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Abstract
Learning undirected graphical models such as
Markov random fields is an important machine
learning task with applications in many domains.
Since it is usually intractable to learn these mod-
els exactly, various approximate learning tech-
niques have been developed, such as contrastive
divergence (CD) and Markov chain Monte Carlo
maximum likelihood estimation (MCMC-MLE).
In this paper, we introduce particle filtered
MCMC-MLE, which is a sampling-importance-
resampling version of MCMC-MLE with addi-
tional MCMC rejuvenation steps. We also de-
scribe a unified view of (1) MCMC-MLE, (2)
our particle filtering approach, and (3) a stochas-
tic approximation procedure known as persistent
contrastive divergence. We show how these ap-
proaches are related to each other and discuss
the relative merits of each approach. Empiri-
cal results on various undirected models demon-
strate that the particle filtering technique we pro-
pose in this paper can significantly outperform
MCMC-MLE. Furthermore, in certain cases, the
proposed technique is faster than persistent CD.

1. Introduction
Undirected models such as Boltzmann machines, condi-
tional random fields, and exponential random graph models
are useful in many settings, including computer vision (Li,
1994), linguistics (Lafferty et al., 2001), and social network
analysis (Robins et al., 2007). These models are often hard
to learn exactly, and thus various approximation techniques
have been proposed, including pseudolikelihood methods
(Besag, 1974), variational methods (Wainwright & Jordan,
2008), and sampling methods (Geyer & Thompson, 1992).
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One such technique is to use both MCMC and importance
sampling to perform approximate maximum likelihood es-
timation. This technique, known as Markov chain Monte
Carlo maximum likelihood estimation (MCMC-MLE), has
been shown to be more accurate than pseudolikelihood
methods on Ising models (Geyer & Thompson, 1992) and
is widely used for estimating exponential random graph
models (Snijders, 2002; Handcock et al., 2008). A ben-
efit of MCMC-MLE is that the likelihood approximation
becomes exact as the number of MCMC samples goes to
infinity. However, since this technique is based on impor-
tance sampling, the quality of the approximation depends
on the distance between the initial and the target distribu-
tions. If they are far apart, the samples from the initial
distribution may not be able to adequately cover the target
space, leading to unreliable estimates (Bartz et al., 2008).

To combat this potential impoverishment of the system’s
samples, we propose particle filtered MCMC-MLE (or
“PF”). Our PF approach applies the sampling-importance-
resampling scheme (Smith & Gelfand, 1992) to MCMC-
MLE and performs rejuvenating MCMC steps to main-
tain diversity within the set of samples (Gilks & Berzuini,
2001). We find that PF is able to outperform MCMC-MLE
due to these additional steps taken to mitigate degeneracy.

Another well-known technique is contrastive divergence
(CD) (Hinton, 2002), which has been successfully applied
to many problems, including the learning of Boltzmann
machines and deep architectures (Salakhutdinov & Hinton,
2009). One benefit of CD is computational efficiency. Un-
like MCMC-MLE, CD does not wait for the Markov chains
to reach equilibrium but takes only a few sampling steps to
obtain an approximate gradient. When there are no hid-
den variables in the model, CD with a single-variable sam-
pling step corresponds to maximum pseudolikelihood esti-
mation (MPLE) (Hyvärinen, 2006), and CD with blocked
sampling corresponds to maximum composite likelihood
estimation (MCLE) (Asuncion et al., 2010). A stochastic
approximation variant of CD, also known as persistent con-
trastive divergence (PCD), has also been developed and has
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been shown to improve upon CD (Younes, 1988; Tieleman,
2008). Interestingly, PCD can be recast within the sequen-
tial Monte Carlo scheme, and we show later that PCD is a
version of PF with importance weights fixed to 1. These
connections suggest a unified view, where slight algorith-
mic choices lead to these different methods.

In the next section, we review MCMC-MLE. Then we in-
troduce PF and highlight the link to PCD. We present ex-
perimental results showing that PF improves upon MCMC-
MLE and in certain cases also outperforms PCD.

2. A Review of MCMC-MLE
Before delving into our particle filtering technique, we re-
view MCMC-MLE (Geyer & Thompson, 1992). Let us
consider models in exponential family form1

p(x|θ) = exp(θ′g(x))/Z(θ), (1)

where g(x) is a vector of sufficient statistics, the apostrophe
denotes transposition, and Z(θ) is the partition function.

