
Feature Selection as a One-Player Game

Romaric Gaudel romaric.gaudel@lri.fr

Michèle Sebag michele.sebag@lri.fr

LRI, CNRS UMR 8623 & INRIA-Saclay, Bât 490, Université Paris-Sud 11, 91405 Orsay Cedex FRANCE

Abstract

This paper formalizes Feature Selection as a
Reinforcement Learning problem, leading to
a provably optimal though intractable selec-
tion policy. As a second contribution, this pa-
per presents an approximation thereof, based
on a one-player game approach and relying
on the Monte-Carlo tree search UCT (Up-
per Confidence Tree) proposed by Kocsis and
Szepesvari (2006). The Feature Uct SElection

(FUSE) algorithm extends UCT to deal with
i) a finite unknown horizon (the target num-
ber of relevant features); ii) the huge branch-
ing factor of the search tree, reflecting the
size of the feature set. Finally, a frugal re-
ward function is proposed as a rough but un-
biased estimate of the relevance of a feature
subset. A proof of concept of FUSE is shown
on benchmark data sets.

1. Introduction

Feature Selection (FS), one key issue in statistical
learning, is a combinatorial optimization problem
aimed at minimizing the generalization error of the
learned hypothesis. FS is tackled using three main ap-
proaches: scoring, wrapping and embedded FS (more
in section 2). Scoring approaches independently assess
and rank the features w.r.t. the classification prob-
lem; in counterpart, they poorly account for the fea-
ture inter-dependencies. Wrapper methods basically
tackle the whole combinatorial optimization problem,
exploring the whole powerset of the feature set and
computing for each candidate subset an estimate of
the generalization error. Embedded approaches ex-
ploits the learned hypothesis and/or incorporate spar-
sity criteria during learning to achieve FS.

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

This paper formalizes Feature Selection as a Rein-
forcement Learning (RL) problem: find a good fea-
ture selection strategy, ultimately resulting in a mini-
mal generalization error. While this formalization en-
ables to define a provably optimal policy, such a pol-
icy is clearly intractable. An approximation thereof is
obtained by casting the RL problem as a one-player
game; the Upper Confidence Tree (UCT) framework
(Kocsis & Szepesvári, 2006) yields a robust approach
to optimization under uncertainty.

The paper is organized as follows: section 2 briefly
reviews related work, without aiming at exhaustivity.
The formalization of FS as a Reinforcement Learn-
ing problem is presented in section 3. For the sake of
self-containedness, section 4 describes the UCT frame-
work. Section 5 focuses on how to deal with the huge
branching factor of the search tree, while section 6
presents other UCT extensions needed to handle the
Feature Selection problem, and gives an overview of
the FUSE (Feature UCT SElection) algorithm. A
proof of principle of the approach on some bench-
mark problems from the NIPS 2003 FS Challenge
(Guyon et al., 2004) is discussed in section 7 and the
paper concludes with some perspectives for further
work.

2. State of the Art

Feature Selection mostly aims at reducing the general-
ization error of the learned hypothesis, through remov-
ing noise (filtering out irrelevant features) or consider-
ing simpler hypothesis spaces (filtering out redundant
features). As already mentioned, three categories of
FS algorithms are classically distinguished.
Filtering approaches proceed by independently
ranking features using some score function, and select-
ing the top-ranked ones. The score basically measures
the correlation between the feature and the class val-
ues, using e.g. Student’s t-test, or its multi-class exten-
sion (aka. ANOVA, the Analysis of variance), or the
Fisher test. The main limitation of the above score
functions is to discard feature interdependencies. A

Feature Selection as a One-Player Game

filtering approach accounting for feature correlations,
RELIEF measures the feature impact on each example
neighborhood and its purity (Kira & Rendell, 1992);
the example neighborhood, defined from the Euclidean
distance built from all features, might however be bi-
ased due to feature redundancy.

