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Abstract

In this paper, we consider online prediction
from expert advice in a situation where each
expert observes its own loss at each time
while the loss cannot be disclosed to oth-
ers for reasons of privacy or confidentiality
preservation. Our secure exponential weight-
ing scheme enables exploitation of such pri-
vate loss values by making use of crypto-
graphic tools. We proved that the regret
bound of the secure exponential weighting
is the same or almost the same with the
well-known exponential weighting scheme in
the full information model. In addition, we
prove theoretically that the secure exponen-
tial weighting is privacy-preserving in the
sense of secure function evaluation.

1. Introduction

Online prediction with expert advice is a type of learn-
ing algorithm in which a learner predicts the classifi-
cation of sequentially generated examples. At each
time point, experts independently make a prediction
for the next example. Then, the learner makes a pre-
diction using the prediction provided by each expert.
Typically in this situation, no statistical assumptions
are made about the process generating the target se-
quence. The performance of online prediction algo-
rithms is often evaluated by the regret function, which
is the difference between the loss of the learner and the
loss of the expert suffering the least loss.

If the learner can observe loss from all the experts,
the setting is referred to as the full information model.
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If the learner can observe loss only from one expert
chosen by the learner, the setting is called the par-
tial information model. In this study, we consider a
situation where each expert does not wish to disclose
these predictions and losses for reasons of privacy. The
following two problems pose intuitive examples where
privacy preservation is required in online prediction.

Stock price prediction. Let there be investors who
independently predict the expected price of a certain
stock once a day. Due to the proprietary nature of
the prediction function used by each investor, they do
not wish to disclose their own prediction function and
expected price. However, they wish to improve the
accuracy of the prediction by jointly aggregating the
prediction of the other investors. How can investors
make a better prediction without violating the confi-
dentiality of the prediction function?

Prediction of infection outbreak. Let there be
hospitals which attempt to predict outbreaks of pan-
demic diseases each day by analyzing personal medical
records stored in each hospital. Aggregation of predic-
tions is expected to improve the prediction accuracy;
however, such aggregation might cause privacy viola-
tion of patients. How can hospitals make a better pre-
diction without sharing sensitive medical information?

These problems can be considered as online predic-
tion problems under limited loss observation, in which
prediction and loss cannot be shared among experts
(hospitals or investors) at all, in order to preserve con-
fidentiality. Thus, these problems can be formulated
neither in the full nor partial information model.

In this study, we focus on the fact that, in some cases,
each loss can be observed by at least an expert but
not disclosed to others due to its secrecy. If we could
exploit such loss information associated with an online
prediction in such a way that the loss is not disclosed
or estimated by others, online prediction under limited
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Table 1. The regret bound and information model
online procedure info. model regret bound comp. time privacy loss

Exponential Weighting (Vovk90) full REW,T ≤
√

2T ln N small not cared

Exp3 (Auer03) partial RExp3,T ≤ 2
√

e− 1
√

NT ln N small partly disclosed

SEW with SFE (proposal) private RSFE/DR,T ≤
√

2T ln N large none

SEW with crypto (proposal) private RSEW/OR,T ≤
√

2T ln N + O(1) medium none

observation could be treated as an instance of the full
information model.

Such a treatment might appear to be impossible.
In the field of security and cryptography, protocols
for private distributed computation have been ex-
tensively studied for decades. The key idea in this
study is in the use of two well studied cryptographic
tools, secure function evaluation and a public-key ho-
momorphic cryptosystem. By using these tools, we
can design privacy-preserving online prediction proto-
cols that achieve regret minimization with neither the
learner nor the expert being able to observe private
loss and prediction.

