ni=1, for the policies in Π.
Then, the corresponding growth function, SFk

(N), is
strictly related to the VC-dimension of Π. Indeed,
the cardinality of Fx1:xN

k depends only on SΠ(N), the
number of combinations of the indicator function that
can be induced by the policies in Π,

SFk
(N) = sup

x1,...,xN

|Fx1:xN
k | ≤ SΠ(N) ≤

(
eN

h

)h

.

The rest of the proof follows the same usual steps as
in Vapnik & Chervonenkis (1971).

We are now ready to prove the main result of this
section. We show a high probability bound on the
expected error at each iteration k of DPI.

Theorem 1. Let Π be a policy space with finite VC-
dimension h = V C(Π) < ∞ and ρ be a distribu-
tion over the state space X . Let N be the number
of states in D drawn i.i.d. from ρ, and M be the
number of rollouts per state-action used in the esti-
mation of the action-value functions. Let πk+1 =

argminπ∈Π ‖ℓ̂πk
(π)‖1,ρ̂ be the policy computed at the

kth iteration of DPI . Then, for any δ > 0, we have

||ℓπk
(πk+1)||1,ρ ≤ d(Π,GΠ) + 2(ǫ1 + ǫ2), (4)

with probability 1− δ, where

ǫ1 = 2

√

2
hQmax log

2eN
h

+ log 8

δ

N
, ǫ2 =

√
2Qmax

MN
log

4

δ
.

Remarks: The bound in Eq. 4 can be decomposed
into an approximation error d(Π,GΠ) and an estima-
tion error consisted of two terms ǫ1 and ǫ2. This is sim-
ilar to generalization bounds in classification, where
the approximation error is the distance between the
target function (here the greedy policy w.r.t. πk) and
the function space Π. Here d(Π,GΠ) represents the
worst possible such distances. The first estimation
term, ǫ1, grows with the capacity of Π, measured by
its VC-dimension h, and decreases with the number
of sampled states N . Thus in order to avoid overfit-
ting, we should have N ≫ h. The second estimation
term, ǫ2, comes from the error in the estimation of the
action-values due to the finite number of rollouts M .
It is important to note the nice rate of 1/

√
MN in-

stead of 1/
√
M . This is due to the fact that we do not

need a uniformly good estimation of the action-value
function at all sampled states, but only an averaged
estimation of those values at the sampled points. An
important consequence of this is that the algorithm
works perfectly well if we consider only M = 1 rollout
per state-action. Therefore, given a fixed budget of
rollouts per iteration, the best allocation of M and N
would be to choose M = 1 and sample as many states
as possible, thus, reducing the risk of overfitting.

Proof. Let a∗(·) = argmaxa∈A Qπk(·, a) be the greedy
action.6 We prove the following series of inequalities:

||ℓπk
(πk+1)||1,ρ

(a)

≤ ‖ℓπk
(πk+1)‖1,ρ̂ + ǫ1 w.p. 1 − δ′

=
1

N

N∑

i=1

(
Q

πk (xi, a
∗
) − Q

πk
(
xi, πk+1(xi)

))
+ ǫ1

(b)

≤
1

N

N∑

i=1

(
Q

πk (xi, a
∗
) − Q̂

πk
(
xi, πk+1(xi)

))
+ ǫ1 + ǫ

w.p. 1−2δ′

2

(c)

≤
1

N

N∑

i=1

(
Qπk (xi, a

∗) − Q̂πk
(
xi, π

∗(xi)
))

+ ǫ1 + ǫ2

(d)

≤
1

N

N∑

i=1

(
Qπk (xi, a

∗) − Qπk
(
xi, π

∗(xi)
))

+ ǫ1 + 2ǫ w.p. 1−3δ′

2

= ‖ℓπk
(π∗)‖1,ρ̂ + ǫ1 + 2ǫ2

(e)

≤ ||ℓπk
(π∗)||1,ρ + 2(ǫ1 + ǫ2)

w.p. 1−4δ′

= inf
π′∈Π

||ℓπk
(π′)||1,ρ + 2(ǫ1 + ǫ2)

(f)

≤ d(Π,GΠ) + 2(ǫ1 + ǫ2).

The statement of the theorem is obtained by δ′ = δ/4.