Wrapper approaches tackle the whole combinato-
rial optimization problem of FS, exploring the power-
set of the feature set F and measuring (an estimate of)
the generalization error of all considered subsets. The
crux of wrapper approaches is how to navigate in the
feature powerset lattice, and deal with the exploration
versus exploitation (EvE) dilemma. On the one hand,
exploration must be limited for the sake of scalability.
On the other hand, exploitation aka. myopic search
is bound to end up in a local optimum. Hill-climbing
approaches (Hall, 2000), mixing forward and backward
selection (Zhang, 2008a), using look-ahead or making
large steps in the lattice (Margaritis, 2009), combin-
ing global and local search operators (Boullé, 2007),
among many other heuristics, have been proposed to
address the EvE dilemma.

Embedded Approaches combine learning and fea-
ture selection through prior or posterior regularization.
(Tibshirani, 1994) pioneered the use of L1 regulariza-
tion, amenable to Linear Programming-based learning
(Fung & Mangasarian, 2000) and paving the way for
the so-called least absolute shrinkage and selection op-

erator (Lasso) approach (Efron et al., 2004). Quite
a few other regularization approaches, mostly consid-
ering linear hypothesis spaces, have been considered
along the same lines (Guyon et al., 2002; Chan et al.,
2007; Zhang, 2008b; Helleputte & Dupont, 2009). An
extension of the above to non-linear spaces is given
by Multiple Kernel Learning (MLKL) (Bach, 2008),
achieving a layer-wise exploration of the “kernel lat-
tice” as opposed to the feature lattice. While the ker-
nel lattice indeed offers a more compact and hence
more tractable search space than the feature power-
set, the approach clearly cannot be extended beyond
certain limits. Other approaches use non-linear hy-
potheses (Shen et al., 2008; Varma & Babu, 2009) or
random forests (Breiman et al., 1984; Rogers & Gunn,
2005), to compute feature scores. The main weakness
of these scores in a FS perspective is to be hindered
by feature redundancy.

In summary, filtering and embedded approaches alike
consider each feature in a fixed context: either stand-
alone (and they do not capture their correlations) or
together with all other features (and they are hindered
by feature redundancy). Only wrapper approaches,
considering feature subsets, have a chance to see fea-

tures at their best; but the price to pay is that of con-
sidering sufficiently many subsets. Regarding wrap-
per approaches, the delicate issue is to control the Ex-
ploration versus Exploitation (EvE) tradeoff. It thus
comes naturally to wonder whether: i/ a feature subset
can be provided with a cheap, unbiased, assessment;
ii/ these assessments can be used to control the EvE
tradeoff in an efficient way, and gradually focus the
search on the most promising regions of the feature
lattice. Both questions are at the root of the proposed
Multi-Armed Bandit-based approach to feature selec-
tion.

3. Feature Selection as Reinforcement

Learning

The first contribution of the presented work is to for-
malize FS as a Markov Decision Process (MDP) in
the feature set lattice, as follows. Let F denote the fi-
nite set of features, plus an additional stopping feature
noted fs. The state space S of the MDP is the power-
set of F . Final states are all states F ⊆ F containing
fs. The action space, likewise, is the set of features.
Within any non final state F , a possible action is to
select a feature in F \ F : letting p : S ×F ×S → IR+

be the transition function, p(F, f, F ′) is non zero if
F ′ = F ∪ {f}.

As the main goal of FS is to yield a minimal generaliza-
tion error at the end of the learning process, it comes
naturally that the reward function associated to a fi-
nal state F is the generalization error of the learned
hypothesis A(F \{fs}) noted Err(A(F)). Let π be an
MDP policy associating to each state an action. Let Fπ

denote the final state (the subset of features) built by
following π starting from the empty state. Clearly the
optimal policy π⋆ is the one minimizing Err(A(Fπ)):

π⋆ = argmin
π

Err (A (Fπ)) (1)

Following Bellman’s optimality principle (Bellman,
1957) and defining the optimal value function V ⋆ as:

V ⋆(F) =

{

Err(A(F)) if F is final
min

f∈F\F
V ⋆(F ∪ {f}) otherwise (2)

the optimal policy π⋆ is defined from V ⋆ as follows:

π⋆(F) = argmin
f∈F\F

V ⋆(F ∪ {f}) (3)

While the above π⋆ policy is provably optimal, it does
not lead to a tractable algorithm, as the state space

Feature Selection as a One-Player Game

is exponential in the number of features. The sec-
ond contribution of the paper is to provide a tractable
approximation of the above optimal policy, taking in-
spiration from (Rolet et al., 2009). The proposed pol-
icy approximation relies on the Upper Confidence Tree
(UCT) framework (Kocsis & Szepesvári, 2006) which
extends the optimal exploration vs. exploitation trade-
off of the Upper Confidence Bound algorithm (UCB)
(Auer et al., 2002) to the case of sequential decision
making.

