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Abstract

Temporal difference (TD) algorithms are
attractive for reinforcement learning due
to their ease-of-implementation and use of
“bootstrapped” return estimates to make ef-
ficient use of sampled data. In particu-
lar, TD(λ) methods comprise a family of re-
inforcement learning algorithms that often
yield fast convergence by averaging multiple
estimators of the expected return. However,
TD(λ) chooses a very specific way of aver-
aging these estimators based on the fixed
parameter λ, which may not lead to opti-
mal convergence rates in all settings. In
this paper, we derive an automated Bayesian
approach to setting λ that we call tempo-
ral difference Bayesian model averaging (TD-
BMA). Empirically, TD-BMA always per-
forms as well and often much better than the
best fixed λ for TD(λ) (even when perfor-
mance for different values of λ varies across
problems) without requiring that λ or any
analogous parameter be manually tuned.

1. Introduction

In reinforcement learning (RL) it can be crucial to min-
imize sample complexity (Kakade, 2003) — a bound
on the number of samples required to achieve a given
quality policy. Fewer samples may lead to faster al-
gorithms, but perhaps even more crucial to real-world
applications, fewer samples require fewer expensive in-
teractions with the environment. This is especially
important when these samples involve the risk of mis-
takes that have real costs (monetary or otherwise).
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Temporal difference (TD) learning methods have
proved to be an empirically effective way to reduce
the sample complexity of RL algorithms (Sutton &
Barto, 1998). The primary insight of these methods
is that rather than taking independent Monte Carlo
(MC) sample estimates of the value being learned, one
may achieve faster learning rates by reusing “boot-
strapped” value estimates from immediate successor
states. One popular and particularly effective TD
method — TD(λ) — goes even one step further in re-
ducing sample complexity by averaging over different
n-step lookahead estimators of the same value, weight-
ing by a function of λ that decays exponentially in n.

In this work, we build on the TD(λ) approach of com-
puting a weighted average of n-step return value es-
timates. However, our weighted averaging approach
is intended to directly exploit one of the reasons why
TD(λ) methods are often successful in practice at re-
ducing sample complexity — weighted averages can re-
duce the variance of the value estimate, leading to less
noise in the update process, and ultimately faster con-
vergence. Based on this view, we adopt a statistically
principled method of weighting the n-step return value
estimates in a TD(λ)-like approach we call Temporal
Difference Bayesian Model Averaging (TD-BMA).

Empirically, we show that TD-BMA generally per-
forms much better than the best fixed λ for TD(λ)
and does so automatically without requiring λ or any
analogous parameter be manually tuned for a problem.
Given the promise of TD-BMA methods, we conclude
with a discussion of important future generalizations.

2. Preliminaries

2.1. Markov Decision Processes

We assume the decision-making environment to be a
Markov decision process (MDP) (Puterman, 1994) in
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which an agent interacts by repeatedly executing an
action in the currently observed state, receiving a re-
ward signal and then stochastically transitioning to
a successor state. Formally, an MDP can be defined
as a tuple 〈S, A, T,R〉. S = {s1, . . . , sn} is a finite
set of fully observable states. A = {a1, . . . , am} is
a finite set of actions. T : S × A × S → [0, 1] is a
stationary, Markovian transition function, where we
write T (s, a, s′) = P (s′|s, a). We will assume that a
stochastic reward function R : S × A × R → [0, 1] is
associated with every state and action, where we write
R(s, a, r) = P (r|s, a) for r ∈ R. γ (0 ≤ γ ≤ 1) is a
discount factor used to specify that a reward obtained
t timesteps into the future is discounted by γt. γ = 1
is permitted if total accumulated reward is finite.

A stochastic exploration policy π : S×A → [0, 1] spec-
ifies a probability distribution π(s, a) = P (a|s) over
actions a to take in each state s. The value Qπ(s, a)
of taking an action a in state s and then following the
policy π thereafter can be defined using the infinite
horizon, expected discounted reward criterion:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γt · rt+1

∣∣∣∣∣s0 = s, a0 = a

]
(1)

where rt+1 is the reward obtained after taking an ac-
tion at in state st at time t (assuming s0 and a0 respec-
tively represent the state and action at t = 0). Then
we can define a value function V π(s) = Qπ(s, π(s))
that represents the expected value obtained by start-
ing in state s and acting according to π.

