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Abstract

In this paper we apply multi-armed ban-
dits (MABs) to improve the computational
complexity of AdaBoost. AdaBoost con-
structs a strong classifier in a stepwise fashion
by selecting simple base classifiers and us-
ing their weighted “vote” to determine the
final classification. We model this stepwise
base classifier selection as a sequential de-
cision problem, and optimize it with MABs
where each arm represents a subset of the
base classifier set. The MAB gradually learns
the “usefulness” of the subsets, and selects
one of the subsets in each iteration. Ad-
aBoost then searches only this subset in-
stead of optimizing the base classifier over the
whole space. The main improvement of this
paper over a previous approach is that we
use an adversarial bandit algorithm instead
of stochastic bandits. This choice allows us
to prove a weak-to-strong-learning theorem,
which means that the proposed technique re-
mains a boosting algorithm in a formal sense.
We demonstrate on benchmark datasets that
our technique can achieve a generalization
performance similar to standard AdaBoost
for a computational cost that is an order of
magnitude smaller.

1. Introduction

AdaBoost (Freund & Schapire, 1997) is one of the
best off-the-shelf learning methods developed in the
last decade. It constructs a classifier in a stepwise
fashion by adding simple classifiers (called base clas-
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sifiers) to a pool, and using their weighted “vote” to
determine the final classification. The simplest base
learner used in practice is the decision stump, a one-
decision two-leaf decision tree. Learning a decision
stump means selecting a feature and a threshold, so
the running time of AdaBoost with stumps is propor-
tional to the number of data points n, the number of
attributes d, and the number of boosting iterations T .
When trees (Quinlan, 1993) or products (Kégl & Busa-
Fekete, 2009) are constructed over the set of stumps,
the computational cost is multiplied by an additional
factor of the number of tree levels logN (where N
is the number of leaves) or the number of terms m.
Although the running time is linear in each of these
factors, the algorithm can be prohibitively slow if the
data size n and/or the number of features d is large.

There are essentially two ways to accelerate
AdaBoost in this setting: one can either limit the
number of data points n used to train the base learn-
ers, or one can cut the search space by using only a
subset of the d features. Although both approaches
increase the number of iterations T needed for conver-
gence, the net computational time can still be signifi-
cantly decreased. The former approach has a basic ver-
sion when the base learner is not trained on the whole
weighted sample, rather on a small subset selected ran-
domly using the weights as a discrete probability dis-
tribution (Freund & Schapire, 1997). A recently pro-
posed algorithm of this kind is FilterBoost (Bradley
& Schapire, 2008), which assumes that an oracle can
produce an unlimited number of labeled examples, one
at a time. In each boosting iteration, the oracle gen-
erates sample points that the base learner can either
accept or reject, and then the base learner is trained on
a small set of accepted points. The latter approach was
proposed by (Escudero et al., 2000) which introduces
several feature selection and ranking methods used
to accelerate AdaBoost. In particular, the Lazy-
Boost algorithm chooses a fixed-size random subset
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of the features in each boosting iteration, and trains
the base learner using only this subset. This technique
was successfully applied to face recognition where the
number of features can be extremely large (Viola &
Jones, 2004).

Recently, (Busa-Fekete & Kégl, 2009) proposed an im-
provement of LazyBoost by replacing the random
selection by a biased selection towards features that
proved to be useful in previous iterations. Learn-
ing the usefulness was achieved by using multi-armed
bandit (MAB) algorithms. They used a stochastic
MAB (UCB (Auer et al., 2002a)) which assumes that
the rewards are generated randomly from a station-
ary distribution. The algorithm was successful in ac-
celerating AdaBoost in practice, but due to the in-
herently non-stochastic nature of the rewards, (Busa-
Fekete & Kégl, 2009) could not state anything on the
algorithmic convergence of the technique, and so the
connection between AdaBoost and bandits remained
slightly heuristic.

In this paper we propose to use adversarial bandits in-
stead of stochastic bandits in a similar setup. In this
model the rewards are not assumed to be drawn from
a stationary distribution, and they can depend arbi-
trarily on the past. Using adversarial bandits, we can
prove a weak-to-strong-learning theorem which means
that the proposed technique remains a boosting algo-
rithm in a formal sense. Furthermore, the new algo-
rithm also appears good in practice: if anything, it
seems better in terms of generalization performance,
and, above all, in computational complexity.