4. Upper Confidence Tree for Optimal

Policy Approximation

New Node

Random
Phase

Search Tree

Bandit−Based
Phase

Figure 1. One iteration of

FUSE (UCT approach for

FS).

For the sake of self-
containedness this sec-
tion briefly summarizes

UCT, a Monte-Carlo tree
search algorithm asym-
metrically growing the
search tree to explore
the most promising re-
gions thereof (Fig. 1).
UCT proceeds by suc-
cessive iterations where
each iteration executes a
sequence of actions di-
vided into two phases: a
bandit-based phase and
a random phase. Within
the bandit phase, in
each node F , one selects
the action maximizing
the Upper Confidence
Bound (UCB) criterion
(Auer et al., 2002):

a⋆ = argmax
a∈A

{

µ̂F,a +

√

ce ln (TF)

tF,a

}

(4)

where TF stands for the number of times node F has
been visited, tF,a denotes the number of times a has
been selected in node F , and µ̂F,a is the average reward
collected when selecting action a from node F . Pa-
rameter ce (set to 2 in the original UCB formula) was
introduced in UCT to control the exploration strength
(Kocsis & Szepesvári, 2006).

At some point, one arrives at a node F which does not
belong to the search tree. This node is added to the
tree and the iteration switches to the random phase:
new actions are selected either randomly or following
ad-hoc rules until arriving at a final node. At this
point, the instant reward is computed and the TF , tF,a

and µ̂F,a indicators attached to each node and action
of the visited branch are updated accordingly.

5. The Many-armed Issue

A general limitation of Multi-Arm Bandit algorithms,
when dealing with a large number of actions compared
to the number of allowed iterations, is to be biased to-
ward exploration (Wang et al., 2008). This limitation
is even more severe for UCT, which must resist over-
exploration at each level of the tree. This section re-
calls several heuristics proposed to control exploration
and details how these are combined in the proposed
approach.

5.1. Restricting the Number of Arms

A first modification of the original UCT algorithm is
to limit the strength of the exploration term, taking
into account the empirical variance σ̂2

F,a of the rewards
collected when selecting action a from node F . For-
mally, Eq. (4) is replaced by the so-called UCB1-tuned
equation (Auer et al., 2002):

µ̂F,a +

√

√

√

√

ce ln (TF)

tF,a

min

(

1

4
, σ̂2

F,a +

√

2 ln (TF)

tF,a

)

(5)

Two heuristics, a discrete and a continuous one, have
been considered to further control the exploration.
The continuous one proposed by (Gelly & Silver, 2007)
sets constant ce to a very small value; the discrete one
proposed by (Coulom, 2006) restricts the number of
considered child nodes depending on the number of
visits TF to the parent node. Formally, a new child
node is added whenever the integer part of T b

F is in-
cremented by 1, where b < 1 is a parameter of the
algorithm.

5.2. Rapid Action Value Estimation

As shown in earlier work, the selection of new nodes
can benefit from any prior knowledge (Rolet et al.,
2009) or any knowledge gained within the search.
Taking inspiration from MoGo (Gelly & Silver, 2007),
knowledge gradually acquired along the search is sum-
marized through the so-called Rapid Action Value Es-

timation vector (RAVE), associating to each feature f

the average reward of all final nodes Ft containing f :

g-RAVEf = average{V (Ft), f ∈ Ft} (6)

While g-RAVE provides a global indication on feature
relevance, it also makes sense to consider the feature
conditionally to those selected within the current node,

Feature Selection as a One-Player Game

yielding the ℓ-RAVE vector:

ℓ-RAVEF,f = average{V (Ft), F ; Ft, f ∈ Ft} (7)

where the average is taken over iterations t visiting
node F and ending up in final node Ft, noted F ; Ft.