The objective in an MDP is to find a policy π∗ such
that ∀π, s. V π∗(s) ≥ V π(s); at least one such optimal
policy is guaranteed to exist (Puterman, 1994).

In the reinforcement learning (RL) setting, the tran-
sition probabilities P (s′|s, a) and reward probabilities
P (r|s, a) may not be explicitly known to the agent al-
though both can be sampled from experience. In order
to learn an optimal policy, we can adopt the general-
ized policy iteration (GPI) framework shown in Algo-
rithm 1 that is known to capture many reinforcement
learning approaches (Sutton & Barto, 1998).

GPI interleaves policy evaluation and greedy policy
update steps (steps 2 and 3, respectively). Since we
require stochastic policies to ensure all states and ac-
tions are explored in RL, we use the simple ε-greedy
exploration policy shown in step 3, where exploratory
actions are chosen uniformly randomly with ε proba-
bility. Because step 3 is given, the remainder of this
paper will focus on efficient policy evaluation in step 2
of GPI via temporal difference reinforcement learning.
For the policy evaluation task, we assume a standard

Algorithm 1 Generalized Policy Iteration

begin
1. Start with arbitrary initial policy π0 & i = 0.
2. Estimate Qπi(s, a)

3. πi+1(s, a) = P (a|s) =

8>>><>>>:
1− ε arg maxa Qπi(s, a)

ε
|A| a1

· · · · · ·
ε
|A| a|A|

4. If termination criteria not met, i = i + 1 & goto 2.
end

episodic RL setting consisting of multiple trials. Each
trial terminates at some (different) time T , after which
all rewards rt for t > T + 1 are assumed to be 0.

2.2. Temporal Difference Learning

Temporal difference (TD) RL methods (Sutton &
Barto, 1998) were introduced in order to allow efficient
reuse of all sampled rewards during policy evaluation.
The basic idea begins with the observation that for
time t, a 1-step sample return R

(1)
t of Qπ(st, at) given

in (1) can be “bootstrapped” from the estimate for
Qπ(st+1, at+1)

R
(1)
t = rt+1 + γQπ(st+1, at+1) (2)

where st+1 and at+1 are sampled according to π and
rt+1 sampled according to P (rt+1|st, at). Then given
R

(1)
t , we arrive at a simple 1-step TD update rule that

allows us to adjust Qπ(st+1, at+1) according to the TD
error ∆Q

(1)
t :

Qπ(st, at) = Qπ(st, at) + α
[
R

(1)
t −Qπ(st, at)

]
︸ ︷︷ ︸

∆Q
(1)
t

(3)

Here, α > 0 is a learning rate. In the literature, this Q-
value version of the TD update is known as SARSA for
state, action, reward, state, action (Sutton & Barto,
1998).

In general, rather than just a 1-step return, we can
define arbitrary n-step (n > 0) bootstrapped returns:

R
(n)
t =

n∑
i=1

γi−1rt+i + γnQπ(st+n, at+n) (4)

where all actions a1, . . . , at+n are sampled from
π(s, a) = P (a|s), all states s1, . . . , st+n are
sampled from T (s, a, s′) = P (s′|a, s), and all
rewards r1, . . . , rt+n are sampled according to
P (rt+i|st+i−1, at+i−1).

All R
(n)
t turn out to be estimators for Qπ(st, at). Since

it is well-known that averaging samples of multiple es-
timators yields reduced variance over the use of any
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Algorithm 2 SARSA(λ)-Offline-Update(T )

begin
Rλ

T = rT+1

for (t = T . . . 0) do
if (t < T ) then

// Compute λ-average of returns
Rλ

t = rt+1+γ
ˆ
(1− λ)Qπ(st+1, at+1) + λRλ

t+1

˜
Qπ(st, at) = Qπ(st, at) + α

ˆ
Rλ

t −Qπ(st, at)
˜

end

single sample, it is clearly advantageous to use some
form of averaged return in place of the single 1-step
return R

