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Abstract

Classical dynamic Bayesian networks
(DBNs) are based on the homogeneous
Markov assumption and cannot deal with
heterogeneity and non-stationarity in tem-
poral processes. Various approaches to relax
the homogeneity assumption have recently
been proposed. The present paper aims to
improve the shortcomings of three recent
versions of heterogeneous DBNs along the
following lines: (i) avoiding the need for data
discretization, (ii) increasing the flexibility
over a time-invariant network structure, (iii)
avoiding over-flexibility and overfitting by
introducing a regularization scheme based
in inter-time segment information sharing.
The improved method is evaluated on syn-
thetic data and compared with alternative
published methods on gene expression time
series from Drosophila melanogaster.

1. Introduction

There has recently been considerable interest
in structure learning of dynamic Bayesian net-

works (DBNs), with a variety of applications
in signal processing and computational biol-
ogy; see e.g. (Robinson & Hartemink, 2009) and

(Grzegorczyk & Husmeier, 2009). The standard
assumption underlying DBNs is that time-series
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have been generated from a homogeneous Markov
process. This assumption is too restrictive in many
applications and can potentially lead to erroneous
conclusions. In the recent past, various research ef-
forts have therefore addressed this issue and proposed
more flexible models.

(Robinson & Hartemink, 2009) proposed a discrete
heterogeneous DBN, which allows for different struc-
tures in different segments of the time series, with a
regularization term penalizing differences among the
structures. (Grzegorczyk & Husmeier, 2009) proposed
a continuous heterogeneous DBN, in which only the
parameters are allowed to vary, with a common net-
work structure providing information sharing among
the time series segments. (Lebre, 2007) proposed an
alternative continuous heterogeneous DBN, which is
more flexible in that it allows the network structure
to vary among the segments. The model proposed
in (Ahmed & Xing, 2009) and (Kolar et al., 2009) can
be regarded as a heterogeneous DBN where inference
is based on sparse L1-regularized regression (LASSO)
of the interaction parameters, and a second L1 regu-
larization term penalizes differences between networks
associated with different segments.

Parameter estimation in (Ahmed & Xing, 2009) and
(Kolar et al., 2009) is based on penalized maximum
likelihood for fixed regularization parameters, which
are optimized using BIC or cross-validation. In
the present paper, we follow (Robinson & Hartemink,
2009), (Grzegorczyk & Husmeier, 2009) and (Lebre,
2007) to infer the network structure, the interaction
parameters, as well as the number and location of
changepoints in a Bayesian framework by sampling
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them from the posterior distribution with RJIMCMC
(Green, 1995). The objective of our paper is to pro-
pose a model that addresses the principled short-
comings of the three Bayesian methods mentioned
above. Unlike (Robinson & Hartemink, 2009), our
model is continuous and therefore avoids the infor-
mation loss inherent in a discretization of the data.
Unlike (Grzegorczyk & Husmeier, 2009), our model al-
lows the network structure to change among segments,
leading to greater model flexibility. As an improve-
ment on (Lébre, 2007), our model introduces informa-
tion sharing among time series segments, which pro-
vides an essential regularization effect.

2. Background

This paragraph summarizes briefly the heterogeneous
DBN proposed in (Lebre, 2007). The model is based
on the first-order Markov assumption. This assump-
tion is not critical, though, and a generalization to
higher orders is straightforward. The value that a
node in the graph takes on at time t is determined
by the values that the node’s parents take on at the
previous time point, t—1, as well as the time series seg-
ment. More specifically, the conditional probability of
the observation associated with a node at a given time
point is a conditional Gaussian distribution, where the
conditional mean is a linear weighted sum of the par-
ent values at the previous time point, and the weights
themselves depend on the time series segment. The
latter dependence adds extra flexibility to the model
and thereby relaxes the homogeneity assumption. The
interaction weights, the variance parameters, the num-
ber of potential parents, the location of changepoints
demarcating the time series segments, and the number
of changepoints are given (conjugate) prior distribu-
tions in a hierarchical Bayesian model. For inference,
all these quantities are sampled from the posterior dis-
tribution with RIJIMCMC. Note that a complete spec-
ification of all node-parent configurations determines
the structure of a regulatory network: each node re-
ceives incoming directed edges from each node in its
parent set. In what follows, we will refer to nodes as
genes and to the network as a gene regulatory network.
The method is not restricted to molecular systems bi-
ology, though.