The paper is organized as follows. We start by re-
viewing the technical details of the AdaBoost.MH
algorithm and the base learners we will use in the ex-
periments in Section 2. Section 3 contains our main
results where we describe the adversarial MAB algo-
rithm and its interaction with AdaBoost.MH, and
state our weak-to-strong learning result for the pro-
posed algorithm. We present our experimental results
in Section 4 where first we demonstrate on synthetic
data sets that the bandit based algorithms are indeed
able to discover useful features, then we furnish re-
sults on benchmark data sets that which indicate that
the proposed algorithm improves the running time of
AdaBoost.MH by at least an order of magnitude,
without losing much of its generalization capacity.

2. AdaBoost.MH

For the formal description, let X = (x1, . . . ,xn) be the

n× d observation matrix, where x
(j)
i are the elements

of the d-dimensional observation vectors xi ∈ Rd. We
are also given a label matrix Y = (y1, . . . ,yn) of di-

mension n×K where yi ∈ {+1,−1}K . In multi-class
classification one and only one of the elements of yi
is +1, whereas in multi-label (or multi-task) classifi-
cation yi is arbitrary, meaning that the observation
xi can belong to several classes at the same time. In
the former case we will denote the index of the correct
class by `(xi).

AdaBoost.MH(X,Y,W(1),Base(·, ·, ·), T )

1 for t← 1 to T

2 h(t)(·)← α(t)v(t)ϕ(t)(·)← Base
(
X,Y,W(t)

)
3 for i← 1 to n for `← 1 to K

4 w
(t+1)
i,` ← w

(t)
i,`

exp
(
−h(t)` (xi)yi,`

)
n∑

i′=1

K∑
`′=1

w
(t)
i′,`′e

−h(t)

`′ (xi′ )yi′,`′

5 return f (T )(·) =
∑T
t=1 h(t)(·)

Figure 1. The pseudocode of the AdaBoost.MH algo-
rithm. X is the observation matrix, Y is the label ma-
trix, W(1) is the initial weight matrix, Base(·, ·, ·) is the
base learner algorithm, and T is the number of iterations.
α(t) is the base coefficient, v(t) is the vote vector, ϕ(t)(·) is
the scalar base classifier, h(t)(·) is the vector-valued base
classifier, and f (T )(·) is the final (strong) classifier.

The goal of the AdaBoost.MH algorithm ( (Schapire
& Singer, 1999), Figure 1) is to return a vector-valued
classifier f : X → RK with a small Hamming loss

RH

(
f (T ),W(1)

)
=

n∑
i=1

K∑
`=1

w
(1)
i,` I

{
sign

(
f
(T )
` (xi)

)
6= yi,`

}
1

by minimizing its upper bound (the exponential mar-
gin loss)

Re

(
f (T ),W(1)

)
=

n∑
i=1

K∑
`=1

w
(1)
i,` exp

(
− f (T )

` (xi)yi,`
)
,

(1)
where f`(xi) is the `th element of f(xi). The user-

defined weights W(1) =
[
w

(1)
i,`

]
are usually set either

uniformly to w
(1)
i,` = 1/(nK), or, in the case of multi-

class classification, to

w
(1)
i,` =

{
1
2n if ` = `(xi) (i.e., if yi,` = 1),

1
2n(K−1) otherwise (i.e., if yi,` = −1)

(2)

to create K well-balanced one-against-all classification
problems. AdaBoost.MH builds the final classifier f
as a sum of base classifiers h(t) : X → RK returned
by a base learner algorithm Base(X,Y,W(t)) in each
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iteration t. In general, the base learner should seek to
minimize the base objective

E
(
h,W(t)

)
=

n∑
i=1

K∑
`=1

w
(t)
i,` exp

(
−h`(xi)yi,`

)
. (3)

Using the weight update formula of Line 4 (Figure 1),
it can be shown that

Re

(
f (T ),W(1)