(1)
t to reduce variance. One particularly ele-

gant and computationally efficient weighted averaging
approach is given by TD(λ) (0 ≤ λ ≤ 1), which defines
the return (Sutton & Barto, 1998):

Rλ
t = (1− λ)

∞∑
n=1

λn−1R
(n)
t (5)

One can verify that the geometric series sum of weights
(1−λ)

∑∞
n=1 λn−1 = 1. Then instead of the 1-step TD

update, we can substitute the 1-step TD error ∆Q
(1)
t

with the n-step averaged TD(λ) error

∆Qλ
t =

[
Rλ

t −Qπ(st, at)
]

(6)

in (3) and thus obtain the the TD(λ) update rule for
Q-values known as SARSA(λ).

Looking ahead to a form that will be useful for our
derivation of temporal difference Bayesian model av-
eraging, we will derive a simple offline1 algorithm for
TD(λ) following Section 7.4 of (Sutton & Barto, 1998)
to reorganize the summation and express the return
Rλ

t recursively in terms of Rλ
t+1:

Rλ
t =

T−1∑
k=t

(γλ)k−t
[
R

(1)
k − γλQπ(sk+1, ak+1)

]
= R

(1)
t − γλQπ(st+1, at+1) + γλRλ

t+1

= rt+1+γQπ(st+1, at+1)−γλQπ(st+1, at+1)+γλRλ
t+1

= rt+1 + γ
[
(1− λ)Qπ(st+1, at+1) + λRλ

t+1

]
(7)

Combining the update in (3) with the error ∆Qλ
t in (6)

and the recursive definition of Rλ
t in (7), we obtain the

offline SARSA(λ) algorithm shown in Algorithm 2
that is called once at the end of every trial of policy
evaluation of T time steps.

1Meaning that in a learning task consisting of trials, the
TD(λ) update is performed once for all encountered states
at the end of a trial.

3. Temporal Difference Bayesian Model
Averaging

If we revisit the TD(λ) return in (5), we note this
expression chooses a particular fixed function of λ
to weight each bootstrapped n-step return estimate.
While there are excellent computational reasons for
choosing this particular weighting scheme, we set aside
such issues for now and set out to answer a simple
question: is there a potentially better way to set the
weights of each t-step return, e.g., with an objective
to reduce variance in the value estimator?

One commonly used technique for reducing estima-
tor variance is Bayesian model averaging (BMA). In
particular, BMA provides an intuitive data-dependent
way to adjust the weights of multiple estimators ac-
cording to the likelihood that they might have gen-
erated the observed data. But how do we combine
BMA with TD estimators? We begin with the gen-
eral case and then proceed to develop a specific model
that is effective in practice and computationally effi-
cient — having the same time and space complexity
as SARSA(λ), but adapting λ in a Bayesian manner.

3.1. General Case

In the general Bayesian model averaging setting,
we will maintain Q-values Qπ(s, a), not as con-
stants, but as a multivariate probability distribu-
tion P (~q|D) where D represents the set of all re-
turns observed for a state and action and ~q =
(qs1,a1 , ..., qs1,a|A| , ..., qs|S|,a1 , ..., qs|S|,a|A|) ∈ R|S||A|. In
Section 3.2, we will discuss concrete ways to maintain
this Q-value distribution, but for now we assume it is
given and focus on how to use it for TD learning.

Given P (qs,a|D), we derive an expected return model
RBMA

t for state s = st and action a = at based on
Bayesian model averaging:

RBMA
t = EP (~q|D) [qs,a]

=
∫

qs,a∈R
qs,aP (qs,a|D) dqs,a

=
∫

qs,a∈R
qs,a

∑
m∈MC ,TD

P (qs,a|m)P (m|D) dqs,a

=
∑

m∈MC ,TD

EP (qs,a|m) [qs,a]︸ ︷︷ ︸
prediction of m

P (m|D)︸ ︷︷ ︸
weight of m

(8)

The first step expands the definition of expecta-
tion and marginalizes out irrelevant random variables.
The second step introduces Bayesian model averag-
ing by introducing and marginalizing over an addi-
tional model parameter m specifying either the MC
(1-step local Monte Carlo sample return R