2.1. Model

Multiple changepoints. Let p be the number
of observed genes, whose expression values y =
{yi(t) hi<i<p,1<t<n are measured at N time points. M
represents a directed graph, i.e. the network defined
by a set of directed edges among the p genes. M, is

the subnetwork associated with target gene i, deter-
mined by the set of its parents (nodes with a directed
edge feeding into gene i). The regulatory relation-
ships among the genes, defined by M, may vary across
time, which we model with a multiple changepoint pro-
cess. For each target gene 4, an unknown number k; of
changepoints define k; + 1 non-overlapping segments.
Segment h = 1, .., k; 41 starts at changepoint 55“1 and
stops before €7, where & = (£0,...,€h71 ¢h .. ehithy
with ¢'~1 < ¢, To delimit the bounds, &) = 2
and ffiH N + 1. Thus vector & has length
|€;] = k; + 2. The set of changepoints is denoted by
¢ = {&}i<i<p. This changepoint process induces a
partition of the time series, y/' = (yl-(t))é;kl<t<£ih,7 with

different structures M associated with the different
segments h € {1,...,k;+ 1}. Identifiability is satisfied
by ordering the changepoints based on their position
in the time series.

Regression model. For all genes ¢, the random
variable Y;(t) refers to the expression of gene i at time
t. Within any segment h, the expression of gene i
depends on the p gene expression values measured at
the previous time point through a regression model
defined by (a) a set of s parents (parents /edges) de-
noted by M = {j1,....jon} C{L,....p}, IM}] = sl
and (b) a set of parameters ((af;)jc0.p, 01'); al; € R,

ot > 0. For all j # 0, al. = 0 if j ¢ ML

ij
For all genes 4, for all time points ¢ in segment h
(eh=1 <t < ¢, random variable Y;(t) depends on

?

the p variables {Y;(t — 1)}1<,<p according to
Yi(t) = al + ij al, Vit —1) +ei(t) (1)

where the noise €;(¢) is assumed to be Gaussian with
mean 0 and variance (o)?, e;(t) ~ N(0, (c1)?).

2.2. Prior

The k; + 1 segments are delimited by k; changepoints,
where k; is distributed a priori as a truncated Poisson
random vari%ble with mean A and maximum k = N—2:
P(k;|)\) o %ﬂ{kigm 1

Conditional on k; changepoints, the changepoint
positions vector & = (£9,&}, ..., €M) takes non-
overlapping integer values, which we take to be uni-
formly distributed a priori. There are (/N — 2) possible
positions for the k; changepoints, thus vector & has
prior density P(&; ki) =1/ (N_i) For all genes i and

all segments h, the number s? of parents for node i
LA restrictive Poisson prior encourages sparsity of the

network, and is therefore comparable to a sparse exponen-
tial prior, or an approach based on the LASSO.
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follows a truncated Poisson distribution with mean A

and maximum 35 = 5:
h

A%

h

P(s7|A) o WI{S;LSE}' (2)
2

Conditional on s, the prior for the parent set M” is

a uniform distribution over all parent sets with cardi-

nality sh: P(Mhb ||./\/th| =sh)y =1/( i?). The overall

prior on the network structures is given by marginal-

ization:

PMEA) =57 P(MIsP)P(sEIA)  (3)

h_
sip=1

Conditional on the parent set M? of size s?, the

h : : —
si + 1 regression coefficients, denoted by ayn =
h h . .
(az0, (a3j)jermr ), are assumed zero-mean multivariate

Gaussian with covariance matrix (o/")2% \n,

Toyh-1
_1 @ pqn & pgh G aql
Plal MY ol J=2m(o ) S |2 exp| =75 5 )

K3

where the symbol { denotes matrix transposition,
VI 5_2DL?(9)DM§L (y) and Dy (y) is the (& —