When a specified function is evaluated with taking dis-
tributed private information as input, two types of pri-
vacy should be considered, privacy-preserving compu-
tation and output privacy. The former aims to eval-
uate the function without violating the privacy of the
distributed inputs; the latter attempts to measure the
amount of information leaked thorough the publication
of the output. Our focus in this study is on privacy-
preserving computation of online prediction. Recently,
it is well recognized that differential privacy mecha-
nism provides a theoretical treatment of output pri-
vacy (Dwork, 2006). Simple combination of our solu-
tion with the Laplace mechanism (Dwork, 2006) might
provide a solution both for privacy-preserving compu-
tation and output privacy in online prediction. This
is remained for the future work.

1.1. Related Work

If the learner is allowed to observe the loss of all ex-
perts (full information model), the regret of exponen-
tial weighting strategies is at most O(

√
T lnN) where

N and T are the number of experts and time steps,
respectively (Vovk, 1990), (Littlestone & Warmuth,
1994), (Cesa-Bianchi et al., 1997).

A number of studies have been presented concern-
ing online prediction under limited observation of loss.
The multi-armed bandit problem or the partial infor-
mation model (Blum & Mansour, 2007) assume that
the learner cannot observe loss values suffered by ex-
perts other than the expert chosen by the learner.
Auer et. al. have shown that the regret bound of

the exponential weighting scheme in this setting is at
most O(

√
NT lnN) (Auer et al., 2003). Comparison

of these solutions in terms of the regret bound and
privacy loss is summarized in Table 1. These schemes
can cope with limited loss observation. However, these
are not designed with the intention to protect pri-
vacy. Therefore, private information could be partly
disclosed or statistically estimated after iterations.

1.2. Our Contribution

In this study, we formally introduce a novel informa-
tion model, termed as the private information model
(Section 3). Intuitively, in this model, the learner is
not allowed to observe experts’ losses and predictions;
the experts are not allowed to observe the learner’s
and other experts’ losses and predictions, either.

Our contribution is as follows. Firstly, we introduce
a new problem termed as oblivious roulette; roulette
playing without seeing the roulette wheel. Then we
show that online prediction in the private informa-
tion model is equivalent to this oblivious roulette
problem (Section 3.3). Considering this, we present
two types protocols for oblivious roulette (Section 5).
The first and second protocols make use of secure
function evaluation (SFE) and a homomorphic cryp-
tosystem respectively, to guarantee security (Section
4). These protocols help to convert existing online
prediction schemes in the full information model to
those in the private information model. Then, as
privacy-preserving online prediction, secure exponen-
tial weighting (SEW) is presented using these roulette
protocols (Section 5.3). We prove that the regret
bound of SEW is at most

√
2T lnN for the pro-

tocol using SFE (RSEW/DR,T) and
√

2T lnN + O(1)
for the protocol using the homomorphic cryptosystem
(RSEW/OR,T). Furthermore, we prove theoretically that
SEW is privacy-preserving in the private information
model. Comparisons between our solution and existing
solutions are summarized in Table 1 again. In order to
demonstrate the efficiency of our solution, the results
of computational experiments are shown (Section 6).

2. Preliminaries

Let there be a learner and a set of experts E =
{1, ..., N}. The goal of online prediction is to predict
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an unknown outcome sequence y1, y2, ... of elements of
an outcome space Y. The outcome sequence is pro-
vided by the environment arbitrarily. In this paper,
we consider the outcome space to be discrete. Then,
the outcome space can be regarded as a set of inte-
gers Y = {1, 2, ...Y } without loss of generality. In the
full information model, the learner attempts to predict
yt with observing the prediction of experts (advice)
y = (y1,t, y2,t, ..., yN,t) at time t. The loss resulting
from the prediction is evaluated by the loss function
ℓ : Y × Y 7→ [0, 1].

Let pt = (p1,t, ..., pN,t) be a probability vector called
the strategy. The learner chooses the i-th expert with
probability pi,t for its decision and the learner’s pre-
diction is set to the chosen expert’s prediction. Note
that pt is maintained by the learner to determine its
prediction at each time, but is not considered as the
learner’s output.