(a) It is an immediate application of Lemma 1, bound-
ing the difference between ||ℓπk

||1,ρ and ‖ℓπk
‖1,ρ̂ .

6To simplify the notation, we remove the dependency of
a∗ on states and use a∗ instead of a∗(xi) in the following.

Analysis of a Classification-based Policy Iteration Algorithm

(b) Here we introduce the estimated action-value func-

tion Q̂πk by bounding

1

N

N∑

i=1

Q̂
πk(xi, a)−

1

N

N∑

i=1

Q
πk(xi, a),

the difference between the true action-value function
and its rollout estimates averaged over the states in
the rollout set D = {xi}Ni=1. In particular, by using
the Chernoff-Hoeffding inequality and by recalling the
definition of Q̂πk

(
xi, πk+1(xi)

)
as the average of M

rollouts, we obtain

1

MN

N∑

i=1

M∑

j=1

R
πk
j (xi, a)−

1

MN

N∑

i=1

M∑

j=1

Qπk (xi, a) ≤

√
2Qmax

MN
log

1

δ′
,

with probability 1− δ′.
(c) From the definition of πk+1 in the DPI algorithm
(see Figure 1), we have

πk+1 = argmin
π∈Π

‖ℓ̂πk
(π)‖1,ρ̂ = argmax

π∈Π

1

N

N∑

i=1

Q̂πk
(
xi, π(xi)

)
,

thus, −1/N
∑N

i=1 Q̂πk
(
xi, πk+1(xi)

)
can be maximized by

replacing πk+1 with any other policy, particularly with

π∗ = arg inf
π′∈Π

∫

X

(
max
a∈A

Qπk (x, a) − Qπk
(
x, π′(x)

))
ρ(dx).

(d)-(f) The final result follows by using Definition 3
and by applying the Chernoff-Hoeffding inequality and
the regression generalization bound.

4.2. Error Propagation

In this section, we first show how the expected er-
ror is propagated through the iterations of DPI. We
then analyze the error between the value function of
the policy obtained by DPI after K iterations and the
optimal value function in µ-norm, where µ is a distri-
bution over the states which might be different from
the sampling distribution ρ. Let P π be the transi-
tion kernel for policy π, i.e., P π(dy|x) = p

(
dy|x, π(x)

)
.

It defines two related operators: a right-linear op-
erator, P π·, which maps any V ∈ BV (X ;Vmax) to
(P πV)(x) =

∫
V (y)P π(dy|x), and a left-linear oper-

ator, ·P π, that returns (µP π)(dy) =
∫
P π(dy|x)µ(dx)

for any distribution µ over X .

From the definitions of ℓπk
, T π, and T , we have

ℓπk
(πk+1) = T V πk − T πk+1V πk . We deduce the fol-

lowing pointwise inequalities:

V
πk − V

πk+1

= T πkV
πk − T πk+1V

πk + T πk+1V
πk − T πk+1V

πk+1

≤ ℓπk
(πk+1) + γP

πk+1(V πk − V
πk+1),

which gives us V πk − V πk+1 ≤ (I − γP πk+1)−1ℓπk
(πk+1).

We also have

V
∗ − V

πk+1 = T V
∗ − T V

πk + T V
πk

− T πk+1V
πk + T πk+1V

πk − T πk+1V
πk+1

≤ γP
∗(V ∗ − V

πk) + ℓπk
(πk+1) + γP

πk+1(V πk − V
πk+1),

which yields

V
∗ − V

πk+1 ≤ γP
∗(V ∗ − V

πk)

+
[
γP

πk+1(I − γP
πk+1)−1 + I

]
ℓπk

(πk+1)

= γP
∗(V ∗ − V

πk) + (I − γP
πk+1)−1

ℓπk
(πk+1).

Finally, by defining the operator Ek = (I−γP πk+1)−1,
which is well defined since P πk+1 is a stochastic kernel
and γ < 1, and by induction, we obtain

V
∗ − V

πK (5)

≤ (γP ∗)K(V ∗ − V
π0) +

K−1∑

k=0

(γP ∗)K−k−1
Ekℓπk

(πk+1).