)
=

T∏
t=1

E
(
h(t),W(t)

)
, (4)

so minimizing (3) in each iteration is equivalent to min-
imizing (1) in an iterative greedy fashion. By obtain-

ing the multi-class prediction ̂̀(x) = arg max` f
(T )
` (x),

it can also be proven that the “traditional” multi-class
loss (or one-error)

R
(
f (T )

)
=

n∑
i=1

I
{
`(xi) 6= ̂̀(xi)} (5)

has an upper bound KRe

(
f (T ),W(1)

)
if the weights

are initialized uniformly, and
√
K − 1Re

(
f (T ),W(1)

)
with the multi-class initialization (2). This justifies
the minimization of (1).

2.1. Learning the base classifier

In this paper we use discrete AdaBoost.MH in which
the vector-valued base classifier h(x) is represented as

h(x) = αvϕ(x), (6)

where α ∈ R+ is the base coefficient, v ∈ {+1,−1}K is
the vote vector, and ϕ(x) : Rd → {+1,−1} is a scalar
base classifier. It can be shown that to minimize (3),
one has to choose a v and a ϕ that maximize the edge

γ =

n∑
i=1

K∑
`=1

wi,`v`ϕ(xi)yi,`. (7)

The optimal coefficient is then

α =
1

2
log

1 + γ

1− γ
.

It is also well known that the base objective (3) can
be expressed as

E
(
h,W

)
=
√

(1 + γ)(1− γ) =
√

1− γ2. (8)

The simplest scalar base learner used in practice is the
decision stump, a one-decision two-leaf decision tree of
the form

ϕj,b(x) =

{
1 if x(j) ≥ b,
−1 otherwise,

(9)

where j is the index of the selected feature and b is the
decision threshold.

Although boosting decision stumps often yields sat-
isfactory results, the state-of-the-art performance of
AdaBoost is usually achieved by using decision trees
as base learners, parametrized by their number of
leaves N . We also test our approach using a re-
cently proposed base learner that seems to outper-
form boosted trees on large benchmarks (Kégl & Busa-
Fekete, 2009). The goal of this learner is to optimize
products of simple base learners of the form h(·) =
α
∏m
j=1 vjϕj(·), where the vote vectors vj are multi-

plied element-wise. The base learner is parametrized
by the number of terms m.

3. Reducing the search space of the
base learners using multi-armed
bandits

This section contains our main results. In Section 3.1
we provide some details on MAB algorithms neces-
sary for understanding our approach. Section 3.2 de-
scribes the concrete MAB algorithm Exp3.P and its
interaction with AdaBoost.MH. Section 3.3 gives
our weak-to-strong learning result for the proposed
algorithm AdaBoost.MH.Exp3.P. Finally, in Sec-
tion 3.4 we elaborate some of the algorithmic aspects
of the generic technique.

3.1. The multi-armed bandit problem

In the classical stochastic bandit problem the deci-
sion maker pulls an arm out of M arms at discrete
time steps. Selecting an arm j(t) in iteration t re-

sults in a random reward r
(t)

j(t)
∈ [0, 1] coming from

a stationary distribution. The goal of the decision
maker is to maximize the expected sum of the re-
wards received. Intuitively, the decision maker has to
strike a balance between using arms with large past
rewards (exploitation) and trying arms that have not
been tested enough times (exploration). Formally, let

G(T ) =
∑T
t=1 r

(t)

j(t)
be the total reward that the deci-

sion maker receives up to the T th iteration. Then the
performance of the decision maker can be evaluated in
terms of the regret with respect to the best arm ret-
rospectively, defined as T max1≤j≤M µj −G(T ) where
µj is the (unknown) expected reward of the jth arm.

Contrary to the classical stochastic MABs, in the ad-
versarial setup (Auer et al., 1995) there is a sec-
ond, non-random player that chooses a reward vector
r(t) ∈ RM in each iteration. There is no restriction
on the series of reward vectors r(t), in particular, they
can be influenced by the decision maker’s previous ac-
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tions. Only the reward r
(t)

j(t)
of the chosen arm j(t) is

revealed to the decision maker. Since the rewards are
not drawn from a stationary distribution, any kind of
regret can only be defined with respect to a particular
sequence of actions. The most common performance
measure is the weak regret

max
j

T∑
t=1

r
(t)
j −G

T (10)

where the decision maker is compared to the best fixed
arm retrospectively. We will denote this arm by j∗ =

arg maxj
∑T
t=1 r

(t)
j and its regret by G∗.