(1)
t+1) or
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TD (1-step temporal difference bootstrapped return
Qπ(st+1, at+1)) models, assuming each model of qs,a is
independent of D given m. Finally, distributing qs,a,
swapping the

∑
and

∫
, and exploiting the indepen-

dence of P (m|D) from qs,a, the integral is expressed
in expectation form. This yields the intuitive Bayesian
model averaging result that we should weight (i.e.,
trust) the expected predictions of the MC and TD
models by the conditional probability of these models
given the data D; this fundamental observation under-
lies the premise of the paper:

If we arbitrarily set P (MC |D) = λ and P (TD |D) =
(1 − λ) then RBMA

t = Rλ
t and we have exactly re-

derived the offline view of SARSA(λ). But given this
Bayesian model averaging perspective, we ask whether
P (MC |D) = λ and P (TD |D) = (1−λ) with fixed λ are
really sensible model weightings? In fact, these weights
are not data dependent as the form of P (MC |D) and
P (TD |D) suggest they should be. In the next section
we derive a novel model-weighting for P (MC |D) and
P (TD |D) that is both data-dependent and as efficient
to compute as the non-data-dependent SARSA(λ).

3.2. Gaussian Model

We assume Q-values of each state-action pair are inde-
pendently Gaussian distributed (Dearden et al., 1998),
thus we write local models m over each qs,a as follows:2

P (qs,a|m) = N (qs,a;µm
s,a, (σm

s,a)2). (9)

Each model m is summarized by sufficient statistics
(µm

s,a, σm
s,a) representing the mean and standard devi-

ation for the normal distribution N over each qs,a.

For models m ∈ {MC ,TD}, the model means are re-
spectively µMC

s,a = qMC
s,a and µTD

s,a = qTD
s,a where qMC

s,a

and qTD
s,a are defined w.r.t. s = st and a = at:

qTD
s,a = rt+1 + γQπ(st+1, at+1) (10)

qMC
s,a = rt+1 + γRBMA

t+1 (11)

We note some crucial details: (a) qMC
s,a and qTD

s,a

are samples of random variable qs,a — we construct
Bayesian models of qs,a using these MC and TD sam-
ples as means µMC

s,a and µTD
s,a ; (b) looking ahead we pro-

vide the recursive definition of RBMA
t+1 in (15); (c) tech-

nically, we note the MC return is only locally Monte
Carlo (not a true MC return to the end of the trial).

Given the means µMC
s,a and µTD

s,a , we could explic-
itly compute σMC

s,a and σTD
s,a from the data set D =

2For each m ∈ {MC ,TD}, there is actually a set of
models {ms,a} for all state-action pairs; we drop the sub-
script and write m = ms,a when s, a are clear from context.

⋃
a∈A,s∈S Ds,a where Ds,a = {RBMA

t |s = st, a = at}
is the set of observed returns. But this would require
caching all data and recomputing σMC

s,a and σTD
s,a from

the new means µMC
s,a and µTD

s,a on each state-action
visit. As this is prohibitively expensive, we must avoid
caching D. However, we note that an excellent surro-
gate standard deviation that captures the general de-
viation characteristics of the observed returns Ds,a is
simply the standard deviation σs,a of Ds,a:

µs,a =

P
d∈Ds,a

d

|Ds,a|
σs,a =

 P
d∈Ds,a

(d− µs,a)2

|Ds,a|

! 1
2

Hence we set both σMC
s,a = σTD

s,a = σs,a. Later in the
context of TD-BMA in Algorithm 3, we will discuss
how the µs,a and σs,a can be updated efficiently online.

Now that we’ve specified µm
s,a and σm

s,a to define
P (qs,a|m) for both m ∈ {MC ,TD} in (9), we return
to (8). For (8), we need to derive two quantities to
compute RBMA

t : (a) the model prediction which we
can trivially derive from the known properties of the
normal distribution: EP (qs,a|m) [qs,a] = µm

s,a = qm
s,a;

and (b) the model weight P (m|D), which we derive as
follows where m = ms,a and C = (2πσ2

s,a)−1/2:

P (m|D)
Indep.