€1 x (s +1) matrix whose first column is a vector of
1 (for the constant in model (1)) and each (j+1)* col-
umn contains the observed values (y;(¢))¢n-1o, ¢n for

all factor gene j in M”. Finally, the conjugate prior
for the variance (0/)? is the inverse gamma distribu-
tion, P((c1)?) = ZG(vo,70). Following (Lebre, 2007),
we set the hyper-hyperparameters for shape, vy = 0.5,
and scale, 79 = 0.05, to fixed values that give a vague
distribution. The terms A and A can be interpreted as
the expected number of changepoints and parents, re-
spectively, and 62 is the expected signal-to-noise ratio.
These hyperparameters are drawn from vague conju-
gate hyperpriors, which are in the (inverse) gamma
distribution family: P(A) = P(A\) = Ga(0.5,1) and
P(6%) =1G(2,0.2).

2.3. Posterior
Equation (1) implies that

—(Eh-erh
Pyl €l MY, a0l = (Vamol)

(! = Dpgr@)ane)™ (! — DMg(y)aM;z)>
exp — .

2(of)?
(4)
From Bayes theorem, the posterior is given by
P(k,&,M,a,0° X A, 8%[y) o (5)

P(8*)P(N)P(A) _HP(kil/\)P(éi\ki) ﬂP(M?IA)

h=1
P([o} 1)) Pai |Mi, [00]7,6%) Py 161, &8 M ol [07]7)

where all prior distributions have been defined above.

2.4. Inference

An attractive feature of the chosen model is that the
marginalization over the parameters a and ¢ in the
posterior distribution of (5) is analytically tractable:

P(k&MAASLY) — / P(k.£M.a.0\A5y)dado
(6)

See (Lebre, 2007) for details and an explicit expres-
sion. The number of changepoints and their location,
k,&, the network structure M and the hyperparam-
eters A, A, 6% can be sampled from the posterior dis-
tribution P(k, &, M, \, A, §2|y) with RIMCMC. A de-
tailed description can be found in (Lebre, 2007).

3. Model Improvement

Allowing the network structure to change between
segments leads to a highly flexible model. However,
this approach faces a conceptual and a practical prob-
lem. The practical problem is potential model over-
flexibility. If subsequent changepoints are close to-
gether, network structures have to be inferred from
short time series segments. This will almost inevitably
lead to overfitting (in a maximum likelihood context)
or inflated inference uncertainty (in a Bayesian con-
text). The conceptual problem is the underlying as-
sumption that structures associated with different seg-
ments are a priori independent. This is not realistic.
For instance, for the evolution of a gene regulatory
network during embryogenesis, we would assume that
the network evolves gradually and that networks asso-
ciated with adjacent time intervals are a priori similar.

To address these problems, we propose two methods
of information sharing among time series segments.
The first method is based on the hierarchical Bayesian
model of (Werhli & Husmeier, 2008). However, rather
than sharing information hierarchically — comparing
all network structures to a central latent structure —
we share information sequentially: a network structure
is a priori assumed to be similar to the adjacent ones.
The second method uses information from all the other
segments to define a prior distribution on the edges for
a given segment. We will investigate the relative mer-
its of these two information sharing schemes below.

3.1. Sequential information sharing

Denote by K; := k; + 1 the number of partitions as-
sociated with node i, and recall that each time se-

ries segment 3" is associated with a separate subnet-
work MP 1 < h < K;. We impose a prior distri-
bution P(MP|M"™ B;) on the structures, and the
joint probability distribution factorizes according to a
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Markovian dependence:

72/K17M1177Mf(1751) =

Py,
H (" (MO PMIIME™, B)P(B)  (T)

Similar to (Werhli & Husmeier, 2008) we define

exp(—Bi| Ml — ML)
Zl(ﬂl? M?_l)

for h > 2, where §; is a hyperparameter that defines
the strength of the coupling between M”? and M? -1
For h = 1, P(M?}) is given by (3). The denomina-
tor Z;(8;, M) in (8) is a normalizing constant, also
known as the partition function:

Zi(Bi) = ZM?EMie

where M; is the set of all valid subnetwork struc-
tures. If we ignore any fan-in restriction that might
have been imposed a priori (via §), then the ex-
pression for the partition function can be simplified:

P(MPIM™H B:) =

(8)