3.2. Accelerating AdaBoost using multi-armed
bandits

The general idea is to partition the base classifier
space H into (not necessarily disjunct) subsets G ={
H1, . . . ,HM

}
and use MABs to learn the usefulness

of the subsets. Each arm represents a subset, so, in
each iteration, the bandit algorithm selects a subset.
The base learner then finds the best base classifier
in the subset (instead of searching through the whole
space H), and returns a reward based on this optimal
base learner.

The upper bound (4) along with (8) suggest the use

of r
(t)
j = − log

√
1− γ(t)Hj

2
as a reward function where

γ
(t)
Hj

is the edge (7) of the classifier chosen by the base

learner from Hj in th tth iteration. Since γ ∈ [0, 1],
this reward is unbounded. To overcome this technical
problem, we cap r

(t)
j by 1 and define the reward as

r
(t)
j = min

(
1,− log

√
1− γ(t)Hj

2

)
. (11)

This is equivalent of capping the edge γ
(t)
Hj

at γmax =
0.93 which is rarely exceeded in practice, so this con-
straint does not affect the practical performance of the
algorithm.

(Busa-Fekete & Kégl, 2009) used this setup recently
in the stochastic settings (with a slightly different re-
ward). There are many applications where stochas-
tic bandits have been applied successfully in a non-
stationary environment, e.g., in a performance tun-
ing problem (De Mesmay et al., 2009) or in the SAT
problem (Maturana et al., 2009). The UCB (Auer
et al., 2002a) and the UCBV (Audibert et al., 2009)
algorithms work well in practice for accelerating Ad-
aBoost, but the mismatch between the inherently ad-
versarial nature of AdaBoost (the edges γj(t) are de-
terministic) and the stochastic setup of UCB made it

impossible to derive weak-to-strong-learning-type per-
formance guarantees on AdaBoost, and so in (Busa-
Fekete & Kégl, 2009) the connection between Ad-
aBoost and bandits remained slightly heuristic.

In this paper we propose to use an adversarial MAB
algorithm that belongs to the class of Exponentially
Weighted Average Forecaster (EWAF) methods (Cesa-
Bianchi & Lugosi, 2006). In general, an EWAF algo-
rithm maintains a probability distribution p(t) over the
arms and draws a random arm from this distribution
in each iteration. The probability value of an arm in-
creases exponentially with the average of past rewards.
In particular, we chose the Exp3.P algorithm (Auer
et al., 2002b) (Figure 2) because the particular form
of the high-probability bound on the weak regret al-
lows us to derive a weak-to-strong-learning result for
AdaBoost.MH. We call the combined algorithm Ad-
aBoost.MH.Exp3.P.

Exp3.P(η, λ, T )

1 for j ← 1 to M . initialization

2 ω
(1)
j ← exp

(
ηλ
3

√
T
M

)
3 for t← 1 to T

4 for j ← 1 to M

5 p
(t)
j ← (1− λ)

ω
(t)
j∑M

j′=1
ω

(t)

j′
+ λ

M

6 j(t) ← Random
(
p
(t)
1 , . . . , p

(t)
M

)
7 Receive reward r

(t)

j(t)

8 for j ← 1 to M

9 r̂
(t)
j ←

{
r
(t)
j /p

(t)
j if j = j(t)

0 otherwise

10 ω
(t+1)
j ← ω

(t)
j exp

(
λ

3M

(
r̂
(t)
j + η

p
(t)
j

√
MT

))
Figure 2. The pseudocode of the Exp3.P algorithm. η > 0
and 0 < λ ≤ 1 are “smoothing” parameters: the larger
they are, the more uniform is the probability vector p(t),
and so the more the algorithm explores (vs. exploits). T
is the number of iterations. Exp3.P sends j(t) (Line 6)
to AdaBoost.MH, and receives its reward in Line 7 from
AdaBoost.MH’s base learner via (11).