= P (m|Ds,a)
Bayes rule∝ P (Ds,a|m)P (m)

Unif. prior∝ P (Ds,a|m)
i.i.d.=

∏
d∈Ds,a

P (d|m)

=
∏

d∈Ds,a
N (d; qm

s,a, σ2
s,a)

=
∏

d∈Ds,a
Ce

−
(d−qm

s,a)2

2σ2
s,a

= C |Ds,a|e

„
1

2σ2
s,a

« ∑
d∈Ds,a

(
−d2 − (qm

s,a)2 + 2qm
s,ad

)
(12)

In order, we exploited independence of the model m
(for s, a) from data other than Ds,a, Bayes rule, an as-
sumption of a uniform prior P (m) over models m, the
i.i.d. assumption, the definition of the normal distribu-
tionN (d; qm

s,a, σ2
s,a) and from there, simple exponential

and algebraic identities. Next we simplify :

= −
X

d∈Ds,a

d2 −
X

d∈Ds,a

(qm
s,a)2 + 2qm

s,a

X
d∈Ds,a

d

= −|Ds,a|(σ2
s,a + µ2

s,a) +−|Ds,a|(qm
s,a)2 + 2qm

s,a|Ds,a|µs,a

= −|Ds,a|
`
σ2

s,a + µ2
s,a + (qm

s,a)2 − 2qm
s,aµs,a

´
= −|Ds,a|σ2

s,a +−|Ds,a|(qm
s,a − µs,a)2 (13)

Here we rewrote the first
∑

using the identity:

σ2
s,a =

P
d∈Ds,a

d2

|Ds,a|
− µ2

s,a

=⇒
P

d∈Ds,a
d2 = |Ds,a|(σ2

s,a + µ2
s,a)
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We simplified the second
∑

noting that the sum-
mand is independent of the variable being summed
over. And for the third

∑
, we have simply noted this is

the definition of the mean µs,a of Ds,a (modulo |Ds,a|).

Now, substituting (13) into of (12), we obtain:

P (m|D) ∝ C |Ds,a|e
−
|Ds,a|σ2

s,a

2σ2
s,a

− |Ds,a|
2σ2

s,a
(qm

s,a−µs,a)2

= e−
|Ds,a|

2 C |Ds,a|

(
e
− (qm

s,a−µs,a)2

2σ2
s,a

)|Ds,a|

= e−
|Ds,a|

2 N (qm
s,a;µs,a, σ2

s,a)|Ds,a| (14)

This is both a pleasing and important result. We be-
gan with P (m|D) where the model m had a mean qm

s,a

likely to change on every update (it is itself a sample).
This raised the possibility that we might have needed
to recompute the entire model posterior P (m|D) every
time the data set D was updated. However, by var-
ious manipulations and identities, we showed in the
final result that in fact we need only know |Ds,a| and
the first and second moments (µs,a and σ2

s,a) of Ds,a

in order to compute P (m|D). This is important since
we will show next that all of these statistics can be
updated online in constant time without caching D!

Finally we derive the exact individual probabilities
P (m|D) for m ∈ {MC ,TD} where (a) Ns,a = |Ds,a|
and (b) we note the proportionality constants (call
them CMC and CTD) for respective models P (MC |D)
and P (TD |D) are independent of the model and hence
factor and cancel from P (m|D), leaving just N (·):

P (m|D) =
P (m|D)∑

m∈{MC ,TD} P (m|D)

=
[N (qm

s,a;µs,a, σ2
s,a)]|Ns,a|

[N (qMC
s,a ;µs,a, σ2

s,a)]|Ns,a| + [N (qTD
s,a ;µs,a, σ2

s,a)]|Ns,a|

With this result, we have derived all components re-
quired to compute RBMA

t from (8) for the Gaussian
BMA model. Recalling definitions of qTD

s,a in (10)
and qMC

s,a in (11) and defining λ = P (MC s,a|D) (then
1− λ = 1− P (MC s,a|D) = P (TDs,a|D)), we obtain:

RBMA
t =

X
m∈MCs,a,TDs,a

EP (qs,a|m) [qs,a] P (m|D)