Let j ∼ M(i;pt) denote the randomized choice of an
expert following strategy pt. Online prediction in the
full information model is described as follows:

Online prediction in the full info. model

1. the environment arbitrarily chooses the next
outcome yt

2. each expert makes a prediction and reveals the
prediction (y1,t, ..., yN,t) to the learner

3. the learner determines strategy pt with observed
loss values and obtains the prediction ŷt = yj,t

where j ∼M(i;pt).

4. the environment reveals the outcome yt

5. the learner suffers a loss ℓ(yt, ŷt), t← t+1. Then
return to Step 1.

Let ℓi,t = ℓ(yi,t, yt) be the i-th expert’s loss at time
t. Let H be an online algorithm of the learner which
updates his strategy. Then, the learner’s loss at time t
can be considered as the expected loss of the random-
ized strategy of H, ℓH,t =

∑n
i=1 pi,tℓi,t. The total loss

of H is defined by LH,T =
∑T

t=1 ℓH,t.

Let Li,T =
∑T

t=1 ℓi,t be the total loss of the i-th ex-
pert during T time steps. Then, the regret of the
online algorithm H is defined by RH,T = LH,T −
mini∈{1,...,N} Li,T .

The learner updates pt so as to minimize the regret
during T prescribed time steps1. The exponential

1For simplicity, we consider the case that the number
of time steps T is known by the learner in advance. One
can apply “guessing techniques” which guarantee a similar
regret bound for unknown T (Auer et al., 2003).

weighting scheme employs the following procedure to
update the strategy. At t = 1, wi,1 is initialized as
1/N for all i. Then, for t ≥ 2,

wi,t = exp
(

− η
t−1
∑

s=1

ℓ(yi,s, ys)
)

(1)

Wt =
N

∑

i=1

wi,t, pi,t =
wi,t

Wt
(2)

where η > 0 is a user parameter.

Then, for any outcome sequence, when the loss func-
tion is convex in the learner’s prediction, the regret
of the exponential weighting (EW) is bounded (Vovk,
1990; Littlestone & Warmuth, 1994), thus:

LEW,T − min
i∈{1,...,N}

Li,T ≤
√

2T lnN.

3. Privacy in Online Prediction

As discussed in the introductory section, the main ob-
jective of this study is to introduce the notion of pri-
vacy into online prediction, by means of the private
information model. In this section, we define the pri-
vate information model in comparison with the full
and the partial information model.

3.1. Sequence Observation Models

Before presenting the definition, sequence observation
models of sequences are defined. Given a set of se-
quences, the model defines which parts of sequences
are observable by a party.

Definition 1. (public and private) Let there be a party
and a sequence x = (x1, x2, ...). If the party can ob-
serve (x1, x2, ..., xt−1) but not the other elements at
time t, then x is public. If the party cannot observe
any elements of x at any time, then x is private.

Definition 2. (d-private) Let there be a party and
N sequences x1, ...,xN . Let xi = (xi,1, xi,2, ...).
Let the party hold index vector d = (d1, ..., dt−1) ∈
{1, 2, ..., N}t−1 at time t. If the party can observe
nothing but (xd1,1, ..., xdt−1,t−1) from the sequences at
time t, then x1, ...,xN is d-private.

In the full information model, the loss sequences of
experts are public to the learner. In the partial infor-
mation model, when d is a decision sequence of the
learner, the sequences of loss values of experts are
d-private. Table 2 summarizes the two information
models. Information models of the experts are not
described in this table because an expert is not con-
sidered to be a computational party in these models.
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Table 2. Information model and sequence observation.

The i-th expert’s seq. Learner’s seq.
full public —

partial d-private —
private private from private from

the other parties the other parties

3.2. Private Information Model

Based on these sequence observation models, our pri-
vate information model can be stated as follows:

Definition 3. (Private information model) Let there
be a learner and N experts. If each party’s loss and
prediction sequences are private from the other parties,
then all parties satisfy the private information model.