3.3. A weak-to-strong-learning result using
Exp3.P with AdaBoost.MH

A sufficient condition for an algorithm to be called
boosting is that, given a Base learner which always
returns a classifier h(t) with edge γ(t) ≥ ρ for given
ρ > 0, it returns a strong classifier f (T ) with zero
training error after a logarithmic number of iterations
T = O(log n). It is well-known that AdaBoost.MH
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satisfies this condition (Theorem 3 in (Schapire &
Singer, 1999)). In the following theorem we prove a
similar result for AdaBoost.MH.Exp3.P.

Theorem 1. Let H be the class of base classifiers and
G =

{
H1, . . . ,HM

}
be an arbitrary partitioning of H.

Suppose that there exists a subset Hj† in G and a con-
stant 0 < ρ ≤ γmax such that for any weighting over
the training data set D, the base learner returns a base
classifier from Hj† with an edge γH

j†
≥ ρ. Then, with

probability at least 1− δ, the training error R
(
f (T )

)
of

AdaBoost.MH.Exp3.P will become 0 after at most

T = max

(
log2 M

δ
,

(
4C

ρ2

)4

,
4 log

(
n
√
K − 1

)
ρ2

)
(12)

iterations, where C =
√

32M +
√

27M logM + 16, and
the input parameters of AdaBoost.MH.Exp3.P are
set to

λ = min

(
3

5
, 2

√
3

5

M logM

T

)
, η = 2

√
log

MT

δ
. (13)

Proof. The proof is based on Theorem 6.3 of (Auer
et al., 2002b) where the weak regret (10) of Exp3.P
is bounded from above by

4

√
MT log

MT

δ
+ 4

√
5

3
MT logM + 8 log

MT

δ

with probability 1− δ. Since this bound does not de-
pend on the number of data points n, it is relatively
easy to obtain the most important third term of (12)
that ensures the logarithmic dependence of T on n.
The technical details of the proof are included as sup-
plementary material.

Remark 1 The fact that Theorem 1 provides a large
probability bound does not affect the PAC strong
learning property of the algorithm since T is sub-
polynomial in 1/δ (first term of (12)).

Remark 2 Our weak-learning condition is stronger
than in the case of AdaBoost.MH: we require ρ-
weak-learnability in the best subset Hj† , as opposed
to the whole base classifier set H. In a certain sense,
a smaller ρ (and hence a larger number of iterations
in principle) is the price we pay for doing less work in
each iteration. The three terms of (12) comprise an in-
teresting interplay between the number of subsets M ,
the size of the subsets (in terms of the running time of
the base learner), the quality of the subsets (in terms
of ρ), and the number of iterations T . In principle, it
should be possible to optimize these parameters so as
to minimize the total running time of the algorithm (to

achieve zero training error) in a similar framework to
what was proposed by (Bottou & Bousquet, 2008). In
practice, however such an optimization is limited since,
on the one hand, the quality of the subsets is unknown
beforehand, and on the other, the bound (12) is quite
loose in an absolute sense.

Remark 3 Applying Theorem 6.3 of (Auer et al.,
2002b) requires that we formally set λ and η to the
values in (13). However, it is a general practice to val-
idate these parameters. In our experiments we found
that both of them should be set to relatively small
values (λ ≈ 0.15, η ≈ 0.3), which accords with the
suggestions of (Kocsis & Szepesvári, 2005).

3.4. Partitioning the base classifier set

In the case of simple decision stumps (9) the most nat-
ural partitioning is to assign a subset to each feature:
Hj =

{
ϕj,b(x) : b ∈ R

}
. All our experiments were

carried out using this setup. One could think about
making a coarser partitioning (more then one feature
per subset), however, it makes no sense to split the
features further since the computational time of find-
ing the best threshold b on a feature is the same as
that for evaluating a given stump on the data set.