= qTD
s,a P (TDs,a|D) + qMC

s,a P (MC s,a|D)

= (rt+1 + γQπ(st+1, at+1))(1− λ) + (rt+1 + γRBMA
t+1 )λ

= (1−λ)rt+1+λ(rt+1)+γ(1−λ)Qπ(st+1, at+1)+γλRBMA
t+1

= rt+1 + γ
h
(1− λ)Qπ(st+1, at+1) + λRBMA

t+1

i
(15)

This final result is exactly the same form as (7) ex-
cept that here we have re-derived the SARSA(λ) TD

Algorithm 3 TD-BMA-Offline-Update(T )

begin
RBMA

T = rT+1

for (t = T . . . 0) do

// For readability, let s = st, a = at

if (t < T ) then
// Compute model expectations
qTD

s,a = rt+1 + γQπ(st+1, at+1)

qMC
s,a = rt+1 + γRBMA

t+1

// Compute BMA model weighting λ
// λ = P (MC s,a|D)
// 1− λ = 1− P (MC s,a|D) = P (TDs,a|D)

λ =
N (qMC

s,a ;µs,a,σ2
s,a)Ns,a

N (qMC
s,a ;µs,a,σ2

s,a)Ns,a+N (qTD
s,a;µs,a,σ2

s,a)Ns,a

// Compute BMA return; note the
// equivalence: RBMA

t = qTD
s,a (1− λ) + qMC

s,a λ

RBMA
t =rt+1+γ

ˆ
(1− λ)Qπ(st+1, at+1)+λRBMA

t+1

˜
Qπ(s, a) = Qπ(s, a) + α

ˆ
RBMA

t −Qπ(s, a)
˜

// Update µ, σ sufficient statistics (Knuth, 1998)
Ns,a = Ns,a + 1
∆ = RBMA

t − µs,a

µs,a = µs,a + ∆
Ns,a

M2
s,a = M2

s,a + ∆ · (RBMA
t − µs,a)

if Ns,a > 1 then
σs,a =

p
M2

s,a/Ns,a

end

return estimate in a Bayesian framework where λ is
automatically adapted to the data using the Bayesian
model averaging perspective.

From this we note that we need only modify the
SARSA(λ) update in Algorithm 2 in three ways to
obtain TD-BMA in Algorithm 3: (a) in place of
a fixed λ calculation, we compute the BMA adap-
tive version of λ; (b) from this λ, we showed in (15)
we can compute RBMA

t analogously to Rλ
t , then in

Q-value update (3) we replace the error ∆Qλ
t with

∆QBMA
t =

[
RBMA

t −Qπ(st, at)
]
; (c) using the new

return RBMA
t , we do an online update of the sufficient

statistics Ns,a, µs,a, σs,a of Ds,a required by TD-BMA.

Constant time and space online algorithms for main-
taining the mean µs,a and standard deviation σs,a as
new data is accumulated in Ds,a are given in (Knuth,
1998) and are shown in Algorithm 3; these updates
also maintain Ns,a, which trivially counts the number
of updates for Qπ(s, a), and M2

s,a, which is required for
the numerically stable, efficient online computation of
σ2

s,a. For initialization, we assume µs,a = 0, σs,a = ∞,
Ns,a = 0 and M2

s,a = 0.
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Figure 1. (a,b,c) Various Racetrack domains evaluated in this paper. Initial states are labeled ’S’, terminal states are
labeled ’F’. Black squares delineate walls and whitespace indicate legal car coordinates. Gray indicates obstacles that
reset the car to the initial state and result in a penalty of -100. (d) The Mail Robot domain evaluated in this paper.
The robot can pick up mail at blocks labeled P that is intended for different dropoff points labeled D. Gray squares in
this domain incur a penalty of -100, but do not reset the robot state.

Complexity Analysis: One can easily verify that
both SARSA(λ) and TD-BMA require constant time
per st, at update and hence each trial of T steps
takes O(T ) time for both algorithms. While TD-
BMA requires four more constants per state-action
pair (Ns,a, µs,a, σ2

s,a,M2
s,a) than SARSA(λ), both al-

gorithms clearly still have O(|S||A|) space complexity.
Hence TD-BMA and SARSA(λ) have the same time
and space complexity, even though TD-BMA manages
to adapt λ in a Bayesian model averaging framework.