Eq. 5 shows how the error at each iteration k of DPI,
ℓπk

(πk+1), is propagated through the iterations and
appears in the final error of the algorithm, V ∗ − V πK .
Since we are interested in bounding the final error in
µ-norm, which might be different than the sampling
distribution ρ, we use one of the following assumptions:

Assumption 1. For any policy π ∈ Π and any
non-negative integers s and t, there exists a constant
Cµ,ρ(s, t) < ∞ such that µ(P ∗)s(P π)t ≤ Cµ,ρ(s, t)ρ.
We define Cµ,ρ = 1−γ

2

∑∞
s=0

∑∞
t=0 γ

s+tCµ,ρ(s, t).

Assumption 2. For any x ∈ X and any a ∈ A, there
exist a constant Cρ < ∞ such that p(·|x, a) ≤ Cρρ(·).

Note that concentrability coefficients similar to Cµ,ρ

and Cρ were previously used in the Lp-analysis of fitted
value iteration (Munos, 2007; Munos & Szepesvári,
2008) and approximate policy iteration (Antos et al.,
2008). We now state our main result.

Theorem 2. Let Π be a policy space with finite VC-
dimension h and πK be the policy generated by DPI
after K iterations. Let M be the number of rollouts
per state-action and N be the number of samples drawn
i.i.d. from a distribution ρ over X at each iteration of
DPI. Then, for any δ > 0, we have

||V ∗ − V
πK ||1,µ ≤

2

1− γ

[
Cµ,ρ

(
d(Π,GΠ) + 2(ǫ1 + ǫ2)

)

+ γ
K
Rmax

]
, under Assumption 1

||V ∗ − V
πK ||∞ ≤

2

1− γ

[
Cρ

(
d(Π,GΠ) + 2(ǫ1 + ǫ2)

)

+ γ
K
Rmax

]
, under Assumption 2

with probability 1− δ, where

Analysis of a Classification-based Policy Iteration Algorithm

ǫ1 = 2

√

2
hQmax log

2eN
h

+ log 8K
δ

N
, ǫ2 =

√
2Qmax

MN
log

4K

δ
.

Proof. We have Cµ,ρ ≤ Cρ for any µ. Thus, if the
L1-bound holds for any µ, choosing µ to be a Dirac
at each state implies that the L∞-bound holds as well.
Hence, we only need to prove the L1-bound. By taking
the absolute value point-wise in Eq. 5 we obtain

|V ∗ − V
πK | ≤ (γP ∗)K |V ∗ − V

π0 |

+
K−1∑

k=0

(γP ∗)K−k−1(I − γP
πk+1)−1|ℓπk

(πk+1)|.

From Assumption 1 and |V ∗−V π0 | ≤ 2
1−γRmax1, and

by integrating both sides w.r.t. µ we have

||V ∗ − V
πK ||1,µ ≤ γ

K 2

1− γ
Rmax

+

K−1∑

k=0

γ
K−k−1

∞∑

t=0

γ
t
Cµ,ρ(K − k − 1, t)||ℓπk

(πk+1)||1,ρ.

The claim follows from the definition of Cµ,ρ and
by bounding ||ℓπk

(πk+1)||1,ρ using Theorem 1 with a
union bound argument over the K iterations.

5. Approximation Error

In Section 4.1, we derived a bound for the expected
error at each iteration k of DPI, ||ℓπk

(πk+1)||1,ρ. The
approximation error term in this bound is the inherent
greedy error of Definition 3, d(Π,GΠ), which depends
on the MDP and the richness of the hypothesis space
Π (see the Remarks of Theorem 1). The main question
in this section is whether this approximation error can
be made small by increasing the capacity of the policy
space Π. The answer is not obvious because when the
space of policies, Π, grows, it can better approximate
any greedy policy w.r.t. a policy in Π, however, the
number of such greedy policies grows as well. We start
our analysis of this approximation error by introducing
the notion of universal family of policy spaces.

Definition 4. Let {βn} be a sequence of real values

such that βn
n→∞−→ 0. A sequence of policy spaces {Πn}

is a universal family of policy spaces if for any n > 0
there exists a partition Pn = {Xi}Sn

i=1 of X such that
maximaxx,y∈Xi

||x − y|| = βn and ∀b1, . . . , bSn
, bi ∈

{0, 1}, ∃π ∈ Πn such that π(x) = bi, ∀i, ∀x ∈ Xi.