Table 2 summarizes this model again. The privacy
of the learner’s sequence is considered here. If the
learner’s information is not private, the problem be-
comes slightly easier, but still non-trivial because ex-
perts’ sequences are still private among parties. Con-
sidering cases where the learner is one of the experts,
as examples described in the introduction, we assume
both the learner’s and experts’ sequences are private.

Finally, the problem of online prediction in the private
information model can be stated:

Statement 1. (Online prediction in the private in-
formation model) Let H be an online prediction algo-
rithm. Let there be a learner and N experts satisfying
the private information model at time t− 1. After ex-
ecution of H at time t, the learner learns a prediction
from H and information inferred from the prediction,
but nothing else; all parties are still in the private in-
formation model.

3.3. Our Approach

In this subsection, we describe the outline of our so-
lution. In principle, our solution is designed as a se-
cure function evaluation of the exponential weighting
scheme. Recall that the sequence of the j-th expert is
private from the i-th expert (i 6= j). Nevertheless, the
i-th expert can independently evaluate Eq. 1 because
wi,t is updated only with the loss of the i-th expert.
On the other hand, the i-th expert cannot update Eq.
2 because the i-th expert needs to have wi,t for all i for
the update of pi,t. In this setting, the learner needs to
learn ŷ = yj s.t. j ∼ M(i;pt) without knowing any-
thing except ŷt.

This problem can be compared to an imaginary
roulette game, called oblivious roulette. Let there be
N dealers and a player. Then the game of oblivious
roulette is stated as follows:

Statement 2. (Oblivious roulette) Let there be N
dealers and a player. The i-th dealer arbitrary chooses
mi ∈ [0, 1] and yi ∈ Y as input for i = 1, ..., N . Let
pi = mi

PN
i=1

mi
and p = (p1, ..., pN ). After the protocol

execution, the player learns ŷ = yj where j ∼ M(i;p)
and information inferred from ŷ, but nothing else. The
dealers learn nothing, either.

Note that the player is not allowed to know from which
dealer ŷ came in this statement. As mentioned above,
we can see that the exponential weighting in the pri-
vate information model is equivalent to the game of
oblivious roulette by replacing the dealers and player
by the experts and learner, respectively. In the next
section, we introduce two cryptographic tools for solv-
ing this game of oblivious roulette securely. Then, two
types of roulette protocols are introduced.

4. Cryptographic Tools

4.1. Secure Function Evaluation

Secure function evaluation (SFE) is a general and well
studied cryptographic primitive which allows two or
more parties to evaluate a specified function of their
inputs without revealing (anything else about) their
inputs to each other (Goldreich, 2004; Yao, 1986).

In principle, any private distributed computation, in-
cluding online prediction, can be securely evaluated
by means of SFE. However, although polynomoially
bounded, naive implementation of the exponential
weighting using SFE can be too inefficient. There-
fore, in order to achieve online prediction efficiently in
the private information model, we make use of existing
SFE solutions for small portions of our computation as
a part of a more efficient overall solution.

4.2. Homomorphic Public-key Cryptosystem

Given a corresponding pair of private and public keys
(sk, pk) and a message m, then c = Encpk(m; ℓ) de-
notes a (random) encryption of m, and m = Decsk(c)
denotes decryption. The encrypted value c uniformly
distributes over ZQ(= {0, ..., Q− 1}) if ℓ is taken from
ZQ randomly. An additive homomorphic cryptosys-
tem allows addition computations on encrypted val-
ues without knowledge of the secret key. Specifically,
there is some operation · (not requiring knowledge of
sk) such that for any plaintexts m1 and m2,

Encpk(m1 + m2 mod N ; ℓ) = Encpk(m1; ℓ1) · Encpk(m2; ℓ2)

where ℓ is uniformly random provided that at least one
of ℓ1 and ℓ2 is. Based on this property, it also follows
that given a constant k and Encpk(m1; ℓ), we can com-
pute multiplications by k via repeated application of ·,



Online Prediction with Privacy

denoted as Encpk(km mod N ; kℓ) = Encpk(m; ℓ)k. In
what follows, we omit the random number ℓ from our
encryptions for simplicity.