—Bi | MP—MmEL
Bi| MG =M (9)

Zi(Bi) =~ Hi Hj Z;;(B;) where
! — 'el-l.feh._l _A.
Zis(B) =, e Pl = 14 e (10)
and hence
Zi = (1 +6_Bi)p (11)
Inserting (11) into (8) gives:
exp(—Bi|MI = M)

PMIMI™Y B) = (12)

(14 e Bi)?
It is straightforward to integrate the proposed model
into the RIMCMC scheme of (Lébre, 2007). When

proposing a new network structure M? — M, for
segment h, the prior probability ratio has to be re-
placed by the following one:

PMITUM", B) PO, (ME18)
PMITHME, B)P(MEIMETY B)
exp[—Bi(|MIT! — MP| + M) — MIT]))
exp[—B; ([ MIFT — M|+ [ Ml — MET))]

An additional MCMC step is introduced for sampling
the hyperparameters (; from the posterior distribu-

tion. For a proposal move 3; — f3; with symmetric

proposal probability Q(ﬁ]ﬁl) = Q(ﬁAB)) we get the
following acceptance probability:

(13)

K 5
sy ) v exp(—Fi|MP — MPTY))
ABilp) = mln{}H? exp(—Bi Ml — MIT1)
(14 e™)" P(B) }
(Lt ey P(B,-)’l (14)

where in our study the hyperprior P(/3;) was chosen as
the uniform distribution on the interval [0, 10]. Note
that the scheme proposed in (Robinson & Hartemink,
2009) can be regarded as a special case of the one we
propose, with two simplifications: (1) Changepoints
are not allowed to vary between nodes. (2) The com-
mon hyperparameter 3; = 8 Vi has to be chosen by
the user in advance and is not inferred from the data.

3.2. Global information sharing

We investigate an alternative scheme, based on ideas
presented in (Ferrazzi et al., 2008). Let ef; € {0,1}
denote the indicator variable for a directed edge from
node ¢ to node j in the hth network (i.e. the network
corresponding to the hth section of the time series),
and let 6;; € [0, 1] denote the probability that the node
pair (4,7) is connected by a directed edge. We assume
that for a given node pair (i,7), the edge indicator

variables {e} are iid distributed,
h
P(ef;10:;) = (655)°% (1 — 05)1 =% (15)
with a conjugate beta prior on the parameters 60;;:

I‘(aij -|-0471]) ii—1
S R L O
[(cvij)T(ag5) ¥

where o;; and @;; are hyperparameters.

P(6;;) = 0;;) " (16)

Given the

subnetworks M in all segments & different from the
current segment h, the prior probability of the subnet-
work in the current segment, M, is

PMEM: V) =TT, Pl eldigm) (17)

P elibin) = [ Pt POy 1€ )0,
where
P(0l{els}im) < PUelYinlbi)PO;)  (18)

We introduce the following sufficient statistics: BZ};
is the number of networks in segments different from
the current segment h in which the node pair (4, 7) is
connected by a directed edge. Conversely, Blhj is the
size of the complement set, i.e. the number of net-
works in segments different from the current segment
h without an edge from node i to node j. Obviously,
ijJrij =K; —1, and

3 Bl Bh
P({el}znl0is) = 657 (1—0i5)"% (19)
Inserting (19) and (16) into (18) leads to:

- T(ovj + Bl +ai; + Bl)

PO 1€}z = : : (20)
F(B + OZ”)F(B~ + Oéij)
93_1‘;’*0‘1]

)

(1 _ 0 )B o —1
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Inserting (15) and (20) into (17) yields:

; T(evj + Bl +a5; + Bl
P el = o B 05 + By)
L(By; + i) T'(Bj; + ai)

h h o h o h o
[t - g, PG,

_ I(cij + Bl +ai; + Bl)

(B, + aiy)T (Bl + @;)

D(Bl + aij + ely)D(Bl + @iy + elf)
[(uij + Bl +aij + B 4 1)

(21)
where we have defined % =1- efj. Using I'(z+1) =
aT'(x), this expression can be simplified:

W By (g
@ij + Bly + @ij + B,

P(efy = 1{el}ipm) =

The MCMC scheme is identical to the one described

in (Lebre, 2007), except that P(./\/lﬂ{./\/l?};#h) has
to be used as the prior on M” which is obtained by
inserting (22) into (17). In our study, we have set
a;; = 0; = 1, in which case P(6;;) in (16) reduces to
the uniform distribution over the unit interval. One
can extend this scheme by imposing a hyperprior on
a;; and o5, and sampling these hyperparameters from
the posterior distribution with MCMC - this is the
subject of our future work.