The situation is more complicated in the case of trees
or products. In principle, one could set up a non-
disjoint partitioning where every subset of N or m
features is assigned to an arm. This would make M
very big (dN or dm). Theorem 1 is still valid but in
practice the algorithm would spend all its time in the
exploration phase, making it practically equivalent to
LazyBoost. To overcome this problem, we followed
the setup proposed by (Busa-Fekete & Kégl, 2009) in
which trees and products are modeled as sequences of
decisions over the smaller partitioning used for stumps.
The algorithm performs very well in practice using this
setup. Finding a more accurate theoretical framework
for this model is an interesting future task.

4. Experiments

4.1. Synthetic datasets

The goal of these experiments was to verify whether
the bandit-based algorithms can indeed find useful fea-
tures on data sets where the usefulness of the features
is entirely under our control. We used two baselines
methods in each test: AdaBoost.MH with stumps
(Full) and AdaBoost.MH that searches only a ran-
dom subset of base classifiers (Random), equivalent to
LazyBoost. We tested the methods on two binary
classification tasks. In both tasks x are generated uni-
formly in the d-dimensional unit cube, and only the
first J features are relevant in determining the label.
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In the first task Diagonal(d, J, q), used by (Mease &
Wyner, 2007), the classes are separated by a diagonal
cut on the first J features, and labels are perturbed
by a small random noise q. Formally,

P (Y = 1|x) = q + (1− 2q)I


J∑
j=1

x(j) >
J

2

.
In the second task Chess(d, J, L), the labels are gen-
erated according to a chess board with L fields per
dimension using the first J features. Formally,

y =

{
1 if

∑J
j=1bLx(j)c is pair

−1 otherwise

We run the algorithms on Diagonal(10, 4, 0.1) and
Chess(10, 3, 3) with n = 1000 data points. The
parameters of AdaBoost.MH.Exp3.P were set to
T = 10000 and λ = η = 0.3. Figure 3 shows the
percentage of the iterations when a certain feature
was selected, averaged over 100 runs. The results are
not very surprising: the bandit-based algorithms suc-
ceeded in identifying the useful features most of the
time, and chose them almost as frequently as full Ad-
aBoost.MH. The only surprise was the performance
of UCB on the Diagonal task: it stuck in an explo-
ration mode and failed to discover useful features.
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(a) The Diagonal data set
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(b) The Chess data set

Figure 3. The percentage score of the iterations when a
certain feature was selected on (a) Diagonal(10, 4, 0.1)
and (b) Chess(10, 3, 3) by the different algorithms.

4.2. Benchmark datasets

We tested the proposed method on five benchmark
datasets using the standard train/test cuts2. We com-
pared AdaBoost.MH.Exp3.P (Exp3.P) with full
AdaBoost.MH (Full), AdaBoost.MH with ran-
dom feature selection (Random), and two stochastic-
bandit-based techniques of (Busa-Fekete & Kégl, 2009)

2The data sets (selected based on their
wide usage and their large sizes) are avail-
able at yann.lecun.com/exdb/mnist (MNIST),
www.kernel-machines.org/data.html (USPS), and
www.ics.uci.edu/˜mlearn/MLRepository.html (letter,
pendigit, isolet).

(UCB and UCBV). In each run, we validated the
number of iterations T using 80%-20% simple valida-
tion. We smoothed the test error (5) on a window of

T/5 iterations to obtain R
(T )

= 5
T

∑6T/5
t=4T/5R

(
f (t)
)
,

and minimized R
(T )

in T . The advantage of this ap-
proach is that this estimate is more robust in terms
of random fluctuations than the raw error R

(
f (T )

)
. In

the case of trees and products, we also validated the
hyperparameters N and m using full AdaBoost.MH,
and used the validated values in all the algorithms. Fi-
nally, for AdaBoost.MH.Exp3.P we also validated
the hyperparameters λ and η using a grid search in the
range of [0, 0.6] with a resolution of 0.05.

Table 1 shows the test errors on the benchmark
datasets. The first observation is that full Ad-
aBoost.MH wins most of the time although the
differences are rather small. The few cases where
Random or UCB/UCBV/Exp3.P beats full Ad-
aBoost.MH could be explained by statistical fluc-
tuations or the regularization effect of randomiza-
tion. The second is that Exp3.P seems slightly better
than UCB/UCBV although the differences are even
smaller.