Our solution makes use of semantically secure2 addi-
tively homomorphic encryption, such as Paillier’s cryp-
tosystem (Paillier, 1999).

5. Online Prediction in the Private

Information Model

As discussed, our problem is viewed as the game of
oblivious roulette. Here, we consider the distributed
roulette protocol shown in Fig. 1. In the rest of this
paper, a ∈r A denotes that element a ∈ A is chosen
from set A uniformly at random. The output of dis-
tributed roulette follows Lemma 1.

Lemma 1. Let ŷ be the output of the distributed
roulette. Then, ŷ = yj where j ∼M(i;p).

Proof. In round 1, the player finds aj,k = yj ∈ Y with
probability

mj

N . In round k > 1, the player finds aj,k =
Y + 1 6∈ Y for any choice of j with probability 1 −
PN

i=1
mi

N . Thus, the probability that aj,k = yj ∈ Y at
the end of the protocol is

∞
∑

k=0

mj

N

(

1−
∑N

i=1 mi

N

)k

=
mj

∑N
i=1 mi

= pj . (3)

Thus, j ∼ M(i;p) holds. Consequently, aj,k = yjwhere j ∼M(i;p).

Thus, this distributed roulette protocol allows the
player to play the roulette without sharing mi. How-
ever, this is not secure in the sense of Statement 2
because the learner might estimate mi from the se-
quences of aj,k. Additionally, the learner is aware of
j, from which dealer ŷ came at each iteration.

5.1. Distributed Roulette using SFE

In this section, we show that the distributed roulette
protocol can be made secure efficiently in the sense of
Statement 2 by means of SFE. Evaluation of ai,k in
step 2 can be performed independently by each dealer,
so this step does not reveal any private information
to the others. Therefore, we apply SFE only to the
message exchange in step 2 and the computation in
step 3.

SFE is applied as follows. In the beginning, the i-
th dealer inputs ai,k and ji ∈r {1, ..., N}; the player

2If the cryptosystem is semantically secure, any infor-
mation regarding message m is not learned from encryption
Encpk(m) for all m ∈ ZQ.

Distributed roulette

• The i-th dealer’s input: mi ∈ [0, 1] and yi ∈ Y
• The player’s output: ŷ

1. Initialization: Round k = 1.

2. For i = 1, ..., N , the i-th dealer independently
chooses:

ai,k ←
{

yi, with prob. mi,

Y + 1, otherwise.

and sends ai,k to the player.

3. The player chooses j ∈r {1, ..., N}.
(a) If aj,k ∈ Y, the player outputs aj,k as ŷ.

(b) Else k ← k + 1 and go to Step 2.

Figure 1. Distributed roulette

inputs j′ ∈r {1, ..., N} to SFE. SFE privately evaluates

j = j′ +
∑N

i=1 ji mod N . By choosing j in this way,
the player and dealers can randomly choose a single
dealer without learning which dealer is chosen. Then,
SFE privately checks whether aj,k ∈ Y holds. If this
holds, aj,k is returned as ŷ. Otherwise, ”Play again”
is returned. Since SFE does not change the output
of any computation, the behavior of the distributed
roulette protocol follows Lemma 1. Furthermore, since
all messages are exchanged over SFE, the security of
this protocol is reduced to that of SFE (Yao, 1986),
Thus, the security proof is omitted here.

The protocol is expected to be terminated after
1/

∑N
i=1 mi rounds in average. When

∑N
i=1 mi is too

small, many rounds might be required for termination.
However, note that pj is unchanged if a common con-

stant is multiplied to mi for all i. Then,
∑N

i=1 mi can

be controlled so that
∑N

i=1 mi is not too small. This
adjustment is also performed by SFE in the experi-
ments shown in the latter section. Let the protocol
be terminated after K rounds. Then, SFE performs
modulo addition and equality tests K times for a single
roulette play. Since these operations are all elemental,
the computation is much more efficient compared to
the naive SFE implementation of the roulette.