4. Setup and Diagnostics

The methods described in this paper have been imple-
mented in R, based on code from (Lebre, 2007), and
the software is available from the authors upon re-
quest. Our program sets up an RJMCMC simulation
to sample the network structure, the changepoints and
the hyperparameters from the posterior distribution.
As a convergence diagnostic we monitor the poten-
tial scale reduction factor (PSRF) (Gelman & Rubin,
1992), computed from the within-chain and between-
chain variances of marginal edge posterior probabil-
ities. Values of PSRF<1.1 are usually taken as in-
dication of sufficient convergence. In our simula-
tions, we extended the burn-in phase until a value of
PSRF<= 1.05 was reached, and then sampled 1000
network and changepoint configurations in intervals of
200 RJIMCMC steps. From these samples we compute
the marginal posterior probabilities of all potential in-
teractions, which defines a ranking of the edges in the
recovered network. For the synthetic simulation study
(see below), the gold standard (i.e. the true inter-
action network) is known. Therefore, by varying the
threshold on the rank, we can construct the Receiver
Operating Characteristic, or ROC curve (plotting the

sensitivity or recall against the complementary speci-
ficity), and the precision-recall or PR curve (plotting
the precision against the recall). To assess and suc-
cinctly score the network reconstruction accuracy, we
follow a three-prong approach and compute three fig-
ures of merit that have been widely applied in the lit-
erature: the area under the ROC curve (AUROC), the
area under the PR-curve (AUPRC), and the true pos-
itive rate at a fixed false positive rate of 5% (TPFP5).

5. Data
5.1. Synthetic data

We generated synthetic time series, each consisting of
K = 10 segments of length 50, as follows. Random
networks /\/lh, 1 < h < K, are generated stochasti-
cally, with the number of edges drawn from a Pois-
son distribution. Each directed edge from node j (the
parent) to node 4 (the child) has a weight a?j that de-
termines the interaction strength, drawn from a Nor-
mal distribution. The signal associated with node i
at time ¢, y;(t — 1), evolves according to the heteroge-
neous first-order Markov process of equation (1). De-
note by A" the matrix of all interaction strengths a?j.
To ensure stationarity of the time series, we tested if
all eigenvalues of A" had a modulus < 1, and removed
edges randomly until this condition was met. The net-
works M" that generated the time series consisted of
10 nodes, with on average 3 parents per node. To simu-
late a sequence of networks separated by changepoints,
we sampled Anj, from a Poisson distribution and then
randomly changed Any, edges between M” and M"+1,
leaving the total number of edges unchanged. The pa-
rameter of the Poisson distribution, which determines
the average number of changes between adjacent struc-
tures, M" and M"*+1, was varied, as described in more
detail in Section 6.1.

5.2. Gene expression times course during
morphogenesis in Drosophila

We also applied our method to the developmental gene
expression time series for Drosophila melanogaster
(fruit fly), obtained by (Arbeitman et al., 2002). Ex-
pression values of 4028 genes were measured with mi-
croarrays at 67 time points during the Drosophila
life cycle, which contains the four distinct phases
of embryo, larva, pupa and adult. In our study
we concentrated on a subset of 11 genes that regu-
late muscle development. This dataset has also been
used in (Guo et al., 2007), (Zhao et al., 2006) and
(Robinson & Hartemink, 2009).
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Figure 1. Network reconstruction accuracy, measured with three scoring schemes, as discussed in Section 4. Left panel:
AUROC; centre panel: AUPRC; right panel: TPEFP5. The boxplots show the distributions of these scores, where the
horizontal bar shows the median, the box margins show the 25th and 75th percentiles, the whiskers indicate data within 2
times the interquartile range, and circles are outliers. The grey shading indicates the method. Unshaded boxes: HetDBN-
0. Light shading: HetDBN-SI. Dark shading: HetDBN-GI. The numbers on the horizontal axes indicate the average
number of network structure changes per node between adjacent time series segments. A paired t-test showed that all
differences are significant at the 5% level except for the following. AUROC: HetDBN-GI versus HetDBN-SI, 1 change;
AUPRC: HetDBN-0 versus Het DBN-GI, 2 changes; TPFP5: HetDBN-0 versus HetDBN-GI, 1 and 2 changes.