Regarding the stopping feature fs, one RAVE score is
associated to each size of feature set. Specifically, let

f
(d)
s be the stopping feature at level d; g-RAVE

f
(d)
s

is

defined as the average reward of all final nodes Ft of
size d + 1:

g-RAVE
f
(d)
s

= average{V (Ft), |Ft| = d + 1} (8)

Global and local scores provide an estimate of the fea-
ture relevance (conditionally to feature subset F in the
case of ℓ-RAVE and µ̂F,f) achieving different bias vs.
variance trade-offs: g-RAVE is computed from more
trials than ℓ-RAVE, which in turn is computed from
more trials than µ̂F,f ; but µ̂F,f (respectively ℓ-RAVE)
more precisely reflects the impact of f conditionally to
F than ℓ-RAVE (resp. g-RAVE).

5.3. Selection of New Nodes

RAVE scores are used to focus the search and avoid
a (hopeless) uniform exploration of the feature space.
How to use RAVE depends on whether the exploration
heuristics (section 5.1) is discrete or continuous. The
discrete one selects the top ranked feature after RAVE
whenever the integer part of T b

F is incremented. The
continuous one replaces the UCB formula (Eq. (5)) by
a weighted sum (1−α) ·UCB+α · ℓ-RAVE where α =

c
c+tF,f

controls the impact of ℓ-RAVE, the weight of

which becomes small as soon as f has been sufficiently
selected from node F (tF,f > c) (Gelly & Silver, 2007).
Along the same lines, we consider both g-RAVE and
ℓ-RAVE to select the feature f maximizing:

(1−α)·µ̂F,f+α
(

(1− β) · ℓ-RAVEF,f + β · g-RAVEf

)

+

√

√

√

√

ce ln (TF)

tF,f

min

(

1

4
, σ̂2

F,f +

√

2 ln (TF)

tF,f

)

(9)

where β = cl

cl+tl
and tl denotes the number of itera-

tions involved in ℓ-RAVE computation.

It must be noted that the FUSE tree and the RAVE
score are tightly coupled. While the RAVE score

guides the FUSE exploration, FUSE can inversely be
viewed as a sophisticated way of building the RAVE
score, providing an educated guess about the feature
relevance.

6. UCT-based Feature Selection: FUSE

This section finally gives an overview of the FUSE al-
gorithm, first detailing the reward function and the
random phase policy which are specific to the Feature
Selection task.

6.1. Instant Reward Function

A primary requirement for Monte-Carlo tree search
is to set up a computationally cheap reward to be
computed in each iteration. The FUSE reward func-
tion, aimed at estimating the generalization error, pro-
ceeds by learning from few examples, for the sake of
tractability, while accounting for non-linear concepts
for the sake of efficiency. Specifically, the reward at-
tached to a feature subset F proceeds as follows. Let
dF denote the Euclidean distance based on features in
F . Let L denote the training set and V an aggressive
subsample of L. For each labeled example z = (x, y)
in V , let NF,k(x) denote the set of the k nearest neigh-
bors of x in L after dF ; define sF (z) the number of
positive examples among these neighbors:

sF (z) = |{z′ ∈ NF,k(x), y′ > 0}| (10)

A reasonable tradeoff between stable and computa-
tionally frugal reward is given by the Area Under the
ROC curve (AUC, aka. Mann Whitney Wilcoxon cri-
terion), defined1 as:

V (F) =
|{(z, z′) ∈ V2, sF (x) < sF (x′), y < y′}|

|{(z, z′) ∈ V2, y < y′}|
(11)

Upon computing V (F), the score of all nodes in the
current path is updated. Although FUSE actually ex-
plores a graph (the lattice of the feature set), it does
not update the reward of all nodes containing F due
to the high branching factor of the graph.

Computational complexity: V (F) is computed
with linear complexity in the size n of L up to a

1 Algorithmically, for each positive example z ∈ V let
v(z) (respectively w(z)) denote the number of negative ex-
amples z′

∈ V s.t. sF (z′) < sF (z) (resp. sF (z′) = sF (z)),
and let S(F) be the sum of z ∈ V of v(z) + 1

2
w(z) over all

positive examples. Score V (F) is set to S(F) divided by
the product of the number of positive and negative exam-
ples in V.