5.2. Oblivious Roulette using Crypto

Next, we present yet another protocol for oblivious
roulette by means of a homomorphic public-key cryp-
tosystem. The protocol is shown in Fig. 2.

We prove that the oblivious roulette protocol approx-
imately follows distributed roulette.



Online Prediction with Privacy

Lemma 2. Let ŷ be the output of oblivious roulette.

Let µ =
PN

i=1
mi

N and

M ′(i;p, N,Q) = (1− γ)M(i;p) + γU(i;N). (4)

where U(i;N) is the uniform distribution over
{1, ..., N}, Q is a security parameter of the cryptosys-

tem, and γ =
(1−µ) N

Q

1−(1−µ)(1−N
Q )

. Then, ŷ = yj where

j ∼M ′(i;p, N,Q)

Proof. From the homomorphic property of the cryp-
tosystem, eq. 6 in step 3 is reorganized as

ci,k = Encpk((ai,k − jk)ri,k + yi mod N).

Then, in step 5, the player learns ui from decryption

ui = Decsk(ck) = ri,k(ai,k − jk) + yj mod N. (5)

Note that the player cannot learn which dealer pre-
pared ui from the order of received messages because
the first dealer randomly shuffles the order of messages
in step 4. ui can take two types of values dependent
on the i-th expert’s choice of ai,k in step 3.

Case 1 (ai,k − jk = 0): This case happens when the j-

th dealer’s choice was aj,k = j′k and this corresponds
with the player’s choice jk. When this case happens,
the player always finds u = yj ∈ Y in step 5a since the
first term of eq. 5 is 0 regardless of random value ri,k.

Case 2 (ai,k − jk 6= 0): The case happens when (1) the

j-th dealer’s choice was aj,k = Y + 1, or (2) the j-
th dealer’s choice j′k does not corresponds with the
player’s choice jk. In this case, ui distributes uniformly
at random over ZQ since ai,k − jk is non-zero and ri,k

is random. Note that even when this case happens,
the player finds u = yj with probability 1/Q.

In round 1, the player finds aj,k = yj ∈ Y with proba-
bility

mj

N + (1− µ) 1
Q . In round k > 1, the player finds

aj,k = Y + 1 6∈ Y for any choice of jk with probability
(1− µ)(1− N

Q ). Thus, the probability that the player
finds aj,k = yj ∈ Y at the end of the protocol is

p′i =

∞
∑

k=0

(mi

N
+

(

1− µ
) 1

Q

){

(1− µ)
(

1− N

Q

)}k

=

mi

N + (1− µ) 1
Q

1− (1− µ)(1− N
Q )

.

Setting γ as in Lemma 2, p′i = (1 − γ) mi
PN

i=1
mi

+ γ 1
N

holds. Thus, the output follows the probability distri-
bution of eq. 4 .

Oblivious Roulette
• Public input: number of dealers N , security param-

eter Q

• Player’s input: key pair(pk, sk),

• i-th dealers’ input: public key pk, mi ∈ [0, 1], yi ∈ Y
• Player’s output: ŷ

• Dealers’ output: none

1. Initialization: Round k = 1.

2. The player chooses
jk ∈r {1, 2, ..., N} and sends Encpk(−jk) to all deal-
ers

3. For i = 1, ..., N , the i-th dealer independently
chooses ri,k ∈r ZQ and

ai,k ←
(

j′k, with prob. mi,

Y + 1, otherwise

where j′k ∈r {1, 2, ..., N}. Then computes

ci,k ←
“

Encpk(ai,k) · Encpk(−jk)
”ri,k · Encpk(yi) (6)

and sends ci,k to the first dealer.