6. Results and Discussion
6.1. Experiments on simulated data

We compared the network reconstruction accuracy of
three models: the heterogeneous DBN proposed in
(Lebre, 2007) (HetDBN-0), the heterogeneous DBN
with the sequential information sharing scheme pro-
posed in Section 3.1 (HetDBN-SI), and the hetero-
geneous DBN with the global information sharing
scheme proposed in Section 3.2 (HetDBN-GI). The
methods were applied to the synthetic data described
in Section 5.1. We repeated the simulations for each
experimental setting on 10 independent data instan-
tiations, and scored the network reconstruction accu-
racy with three separate measures, as discussed in Sec-
tion 4. We investigated how the average number of
changes in network structure between adjacent seg-
ments affects the performance. Figure 1 shows box-
plots of the score distributions. To test for significance
of the discerned trends, we carried out a paired t-test;
see the caption of Figure 1, and the supplementary
material? for a table. When there are no changes in
the network structure, information sharing results in a
considerable performance improvement, and Het DBN-
GI outperforms Het DBN-SI. The latter finding is plau-
sible, as Het DBN-GI utilizes information from all the
segments, whereas HetDBN-SI only utilizes informa-
tion from the adjacent segments. When the number of
edge changes between segments increases, information
sharing achieves a less substantial, yet still significant
improvement over HetDBN-0. Also, the performance
between the two approaches is inverted, with Het DBN-
SI slightly yet significantly outperforming HetDBN-

2The supplementary material can be found at:
http://www.bioss.ac.uk/staff/dirk/Supplements/

GI. Again, this result is plausible. Larger differences
among network structures imply that, per se, less is
gained from information sharing. Also, given a seg-
ment, a network associated with a remote segment
will on average have accumulated a larger number of
structure differences than a network associated with
a close segment; this explains the superiority of the
sequential (HetDBN-SI) over the global (HetDBN-GI)
information sharing scheme. To investigate the trend
more thoroughly, we reduced the computational costs
of the MCMC simulations by reducing the network
complexity to 1 target node and 20 potential parents,
and keeping the hyperparameters fixed. We then car-
ried out simulations over an extended range of average
structure differences. The results are shown in Fig-
ure 2 - for space restrictions, we only show the AUROC
scores. For small numbers of differences among the
network structures associated with different segments,
information sharing results in a considerable perfor-
mance improvement over HetDBN-0. The amount
of improvement degrades as the differences among
structures increase. For small differences, HetDBN-
GI tends to outperform HetDBN-SI. This trend is in-
verted when the difference among network structures
increases. These results thus confirm the patterns
found in Figure 1, which have been discussed above.

6.2. Gene networks related to morphogenesis
in the Drosophila life cycle

The top panel in Figure 3 shows the marginal pos-
terior probability of changepoints during the life cy-
cle of Drosophila melanogaster, inferred with the pro-
posed method HetDBN-SI from the gene expression
time series described in Section 5.2. For a comparison,
we applied the method proposed in (Ahmed & Xing,
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Figure 2. Network reconstruction accuracy for different
methods. The plots show mean AUROC scores (vertical
axis) plotted against the average number of network struc-
ture changes per node between adjacent time series seg-
ments (horizontal axis). Mean values and standard errors
were obtained from 10 independent time series.