Feature Selection as a One-Player Game

Algorithm 1 FUSE

FUSE

Input: number of iterations T and many-armed be-
havior MA
Output: search tree T and g-RAVE score
Initialize T ← ∅, ∀f, g-RAVE(f) = 0
for t = 1 to T do

Iterate(T , g-RAVE, ∅)
end for
Iterate

Input: search tree T , score g-RAVE, subset F

Output: reward V

if F final then

V ← V (F \ {fs}) ; Update g-RAVE
else

if t(F) 6= 0 then

if MA = progressive widening then

f⋆ ← argmax
f∈AllowedFeatures(F)

UCB1-tuned(F, f)

else

f⋆ ← argmax
f∈F\F

tradeoff UCB/RAVE(F, f)

end if

V ← iterate(T , g-RAVE, F ∪ {f⋆})
else

V ← iterate random(T , g-RAVE, F)
end if

Update TF , tf , µ̂F,f , σ̂2
F,f and ℓ-RAVEF,.

end if

Iterate random

Input: search tree T , score g-RAVE, subset F

Output: reward V

while rand() < q|F | do

f⋆ ← uniformly selected feature in F \ (F ∪ {fs})
F ← F ∪ {f⋆}

end while

V ← V (F) ; Update g-RAVE

logarithmic term. More precisely the complexity is
Õ(mnd) where m denotes the size of V and d the size
of the feature subset.

6.2. Random Phase

A key specificity of the Feature Selection task, viewed
as Reinforcement Learning problem, is that it deals
with a finite unknown horizon (the target number of
features). This specificity is accounted for in the ran-
dom UCT phase, by enforcing the selection of the stop-
ping feature at level d with probability 1 − qd, where
q < 1 is a parameter of the algorithm.

6.3. Overview of FUSE

The FUSE algorithm (algorithm 1) constructs both a
search tree and a RAVE score, yielding two different
FS strategies. The first one, noted FUSE, retains the
features in the most often visited path in the search
tree (to be preferred to the path with maximal av-
erage reward after the common UCT practice). The
second one denoted FUSER uses the RAVE score to
rank the features, and proceeds as a standard filtering
FS algorithm.

In the following, the prefix C or D will be used to
indicate whether FUSE and FUSER are used with the
continuous or discrete heuristics (section 5.1).

7. Experimental Validation

This section aims at providing a proof of principle of
the approach on standard benchmark data sets from
the NIPS 2003 FS Challenge (Guyon et al., 2004).
Due to space limitations, only binary classification
problems and numerical features are considered.

7.1. Experimental Setting

The goal of the experiments is to answer three main
questions. The first one is related to the overall FS

performance of the proposed approach depending on
the complexity of the underlying target concept and
feature correlations. The second one regards the com-

parative strengths and weaknesses of FUSE and
FUSER, and the merits of the discrete and continu-
ous heuristics used to control exploration. The third
one regards the convergence speed of the approach
depending on the computational effort.

Three benchmark data sets (Table 1) have been con-
sidered to answer the first question. The Madelon
and Arcene data sets involve concepts with correlated
features. Madelon is an artificial 500-feature dataset,
where the target concept is set to the XOR of five
relevant features. The other 495 features involve 15
features, built as linear combinations of the relevant
ones; the remaining features are irrelevant. Arcene
is the concatenation of several datasets relevant to re-
lated though different concepts (each dataset being re-
lated to a particular type of cancer); expectedly, the
target concept in Arcene involves the disjunction of
overlapping sub concepts. The third dataset, Colon,
is a microarray dataset introduced by (Alon et al.,
1999), which is considered to be “simple”. After
(Guyon et al., 2007; Shen et al., 2008), Madelon and
Colon are centered and normalized (based on the train-
ing set). For the sake of tractability, FUSE and CFS
only consider the top 2000 features of the Arcene

Feature Selection as a One-Player Game

Table 1. Datasets characteristics.

Data set Samples Features Properties

Madelon 2600 500 XOR-like

Arcene 200 10, 000 Disjunctive

Colon 62 2, 000 “Easy”

dataset, ranked after their ANOVA score.