In other words, this definition requires Πn to be the
space of policies induced by a partition Pn such that
the largest diameter among the regions of the par-
tition shrinks to zero and for any assignment of ac-
tions to regions there exists a policy π ∈ Πn matching

those actions. The main property of such a sequence
of spaces is that any fixed policy π can be approxi-
mately arbitrary well as n increases. Although other
definitions of universality could be used, Definition 4
seems natural and it is satisfied by widely-used clas-
sifiers such as k-nearest neighbor, uniform grids, and
histograms. In (Lazaric et al., 2010), we show that
universal spaces are not a sufficient condition to guar-
antee that d(Πn,GΠn) converges to zero in any MDP.
On the other hand, in the next section we show that
if the MDP is Lipschitz then d(Πn,GΠn) converges to
zero for any universal family of policy spaces.

5.1. Lipschitz MDPs

In this section, we prove that for Lipschitz MDPs,
d(Πn,GΠn) goes to zero when {Πn} is a universal fam-
ily of classifiers. We start by defining a Lipschitz MDP.

Definition 5. A MDP is Lipschitz if both its tran-
sition probability and reward functions are Lipschitz,
i.e., ∀(B, x, x′, a) ∈ B(X)×X × X ×A

|r(x, a)− r(x′
, a)| ≤ Lr‖x− x

′‖,

|p(B|x, a)− p(B|x′
, a)| ≤ Lp‖x− x

′‖,

with Lr and Lp being the Lipschitz constants of the
transitions and the reward, respectively.

An important property of Lipschitz MDPs is that
for any function Q ∈ BQ(X × A;Qmax), the func-
tion obtained by applying the Bellman operator T π to
Q, (T πQ)(·, a), is a Lipschitz function with constant
L = (Lr + γQmaxLp) for any action a.

Theorem 3. Let |A| = 2 and {Πn} be a universal
family of policy spaces. Let M be a Lipschitz MDP.
Then limn→∞ d(Πn,GΠn) = 0.

Proof.

d(Πn,GΠn) = sup
π∈Πn

inf
π′∈Πn

∫

X

ℓπ(x;π
′)ρ(dx)

(a)
= sup

π∈Πn

inf
π′∈Πn

∫

X

I
{
(Gπ)(x) 6= π′(x)

}
∆π(x)ρ(dx)

(b)

≤ sup
π∈Πn

inf
π′∈Πn

Sn∑

i=1

∫

Xi

I
{
(Gπ)(x) 6= π′(x)

}
∆π(x)ρ(dx)

(c)
= sup

π∈Πn

Sn∑

i=1

inf
a∈A

∫

Xi

I {(Gπ)(x) 6= a}∆
π
(x)ρ(dx)

(d)

≤ sup
π∈Πn

Sn∑

i=1

inf
a∈A

∫

Xi

I {(Gπ)(x) 6= a} 2L inf
y:∆π(y)=0

‖x − y‖ρ(dx)

(e)

≤ 2L sup
π∈Πn

Sn∑

i=1

inf
a∈A

∫

Xi

I {(Gπ)(x) 6= a}βnρ(dx)

(f)

≤ 2Lβn

Sn∑

i=1

∫

Xi

ρ(dx) = Lβn.

Analysis of a Classification-based Policy Iteration Algorithm

(a) We rewrite Definition 3, where ∆π is the regret of
choosing the wrong action defined by Eq. 3.
(b) Since Πn contains piecewise constants policies in-
duced by the partition Pn = {Xi}, we split the integral
as the sum over the regions.
(c) Since the policies in Πn can take any action in each
possible region, the policy π′ minimizing the loss is the
one which takes the best action in each region.
(d) Since M is Lipschitz, both maxa∈A Qπ(·, a) and
mina′∈A Qπ(·, a′) are Lipschitz and so ∆π(·) is 2L-
Lipschitz. Furthermore, ∆π is zero in all the states
in which the policy Gπ changes (see Figure 2). Thus,
for any state x the value ∆π(x) can be bounded using
the Lipschitz property by taking y as the closest state
to x in which ∆π(y) = 0.
(e) We notice that if π′ makes a mistake in a state
x ∈ Xi then the state y in which Gπ changes must be
in Xi, otherwise if Gπ is constant in the whole region
Xi, there exists an action a such that no mistake is
done in the region. Thus, we can replace ||x − y|| by
the diameter of the region which is bounded by βn by
definition of universal family of spaces.
(f) We take I {(Gπ)(x) 6= a} = 1 in each region.

a2

Qπ(x, a2)

Qπ(x, a1)

0 0.2 0.4 0.6 0.8 1

∆π(x)

a1

(Gπ)(x)

Figure 2. This figure is used as an illustrative example in
the proof of Theorem 3. It shows the action-value function
of a Lipschitz MDP for a policy π, Qπ(·, a1) and Qπ(·, a2)
(top) and the corresponding greedy policy Gπ (middle) and
regret of selecting the wrong action, ∆π, (bottom).