4. The first dealer randomly shuffles (ck,1, ..., ck,N ) and
sends them to the player

5. The player decrypts ui ← Decsk(ci,k) for all i and
computes Y ′ = {u1, ..., uN} ∩ Y .
(a) If Y ′ 6= ∅, return u ∈r Y ′ as ŷ.

(b) Else, k ← k + 1 and go to step 2.

Figure 2. Oblivious Roulette

Remark 1. Let M =
∑N

i=1 mi. Then, γ =
N2−MN

N2+MQ−MN . The key size Q is usually set to quite

large, such as Q = 21024 for security reasons. Consid-
ering that M ≤ N holds and N2 ≪ Q typically holds,
we can regard γ ≃ 0.

Next, we show the security of the oblivious roulette
protocol. We assume the player and dealers behave
semi-honestly; this assumes parties follow a specified
protocol properly, but might also use their records
of intermediate computations in order to attempt to
learn other parties’ private information.

Lemma 3. Assuming the player and dealers behave
semi-honestly, the oblivious roulette protocol is secure
in the sense of Statement 2.

The proof is omitted here. Intuitively, dealers do not
hold the private key, and all messages observed by the
dealers are encrypted; the dealers learn nothing. On
the other hand, the player holds the public key. How-
ever, all the messages observed by the player are ran-
domized and the order thereof is shuffled by the dealers
except that the message forms the final output. Thus,
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Table 3. Computation time per step (second) and info. model. The results are the average of 100 iterations.

model N = 2 N = 4 N = 8 N = 16 N = 32
EW full 0.562× 10−8 1.09× 10−8 2.03× 10−8 3.78× 10−8 7.25× 10−8

Exp3 partial 0.534× 10−8 1.02× 10−8 1.56× 10−8 2.75× 10−8 5.13× 10−8

SEW/OR private 13.8 27.9 56.4 113 233
SEW/DR private 65 164 306 608 1207

the player learns nothing except the final output.

5.3. Secure Exponential Weighting in the

Private Information Model

Finally, our secure exponential weighting in the pri-
vate information model is shown. The protocol basi-
cally follows the exponential weighting in the full in-
formation model shown in Section 2. The differences
between these are (1) the i-th expert updates eq. 1 in
step 3 instead of the learner, and (2) the distributed or
oblivious roulette protocol is used to obtain prediction
ŷt = yj,t where j ∼M(i;pt).

Theorem 1. The secure exponential weighting is se-
cure in the sense of Statement 1.

The message exchange in the secure exponential
weighting occurs only in the roulette protocol. Since
our roulette protocols are guaranteed to be secure,
Theorem 1 obviously holds. If distributed roulette
with SFE is used, the computation thereof exactly fol-
lows the exponential weighting in the full information
model; the regret bound is

√
2T lnN . If the oblivious

roulette protocol is used, the regret bound is slightly
changed because the strategy of the learner deviates
from M(i;p) as shown in Lemma 2.

Theorem 2. If the oblivious roulette protocol is used
in the secure exponential weighting, the regret bound
is RSEW/OR,T ≤ 1−γ

η lnN + η
2LSEW/OR + γ

N

∑N
i=1 Li.

Assuming γ ≤ 1/T and setting η =
√

2 ln N/T ,

RSEW/OR,T ≤
√

2T lnN + c where c = O(1).

The sketch of proof is shown in Appendix. Again,
γ can be quite small with large Q. So the regret
bound can be almost the same with that of exponential
weighting even when oblivious roulette is used.

Application to Examples. In examples in Section
1, all experts (investors or hospitals) wish to share
prediction results; no specific learner exists. In such a
case, the threshold cryptosystem can be used. In this
cryptosystem, all parties share a common public key
while each party holds a different private key. Decryp-
tion cannot be performed by fewer than t parties and
can be performed by any group of at least t. By means
of the threshold cryptosystem, all experts can jointly

perform secure exponential weighting and can share
prediction results in the private information model.