4. Empirical Results

Having worked through the derivation of TD-BMA,
we now reach the moment of truth: does TD-BMA
really provide a better way of adapting λ than using
any fixed λ across different problem domains?

To answer this question, we examine the SARSA(λ)
and TD-BMA policy evaluation algorithms respec-
tively defined in Algorithms 2 and 3 within the same
Generalized Policy Iteration framework of Algorithm 1
where ε = 0.05 and we update the policy π after every
trial. We evaluate SARSA(λ) and TD-BMA on two
very different reinforcement learning domains: a vari-
ant of the Racetrack domain (Barto et al., 1993)
with the objective to reach the goal as fast as possible
with fewest penalties, and a large state-space variant of
the Mail robot domain with repeating multiple ob-
jectives to collect mail that randomly arrives at pickup
points and deliver it to the dropoff points that the mail
is addressed to.

Racetrack Formally, the state in Racetrack is a
combination of a car’s coordinate position 〈x, y〉 and

velocity 〈x′, y′〉 in each coordinate direction. A car be-
gins at one of the initial start states (chosen uniformly
randomly) with velocity 〈x′, y′〉 = 〈0, 0〉, receives −1
for every action taken, except for 0 in the absorbing
goal states. Actions 〈x′′, y′′〉 available to the car are
integer accelerations {−1, 0, 1} in each coordinate di-
rection. If the car hits a wall, then its velocity 〈x′, y′〉
is reset to 〈0, 0〉. We use discount γ = 1 and terminate
trials when T > 200 steps. Every action costs −1 to
execute, except for grayed areas which incur penalty
−100 and cause a reset to the initial state.

The three Racetrack domains we use in this paper
are shown in Figure 1(a,b,c).

Mail Robot Formally, the state in Mail Robot
is a combination of a robot’s coordinate position
〈x, y〉, velocity 〈x′, y′〉, the boolean status variables
〈p1, p2, p3, p4〉 for each pickup point pi indicating
whether mail has arrived, holders on the robot for
up to four pieces of mail 〈m1,m2,m3,m4〉 where each
piece of mail mi (if it exists) is assigned to one of the
four dropoff points dj , i.e., mi ∈ {d1, d2, d3, d4}. Loco-
motion in this problem is identical to the Racetrack
domain. Mail randomly arrives continuously with a
mean interval of 30 time steps at each pickup point.
The reward is zero for all actions except encountering
a gray square (−100) or successfully delivering a piece
of mail (+4). We use discount factor 0.9 and terminate
trials after T = 300 time steps.

Figure 1(d) shows the topology of the mail robot do-
main that we evaluate in this paper. We note that
taking into account all state variables, the robot could
potentially explore millions of reachable states in this
problem, making it very difficult for RL algorithms.
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Figure 2. Average reward for policy vs. the # of learning trials on two configurations of the Racetrack domain and the
single configuration of the Mail Robot domain. 95% confidence intervals obtained from averaging policy performance
over 100 separate training runs are shown for each algorithm.
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Figure 3. (left,center) Average reward for policy vs. the # of learning trials for various α settings of SARSA(λ) and TD-
BMA on one Racetrack and one Mail Robot domain with 95% confidence intervals obtained from averaging policy
performance over 100 separate training runs. (right) Average value of λ per trial vs. number of trials for various domains.

4.1. Results Summary

In Figure 2, we show the average policy reward for the
policy vs. the number of learning trials with a limit
on T as defined above for each respective problem and
α = .15 for all problems. We do not show λ = 0
(pure TD) or λ = 1.0 (pure Monte Carlo) as these
were always outperformed by one of the other λ values
for SARSA(λ). Most importantly, we note that the
adaptive λ of TD-BMA always outperforms all other
fixed values of λ in SARSA(λ) at all stages of learning.