2009), using the authors’ software package TESLA.
Note that this model depends on various regulariza-
tion parameters, which were optimized by maximizing
the BIC score, as in (Ahmed & Xing, 2009). The re-
sults are shown in the bottom panel of Figure 3, where
the graph shows the L1-norm of the difference of the
regression parameter vectors associated with adjacent
time points. (Robinson & Hartemink, 2009) applied
their discrete heterogeneous DBN to the same data
set, and a plot corresponding to the top panel of Fig-
ure 3 can be found in their paper. A comparison
of these plots suggests that our method is the only
one that clearly detects all three morphogenic tran-
sitions: embryo — larva, larva — pupa, and pupa
— adult. The bottom panel of Figure 3 indicates
that the last transition, pupa — adult, is less clearly
detected with TESLA, and it is completely missing
in (Robinson & Hartemink, 2009). Both our method,
HetDBN-SI, as well as TESLA detect additional tran-
sitions during the embryo stage, which are missing in
(Robinson & Hartemink, 2009). We would argue that
a complex gene regulatory network is unlikely to tran-
sit into a new morphogenic phase all at once, and some
pathways might have to undergo activational changes
earlier in preparation for the morphogenic transition.
As such, it is not implausible that additional transi-
tions at the gene regulatory network level occur. How-
ever, a failure to detect known morphogenic transitions
can clearly be seen as a shortcoming of a method, and
on these grounds our model appears to outperform the
two alternative ones.
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Figure 3. Changepoints  during  morphogenesis  in
Drosophila melanogaster. Top panel: HetDBN-SI,
posterior probability of a changepoint occurring for any
node at a given time (vertical axis) plotted against time
(horizontal axis). Bottom panel: TESLA, L1-norm of the
difference of the regression parameter vectors associated
with two adjacent time points (vertical axis) plotted
against time (horizontal axis). The vertical dotted lines
indicate the three morphogenic transitions.

In addition to the changepoints, we have inferred net-
work structures for the morphogenic stages of embryo,
larva, pupa and adult. An objective assessment of the
reconstruction accuracy is not feasible due to the lim-
ited existing biological knowledge and the absence of
a gold standard. However, our reconstructed networks
show many similarities with the networks discovered
by (Robinson & Hartemink, 2009), (Guo et al., 2007)
and (Zhao et al., 2006). For instance, we recover the
interaction between two genes, eve and twi. This in-
teraction is also reported in (Guo et al., 2007) and
(Zhao et al., 2006), while (Robinson & Hartemink,
2009) seem to have missed it. We also recover a clus-
ter of interactions among the genes myo61f, msp300,
mhc, prm, mlcl and up during all morphogenic phases.
This result is not implausible, as all genes (except
up) belong to the myosin family. However, unlike
(Robinson & Hartemink, 2009), we find that actn also
participates as a regulator in this cluster. There is
some indication of this in (Zhao et al., 2006), where
actn is found to regulate prm. As far as changes be-
tween the different stages are concerned, we found an
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important change in the role of twi. This gene does
not have an important role as a regulator during the
early phases, but functions as a regulator of five other
genes during the adult phase: mici, gfl, actn, msp300
and sls. The absence of a regulatory role for twi dur-
ing the earlier phases is consistent with (Elgar et al.,
2008), who found that another regulator, mef2 (not in-
cluded in the dataset) controls the expression of mlcI,
actn and msp300 during early development.

7. Conclusions

We have proposed a novel heterogeneous DBN; which
has various advantages over existing schemes: it does
not require the data to be discretized (as opposed
to (Robinson & Hartemink, 2009)); it allows the net-
work structure to change with time (as opposed to
(Grzegorezyk & Husmeier, 2009)); it includes a regu-
larization scheme based on inter-time segment infor-
mation sharing (as opposed to (Lebre, 2007)); and
it allows all hyperparameters to be inferred from the
data via a consistent Bayesian inference scheme (as
opposed to (Ahmed & Xing, 2009)). An evaluation
on synthetic data has demonstrated an improved per-
formance over (Lébre, 2007). The application of our
method to gene expression time series taken during
the life cycle of Drosophila melanogaster has revealed
better agreement with known morphogenic transi-
tions than the methods of (Robinson & Hartemink,
2009) and (Ahmed & Xing, 2009), and we have de-
tected changes in gene regulatory interactions that are
consistent with independent biological findings. We
have carried out a comparison between two alterna-
tive paradigms of information sharing — global versus
sequential — and we have discussed the relative merits
and shortcomings.
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