6. Experiments and Discussion

We performed experiments to examine the computa-
tional efficiency of our protocol. Programs were imple-
mented in Java. As the cryptosystem, (Paillier, 1999)
with 1024-bit keys was used. For secure function eval-
uation, Fairplay (Malkhi et al., 2004) was used. The
environment generate yt = {0, 1} randomly at each
time. Each expert is assigned a prediction accuracy
which uniformly distributes from 0.5 (random) to 0.75
(the best accuracy). Each expert makes a random pre-
diction at each time following the assigned prediction
accuracy. We compared exponential weighting learner
in the full information model (EW), Exp3 learner in
the partial information model (Exp3), and two secure
exponential weighting learners, one uses distributed
roulette with SFE (SEW/DR) and the other uses
oblivious roulette (SEW/OR).

Fig. 3 shows the regret of each learner. Since
SEW/DR behaves exactly the same with EW, both are
not separated. The regret of SEW/OR is almost the
same with EW, too. It is remarkable that SEW learn-
ers in the private information model suffer less regret
than Exp3 learner in the partial information model.
In the partial information model, unobserved informa-
tion is never exploited for prediction. In our protocol,
the use of cryptographic tools allows the learner to ex-
ploit hidden experts’ predictions for the improvement
of the learner’s prediction without observing them.

Instead, the computation time of SEW learners is
much larger than that of EW and Exp3 learner due
to cryptographic operations included. Table 3 shows
the learner’s computation time (cpu time) per step of
online prediction. The computation time of SEW/OR
per one round is at most a few minutes in this set-
ting. If the interval of decision making is not too
short, SEW is sufficiently practical. The computa-
tion of SEW/OR is about 2-6 times faster compared
to that of SEW/DR. This is because SFE costs larger
time even when the protocol is designed such that only
primitive operations are processed by SFE.
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Figure 3. Expectation of regret per time (avg. of 100 iter-
ations, N = 10, T = 5000).

7. Conclusion

We presented online prediction algorithms in the pri-
vate information model, assuming each expert can ob-
serve the loss while the loss cannot be disclosed to
others due to privacy concern. Our secure exponential
weighting for online prediction enables exploitation of
private loss values possessed by the experts by mak-
ing use of cryptographic tools. We proved that the
regret bound of our secure exponential weighting is
the same or almost the same with the regret of expo-
nential weighting in the full information model. The
security of the parties’ loss values and predictions are
theoretically guaranteed. Our future work is to apply
the secure exponential weighting to the repeated game
where the payoff matrix of games and players’ strate-
gies are desired to be kept private from each other.
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Proof of Theorem 2 (Sketch)

The proof methodology used here is similar to
(Cesa-Bianchi & Lugosi, 2006), so the detail is omitted here.

The lower bound of ln
WT
W0

is:

ln
WT

W0

≥ − η

1 − γ
min

i
Li,T − ln N. (7)

Using
wi,t
Wt

=
pi,t−γ/N

1−γ and e−x ≤ 1 − x + x2/2, we have

Wt+1

Wt

≤ 1 − η − η2/2

1 − γ

N
X

i=1

pi,tℓ(yi,t, yt) +
ηγ/N

1 − γ

N
X

i=1

ℓ(yi,t, yt).

Using ln(1 + x) ≤ x and summing over t we get

ln
WT+1

W1

≤ η(1 − η/2)

1 − γ

T
X

t=1

N
X

i=1

pi,tℓ(yi,t, yt) +
ηγ/N

1 − γ

T
X

t=1

N
X

i=1

ℓ(yi,t, yt).

Combining eq. 7 with the above equation, we have

R
T
SEW/OR ≤ 1 − γ

η
ln N +

η

2
LSEW/OR +

γ

N

N
X

i=1

Li. (8)

From this and η =
p

2 ln N/T , the following holds:

R
T
SEW/OR ≤ (1 − γ)

r

T ln N

2
ln N +

r

T ln N

2
+ γT

Since γ < 1/T , RSEW/OR,T =
√

2T ln N + O(1).