All reported results are averaged on ten independent
runs. Each run considers a 5-fold stratified cross-
validation (CV). For each fold, FUSE is launched
with 200,000 Monte-Carlo iterations. The runtime
is respectively 45 minutes, 5 minutes and 4 min-
utes on Madelon, Arcene and Colon on an Intel Core
2×2.6GHz CPU with 2GB memory (only considering
FS on the training set, i.e. 80% of the dataset).

FUSE parameters include k (used in the reward func-
tion, section 6.1) set to 5; q (used to control the average
depth in the random phase, section 6.2), set to 1− 10i

for i = −1,−3,−5. The exploration control heuristics
involves parameter ce set to 10i for i = −4,−2, 0, 2;
the discrete heuristics (section 5.1) involves parameter
b set to 2 in all experiments; the continuous heuris-
tics involves c and cl (section 5.3) both set to 10i for
i = −∞, 2, 4.

FUSE performance is assessed comparatively to three
baseline approaches: Correlation-based Feature Selec-
tion (CFS) (Hall, 2000), the Random-Forest based
Gini score (Gini-RF) (Breiman et al., 1984) and Lasso
(Tibshirani, 1994)2. FUSER was further compared to
its naive variant RANDR, using the average feature
score built from uniformly selected 20-feature subsets.

For the sake of a fair comparison, all FS algorithms
were combined with the same end learner, a Gaussian
SVM (Collobert et al., 2002); its hyper-parameters are
optimized using 5 fold CV on the training set unless
otherwise specified.

7.2. Experimental Results

Some answers to the question of the performance of
FUSE algorithms are given on Fig. 2, reporting their
generalization error comparatively to that of Gini-RF,
CFS and Lasso. The differences among the datasets
are visible as Lasso is outperformed by other ap-
proaches on Arcene and Madelon (which are not lin-
ear) whereas all algorithms similarly perform on the
Colon dataset. On Arcene and Madelon, the compar-

2Using the Weka implementation of CFS; the R imple-
mentation of Gini-RF (with 1,000 trees); the R (glmnet)
implementation of Lasso.

ison between FUSE, CFS and Gini-RF suggests that
the FUSE algorithms take the best of both worlds.
On the one hand, they detect features which are only
relevant when combined with other features, like Gini-
RF, and they improve on Gini-RF when few features
are considered. On the other hand, they can filter out
redundant features, like CFS, and they statistically
significantly improve on CFS when considering many
features. This good behavior is explained from the re-
ward used in FUSE, which allows for a global assess-
ment of feature subsets without making assumptions
about the complexity of the underlying target concept.
In the meanwhile, the assessment of many feature sub-
sets is made possible as only a tiny subsample of the
instance space is considered in each iteration.

Fig. 2 also illustrates the difference between FUSE and
FUSER, and the comparative merits of the discrete
(progressive-widening-based) and continuous (Mogo-
like) heuristics used to control the exploration width.
A first remark is that FUSE does not control the depth
of the search tree in an efficient way; the best FUSE
paths involve from 5 to 15 features. The filtering
approach based on the RAVE score built by FUSE,
FUSER, thus appears to be significantly more efficient
than FUSE (although both algorithms almost always
select the same top features, and thus coincide at the
beginning of the curve reporting the performance vs.
the number of features).

The discrete and continuous heuristics yield same re-
sults at their best, i.e. when the c and cl parameters of
the continuous heuristics are well chosen. For this rea-
son, the discrete heuristics is preferred as more robust:
the single b parameter used to control the branching
factor depending on the number of visits of the node
was set to 2 in all experiments.

These results are comparable to the state of the art
along the NIPS FS challenge setting (using an ad-
ditional separate test set): the best performance on
Madelon (reached by (Shen et al., 2008)) is 6.22% vs
6.5 for FUSER.