Theorem 3 together with the counter-example
in (Lazaric et al., 2010) show that the assumption on
the policy space is not enough to guarantee a small ap-
proximation error and additional assumptions on the
smoothness of the MDP must be satisfied.

5.2. Consistency of DPI

A highly desirable property of any learning algorithm
is to be consistent, i.e., as the number of samples grows
to infinity, the error of the algorithm converges to
zero. It can be seen that as the number of samples

N grows in Theorem 1, ǫ1 and ǫ2 become arbitrarily
small, and thus, the expected error at each iteration,
||ℓπk

(πk+1)||1,ρ, converges to the inherent greedy error
d(Π,GΠ). We can conclude from the results of this
section that DPI is not consistent in general, but it
is consistent for the class of Lipschitz MDPs, when a
universal family of policy spaces is used. However, it is
important to note that as we increase the index n also
the capacity of the policy space Π, its VC-dimension
h, might grow as well, and thus, when the number of
samples N goes to infinity, in order to keep the estima-
tion error (ǫ1 in Theorem 1) zero, we should guarantee
that N grows faster than V C(Π). More formally,

Corollary 1. Let M be a Lipschitz MDP, {Πn} be a
universal family of policy spaces, h(n) = V C(Πn), and

limn,N→∞
h(n)
N = 0. Then DPI is consistent

lim
n,N→∞

||ℓπk
(πk+1)||1,ρ = 0, w.p. 1.

Finally, we notice that if n and N tend to infinity at
each iteration, we have V πK → V ∗ almost surely when
K tends to infinity.

6. Discussion and Extensions

In this paper, we derived finite-sample performance
bounds for a cost-sensitive classification-based ap-
proximate policy iteration algorithm. To the best
of our knowledge, this is the first complete finite-
sample analysis for this class of API algorithms. The
main characteristic of DPI is that each classification
error is weighed by its actual regret, i.e., the dif-
ference between the action values of the greedy ac-
tion and the action chosen by DPI. Our results ex-
tend the theoretical analysis in (Fern et al., 2006) and
(Dimitrakakis & Lagoudakis, 2008a) by 1) having a
full bound instead of being limited to one step policy
update, 2) considering any policy space instead of fi-
nite or specific policy spaces, and 3) deriving a bound
which does not depend on the Q-advantage, i.e., the
minimum Q-value gap between a greedy and a sub-
greedy action over the state space, which can be ar-
bitrarily small in a large class of MDPs. Note that
the final bound in Fern et al. (2006) depends inversely
on the Q-advantage. We also analyzed the consistency
of DPI and showed that although it is not consistent
in general, it is consistent for the class of Lipschitz
MDPs. This is similar to the consistency results for
fitted value iteration in Munos & Szepesvári (2008).

One of the main motivations of this work is to have
a better understanding of how the classification-based
API methods can be compared with their widely-used
regression-based counterparts. It is interesting to note
that the bound of Eq. 4 shares the same structure as

Analysis of a Classification-based Policy Iteration Algorithm

the error bounds for the API algorithm in Antos et al.
(2008) and fitted value iteration (Munos & Szepesvári,
2008). The error at each iteration can be decomposed
into an approximation error, which depends on the
MDP and the richness of the hypothesis space – the in-
herent greedy error in Eq. 4 and the inherent Bellman
error in Antos et al. (2008) and Munos & Szepesvári
(2008), and an estimation error which mainly depends
on the number of samples and rollouts. The differ-
ence between the approximation error of the two ap-
proaches depends mainly on how well the hypothesis
space fits the MDP at hand. This confirms the intu-
ition that whenever the policies generated by policy
iteration are easier to represent and learn than their
value functions, a classification-based approach can be
preferable to regression-based methods.