Our main goal was not to beat full AdaBoost.MH
in test performance, but to improve its computational
complexity. So we were not so much interested in the
asymptotic test errors but rather the speed by which
acceptable test errors are reached. As databases be-
come larger, it is not unimaginable that certain algo-
rithms cannot be run with their statistically optimal
hyperparameters (T in our case) because of computa-
tional limits, so managing underfitting (an algorithmic
problem) is more important than managing overfitting
(a statistical problem) (Bottou & Bousquet, 2008).
To illustrate how the algorithms behave in terms of
computational complexity, we plotted the smoothed

test error curves R
(T )

versus time for selected exper-
iments in Figure 4. The improvement in terms of
computational time over full AdaBoost.MH is of-
ten close to an order of magnitude (or two in the case
of MNIST), and Random is also significantly worse
than the bandit-based techniques. The results also in-
dicate that Exp3.P also wins over UCB/UCBV most
of the time, and it is never significantly worse than the
stochastic-bandit-based approach.

5. Discussion and Conclusions

In this paper we introduced a MAB based approach for
accelerating AdaBoost. Using an adversarial setup,
we were able to prove a high-probability weak-to-
strong-learning bound, a result that was lacking from
previous, more heuristic approaches using stochastic
bandits. At the same time, in practice, the proposed
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Table 1. Smoothed test error percentage scores (100R
(T )

) on benchmark datasets.

learner \ data set MNIST USPS UCI pendigit UCI isolet UCI letter
Stump/Full 7.56 6.28 4.96 4.52 14.57
Random 6.94 6.13 4.57 4.43 14.60
UCB 7.07 6.03 4.63 4.30 14.65
UCBV 7.02 6.08 4.63 4.43 14.77
EXP3.P 6.96 6.08 4.63 4.43 14.62

Product (m) 3 3 2 6 10

Full 1.26 4.37 1.89 3.86 2.31
Random 1.73 4.58 1.83 3.59 2.25
UCB 1.82 4.43 1.80 3.53 2.25
UCBV 1.85 4.53 1.92 3.53 2.20
EXP3.P 1.70 4.53 1.94 3.40 2.30

Tree (N) 17 15 19 8 38

Full 1.52 4.87 2.12 3.85 2.48
Random 1.82 5.13 2.06 3.78 3.08
UCB 2.30 4.98 2.09 3.85 3.10
UCBV 3.06 5.18 2.20 3.78 3.08
EXP3.P 1.85 4.93 2.06 3.72 3.02
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Figure 4. Smoothed test errors R
(T )

vs. total computational time.

algorithm performs at least as well as its stochastic
counterpart in terms of both its generalization error
and its computational efficiency. Although it seems
that the asymptotic test error of AdaBoost with full

search is hard to beat if we have enough computational
resources, in large scale learning (recently described
in a seminal paper by (Bottou & Bousquet, 2008)),
where we stay in an underfitting regime so fast op-



Fast boosting using adversarial bandits

timization becomes more important than asymptotic
statistical optimality, our MAB-optimized AdaBoost
has its place.

To keep the project within manageable limits, we con-
sciously did not explore all the possible avenues in test-
ing all possible on-line optimization algorithms. There
are two particular ideas that we would like to inves-
tigate in the near future. First, multi-armed bandits
assume a stateless system, whereas AdaBoost has
a natural state descriptor: the weight matrix W(t).
In this setup a Markov decision process would be
more natural given that we can find a particular al-
gorithm that can exploit a high dimensional, continu-
ous state space and, at the same time, compete with
bandits in computational complexity and convergence
speed. The second avenue to explore is within the
MAB framework: there are several successful appli-
cations of AdaBoost where the number of features
is huge but the feature space has an a-priori known
structure (for example, Haar filters in image process-
ing (Viola & Jones, 2004) or word sequences in natural
language processing (Escudero et al., 2000)). Classical
bandits are hard to use in these cases but more recent
MAB algorithms were developed for exactly this sce-
nario (Coquelin & Munos, 2007).
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Püschel, M. Bandit-based optimization on graphs
with application to library performance tuning. In
ICML, volume 26, pp. 729–736, 2009.
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