Regarding the scalability question, some answers are
graphically provided by Fig. 3, reporting the average
test error versus the number of iterations in log scale
on the Madelon dataset; the performances reported
for D-FUSER, C-FUSER and RANDR correspond to
the best 20 features for the sake of comparison with
D-FUSE and C-FUSE. FUSE reaches its optimum af-
ter 10,000 iterations and thereafter stagnates, basically
because the exploration does not allow for an in-depth
exploration of the search tree and the size of the best
path remains limited. Interestingly, FUSER converges
more slowly than FUSE at the beginning; but it soon

Feature Selection as a One-Player Game

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30

te
st

 e
rr

or

number of used top-ranked features

D-FUSE
D-FUSER

C-FUSE
C-FUSER

CFS
Gini-RF

Lasso

(a) Madelon

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200

te
st

 e
rr

or

number of used top-ranked features

D-FUSE
D-FUSER

C-FUSE
C-FUSER

CFS
Gini-RF

Lasso

(b) Arcene

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200

te
st

 e
rr

or

number of used top-ranked features

D-FUSE
D-FUSER

C-FUSE
C-FUSER

CFS
Gini-RF

Lasso

(c) Colon

Figure 2. Performance versus the number of selected features. The performance measures the average error on 50 splits
of Madelon (left), Arcene (center) and Colon (right). D-FUSE and C-FUSE are only visible at the beginning of the curve
as they select from 5 to 15 features.

catches up and improves on FUSE after 10,000 itera-
tions. In the meanwhile, FUSER is faster by an order
of magnitude than RANDR, i.e. reaches the same level
of performances with about 10 times less iterations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 10 102 103 104 105

te
st

 e
rr

or

iteration

D-FUSE
D-FUSER

C-FUSE
C-FUSER

RANDR

(a) Test error

 0

 5

 10

 15

 20

1 10 102 103 104 105

nu
m

be
r

of
 fe

at
ur

es
 c

ho
se

n
by

 F
U

S
E

iteration

D-FUSE
C-FUSE

(b) Size of FUSE feature subset

Figure 3. Average test error (a) and size of D-FUSE and
C-FUSE feature subset (b) on Madelon vs. number N of
iterations in logscale. D-FUSER and C-FUSER use the top
20 features after the RAVE score built from N iterations;
RANDR use the top-20 features after the average score out
of N uniformly selected 20-feature subsets.

8. Discussion and Perspectives

The main merits of the presented work are i/ to for-
malize Feature Selection as a Reinforcement Learning

problem aimed at minimizing the generalization er-
ror; and ii/ to use this formalization to revisit wrap-
per approaches, for these uniquely simultaneously ac-
count for feature interdependencies and filter out use-
less redundancies. Algorithmically, the FS combina-
torial optimization problem is tackled by combining
Monte-Carlo Tree Search and a fast approximation
of the generalization error; several extensions of the
UCT framework have been proposed to handle the
specificities of the FS search space, resulting in the
FUSE algorithms. While a proof-of-principle experi-
ment demonstrates the comparative performances of
the approach, it raises several questions for further in-
vestigation. A main question is whether the proposed
approach should be viewed as a wrapper, or a filter-
ing FS approach. On the one hand, the RAVE vector
summarizing the trials is a way of supporting a better-
informed FUSE exploration, and thus a wrapper FS
approach; on the other hand, FUSE can be viewed as
a sophisticated way of building the RAVE score, sup-
porting a filtering FS approach.

Further research will extend the approach to multi-
class problems and mixed (continuous and discrete)
search spaces, combine FUSE with other end learn-
ers, and reconsider the instant reward criterion. A
longer term perspective is to extend the presented ap-
proach to Feature Construction, by extending FUSE
to explore a regular language as in (de Mesmay et al.,
2009).

Acknowledgments

We thank Olivier Teytaud and Philippe Rolet for many
fruitful discussions, and the anonymous reviewers for
their suggestions and comments. We acknowledge the
support of the PASCAL2 Network of Excellence, IST-
2007-216886.

Feature Selection as a One-Player Game

References

Alon, U., Barkai, N., Notterman, D. A., Gishdagger, K.,
Ybarradagger, S., Mackdagger, D., and Levine, A. J.
Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. In Proc. of the Nat. Ac. of Sc. of
the USA, pp. 6745–6750, June 1999.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the Multiarmed Bandit problem. Mach.
Learn., 47(2-3):235–256, 2002.