Extension to multiple actions. When |A| =
2, the expected error in Eq. 2 can be written as
||ℓπk

(π)||1,ρ =
∫
X
I {(Gπk)(x) 6= π(x)}∆πk(x)ρ(dx),

where ∆πk is defined by Eq. 3. Thus, the policy im-
provement step becomes a weighted binary classifica-
tion problem in which each state x ∈ D has a weight
∆πk(x). DPI can be extended to multiple actions by
writing the expected error as

||ℓπk
(π)||1,ρ =

∑

a∈A

∫

X

I {(Gπk)(x, a) 6= π(x, a)}

×

(
max
a′∈A

Q
πk(x, a′)−Q

πk(x, a)

)
ρ(dx),

where (Gπk)(x, a) is 1 if a is the greedy action in x
and 0 otherwise. As it can be noticed, the policy im-
provement step of DPI still remains a weighted binary
classification problem in which each (x, a) ∈ D ×A is
weighted by maxa′∈A Qπk(x, a′)−Qπk(x, a). This can
be solved by any weighted binary classification algo-
rithm as long as it guarantees to return 1 for only one
action at each state x ∈ X . In this case, all the theo-
retical analysis presented in the paper can be extended
to multiple actions (see the appendix in (Lazaric et al.,
2010) for a sketch of the proofs). However, as there are
still many open theoretical and practical issues to be
addressed in multi-label classification, extending DPI
to multiple actions calls for additional work both in
terms of implementation and theoretical analysis.

Acknowledgments This work was supported by
French National Research Agency (ANR) (project
EXPLO-RA n◦ ANR-08-COSI-004).

References

Antos, A., Szepesvári, Cs., and Munos, R. Learn-
ing near-optimal policies with Bellman-residual min-
imization based fitted policy iteration and a single
sample path. MLJ, 71:89–129, 2008.

Bagnell, J., Kakade, S., Ng, A., and Schneider, J. Pol-
icy search by dynamic programming. In Proceedings
of Advances in Neural Information Processing Sys-
tems 16. MIT Press, 2003.

Bradtke, S. and Barto, A. Linear least-squares algo-
rithms for temporal difference learning. Journal of
Machine Learning, 22:33–57, 1996.

Dimitrakakis, C. and Lagoudakis, M. Algorithms and
bounds for sampling-based approximate policy iter-
ation. In Recent Advances in Reinforcement Learn-
ing (EWRL-2008). Springer, 2008a.

Dimitrakakis, C. and Lagoudakis, M. Rollout sampling
approximate policy iteration. MLJ, 72(3):157–171,
2008b.

Fern, A., Yoon, S., and Givan, R. Approximate policy
iteration with a policy language bias. In Proceed-
ings of Advances in Neural Information Processing
Systems 16, 2004.

Fern, A., Yoon, S., and Givan, R. Approximate policy
iteration with a policy language bias: Solving rela-
tional Markov decision processes. JAIR, 25:85–118,
2006.

Howard, R. A. Dynamic Programming and Markov
Processes. The MIT Press, Cambridge, MA, 1960.

Lagoudakis, M. and Parr, R. Least-squares policy it-
eration. JMLR, 4:1107–1149, 2003a.

Lagoudakis, M. and Parr, R. Reinforcement learning
as classification: Leveraging modern classifiers. In
Proceedings of ICML, pp. 424–431, 2003b.

Langford, J. and Zadrozny, B. Relating reinforcement
learning performance to classification performance.
In Proceedings of ICML, pp. 473–480, 2005.

Lazaric, A., Ghavamzadeh, M., and Munos, R. Anal-
ysis of a classification-based policy iteration algo-
rithm. Technical Report 00482065, INRIA, 2010.

Li, L., Bulitko, V., and Greiner, R. Focus of atten-
tion in reinforcement learning. Journal of Universal
Computer Science, 13(9):1246–1269, 2007.

Munos, R. Performance bounds in Lp norm for ap-
proximate value iteration. SIAM Journal of Control
and Optimization, 2007.

Munos, R. and Szepesvári, Cs. Finite time bounds for
fitted value iteration. JMLR, 9:815–857, 2008.

Vapnik, V. and Chervonenkis, A. On the uniform con-
vergence of relative frequencies of events to their
probabilities. Theory of Probability and its Applica-
tions, 16:264–280, 1971.