In Figure 3 (left,center), we show the performance of
TD-BMA and the best SARSA(λ) for different learn-
ing rates α. For Mail Robot we see that TD-BMA
for any α outperforms the best SARSA(λ) over all α.
For Racetrack Curves, we see that TD-BMA out-
performs SARSA(λ) for the same α, except α = 0.05.
TD-BMA performs best with more aggressive learning
rates since it reduces variance in the return estimates.

For Figure 3 (right), we see the average λ per trial vs.
the percent trials completed (different domains had
differing numbers of trials). We see that λ generally

decreases over time as the value function stabilizes and
TD-BMA learns it can trust the TD return. The ex-
ception is Mail Robot where the state is techically
partially observed since mail arrival is time-dependent,
yet time is not encoded in the state; since the MC re-
turn provides useful time-dependent information not
given by the time-independent TD return, TD-BMA
settles on λ ≈ 0.5 to maintain the best value estimate.

5. Related Work

While the mention of Bayesian reinforcement learn-
ing combined with a Gaussian value belief model may
suggest a similarity to Gaussian process temporal dif-
ference learning (GPTD) (Engel et al., 2005), the two
frameworks are very different in intent. GPTD learn-
ing makes use of the non-parametric Gaussian Pro-
cess in its Bayesian model, which is very different in
spirit and computation to the more standard indepen-
dent Gaussian distribution per state-action pair used
here. Most importantly, we note that to the best of
our knowledge the GPTD approach has not been used
to explicitly adapt the λ parameter in TD methods,
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which is the purpose of our Bayesian model and deriva-
tion in TD-BMA.

In addition to GPTD, there are numerous other
Bayesian RL approaches, e.g. (Dearden et al., 1998;
1999; Wang et al., 2005; Poupart et al., 2006). How-
ever, the focus of these other Bayesian RL approaches
is typically to exploit the value distribution for the
purpose of balancing the exploration vs. exploitation
tradeoff. Again, our present work is concerned sim-
ply with automatically adapting the λ parameter in
a Bayesian setting although we note that many of
the ideas proposed in these papers that exploit the
Bayesian value model for the exploration-exploitation
tradeoff may be adapted to use the value model and
efficient update algorithm presented here.

(Sutton & Singh, 1994) propose three alternate meth-
ods for adaptive weighting schemes in TD algorithms.
However, their first two proposals are intended for the
restricted subclass of acyclic state spaces only (the do-
mains evaluated here were cyclic) and the third pro-
posal is a model-based RL algorithm that requires
maintaining an estimate of the model (n.b., we did not
incur the time and memory expense of maintaining a
model estimate of T (s, a, s′) for TD-BMA), which for
a fixed policy could incur up to O(|S|2) time and space
overhead not required by TD-BMA.

6. Concluding Remarks

This work proposed a Bayesian model averaging ap-
proach to adapting the λ parameter in temporal dif-
ference reinforcement learning methods. We began by
deriving a novel Bayesian model averaging perspective
of the temporal difference update intended to reduce
variance in the average of the different n-step returns
of TD-based SARSA(λ) and showed that while the
Bayesian perspective suggests adapting λ in a data-
dependent way, standard SARSA(λ) approaches sim-
ply fix this parameter and hand-tune it to a partic-
ular problem. Using our novel Bayesian perspective,
we contributed the efficient Gaussian-based TD-BMA
algorithm to compute a temporal difference Bayesian
model average of returns that has exactly the same
time and space complexity as SARSA(λ) while auto-
matically adapting λ in light of all previously seen data.
Empirically, TD-BMA performed as well and generally
much better than SARSA(λ) for all fixed values of λ
without requiring manual tuning of the λ parameter.

Important steps for future work are to determine
whether TD-BMA can be extended to accommodate
changing λ using an extension of the eligibility trace
used in TD/SARSA(λ) (Sutton & Barto, 1998). This

would enable an online update permitting within-trial
TD-BMA learning. A side benefit of an eligibility
trace-like approach to TD-BMA is that it provides one
way to introduce function approximation techniques to
TD-BMA similarly to the way eligibility traces facil-
itate function approximation in TD/SARSA(λ). To-
gether these ideas hold promise for a novel class of
data-dependent, Bayesian λ-adaptive TD/SARSA(λ)
algorithms with better performance than any fixed λ.
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