Bach, F. Exploring large feature spaces with Hierarchi-
cal Multiple Kernel Learning. In NIPS’08, pp. 105–112,
2008.

Bellman, R. Dynamic Programming. Princeton Univ.
Press, 1957.

Boullé, M. Compression-based averaging of selective Naive
Bayes classifiers. J. Mach. Learn. Res., 8:1659–1685,
2007.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R.A.
Classification and Regression Trees. Taylor & Francis,
Inc., 1984.

Chan, A. B., Vasconcelos, N., and Lanckriet, G. R. G.
Direct convex relaxations of sparse SVM. In ICML’07,
pp. 145–153, 2007.

Collobert, R., Bengio, S., and Marithoz, J. Torch: A mod-
ular machine learning software library. Technical report,
IDIAP, 2002.

Coulom, R. Efficient selectivity and backup operators in
Monte-Carlo tree search. In Computers and Games, pp.
72–83, 2006.

de Mesmay, F., Rimmel, A., Voronenko, Y., and Püschel,
M. Bandit-based optimization on graphs with applica-
tion to library performance tuning. In ICML’09, pp.
729–736, 2009.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R.
Least angle regression. Annals of Statistics, 32:407–499,
2004.

Fung, G. and Mangasarian, O. L. Data Selection for Sup-
port Vector Machine Classifiers. In KDD’00, pp. 64–70,
2000.

Gelly, S. and Silver, D. Combining online and offline knowl-
edge in UCT. In ICML’07, pp. 273–280, 2007.

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. Gene
selection for cancer classification using Support Vector
Machines. Mach. Learn., 46(1-3):389–422, 2002.

Guyon, I., Gunn, S. R., Ben-Hur, A., and Dror, G. Result
analysis of the NIPS 2003 Feature Selection challenge.
In NIPS’04, pp. 545–552, 2004.

Guyon, I., Li, J., Mader, T., Pletscher, P. A., Schneider,
G., and Uhr, M. Competitive baseline methods set new
standards for the NIPS 2003 feature selection bench-
mark. Pattern Recogn. Lett., 28(12):1438–1444, 2007.

Hall, M. A. Correlation-based Feature Selection for dis-
crete and numeric class Machine Learning. In ICML’00,
pp. 359–366, 2000.

Helleputte, T. and Dupont, P. Partially supervised Feature
Selection with regularized linear models. In ICML’09,
pp. 409–416, 2009.

Kira, K. and Rendell, L. A. A practical approach to feature
selection. In ML’92, pp. 249–256, 1992.

Kocsis, L. and Szepesvári, C. Bandit based Monte-Carlo
planning. In ECML’06, pp. 282–293, 2006.

Margaritis, D. Toward provably correct Feature Selection
in arbitrary domains. In NIPS’09, pp. 1240–1248, 2009.

Rogers, J. and Gunn, S. R. Identifying feature relevance
using a Random Forest. In SLSFS, pp. 173–184, 2005.

Rolet, P., Sebag, M., and Teytaud, O. Boosting Ac-
tive Learning to optimality: a tractable Monte-Carlo,
Billiard-based algorithm. In ECML’09, pp. 302–317,
2009.

Shen, K. Q., Ong, C. J., Li, X. P., and Wilder-Smith, E.
P. V. Feature selection via sensitivity analysis of SVM
probabilistic outputs. Mach. Learn., 70(1):1–20, 2008.

Tibshirani, R. Regression shrinkage and selection via the
Lasso. Journal of the Royal Statistical Society, Series B,
58:267–288, 1994.

Varma, M. and Babu, B. R. More generality in efficient
Multiple Kernel Learning. In ICML’09, pp. 1065–1072,
2009.

Wang, Y., Audibert, J.Y., and Munos, R. Algorithms for
infinitely Many-Armed Bandits. In NIPS08, pp. 1729–
1736, 2008.

Zhang, T. Adaptive Forward-Backward Greedy Algorithm
for Sparse Learning with Linear Models. In NIPS’08,
pp. 1921–1928, 2008a.

Zhang, T. Multi-stage Convex Relaxation for Learning
with Sparse Regularization. In NIPS’08, pp. 1929–1936,
2008b.