Assume we have N independent observations from the
model, X = {x1, x2, . . . , xN}, and the task is to find the
parameters θ that generated the observed data. The stan-
dard approach is maximum likelihood estimation (MLE),
which maximizes the log-likelihood,

L(θ|X) ∝ 1
N

N∑
i=1

θ′g(xi)− log Z(θ). (2)

While the ML estimator, θ̂ml ≡ arg maxθ L(θ|X), has ap-
pealing theoretical properties such as asymptotic consis-
tency and statistical efficiency (Lehmann & Casella, 1998),
it is typically hard to compute for models with complex de-
pendencies, due to the intractability of Z(θ).

We can rewrite Z(θ) in terms of an alternate distribution
p(x|θ0) (Geyer & Thompson, 1992):

Z(θ) = Z(θ0)
∑

x

exp{(θ − θ0)′g(x)}p(x|θ0). (3)

If we are able to obtain S samples from the alternate dis-
tribution (xs

0 ∼ p(x|θ0)), a Monte Carlo approximation of
Z(θ) yields the approximate likelihood (note that Z(θ0)
does not depend on θ and can be ignored):

L̃(θ|X) ∝ 1
N

N∑
i=1

θ′g(xi)−log
1
S

S∑
s=1

exp{(θ−θ0)′g(xs
0)}.

(4)
This likelihood becomes exact when S →∞.

1It is also straightforward to apply the methods in this paper
to models with hidden variables, such as RBMs.

Algorithm 1 MCMC-MLE
Initialize θ0

Sample {xs} ∼ p(x|θ0)
θ1 ← θ0

for i = 1 to max-iterations (or convergence) do
Calculate {ws} via eq. 6, using θi, θ0, {xs}
Calculate ∇L̃ via eq. 5, using {ws}, {xs}
θi+1 ← θi + η∇L̃

end for

MCMC-MLE constructs the approximate likelihood in
eq. 4 using MCMC samples from the alternate distribution
and then finds the maximizer to that likelihood to obtain
the approximate ML estimate θ̂approx. Since the initial θ0

may be far from the true parameter θ∗ (leading to unreliable
estimates), in practice this procedure is iterated a number
of times by running MCMC-MLE again with θ0 = θ̂approx

found in the previous iteration. For instance, in the widely
used statnet software which estimates exponential random
graph models, the default number of MCMC-MLE rounds
is 3 (Handcock et al., 2008). Another approach is to initial-
ize parameters at the MPLE (θ0 = θmple) (Snijders, 2002).

To elucidate the role of importance sampling within
MCMC-MLE, we derive the gradient of the likelihood in
eq. 4 with respect to θ,

dL̃(θ|X)
dθ

=
1
N

N∑
i=1

g(xi)− 1
S

S∑
s=1

wsg(xs
0), (5)

where

ws =
exp{(θ − θ0)′g(xs

0)}
1
S

∑
s exp{(θ − θ0)′g(xs

0)}
. (6)

These weights {ws} are the Monte Carlo versions of the
standard importance weights {ws

imp},

ws
imp =

p(xs
0|θ)

p(xs
0|θ0)

=
exp{(θ − θ0)′g(xs

0)}
Z(θ)/Z(θ0)

(7)

=
exp{(θ − θ0)′g(xs

0)}∑
x exp{(θ − θ0)′g(x)}p(x|θ0)

(8)

≈ exp{(θ − θ0)′g(xs
0)}

1
S

∑
s exp{(θ − θ0)′g(xs

0)}
≡ ws, (9)

where eq. 8 is obtained by applying eq. 3, and eq. 9 is the
Monte Carlo approximation of eq. 8. Thus, the second term
of the gradient in eq. 5 is estimated via importance sam-
pling. Using the gradient, one can run optimization meth-
ods such as gradient ascent to find θ̂approx. Algorithm 1
shows pseudocode for one round of MCMC-MLE.

3. Our Particle Filtering Approach
We now introduce particle filtered MCMC-MLE and show
its close connection to contrastive divergence.
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3.1. Particle Filtered MCMC-MLE

The realization that MCMC-MLE is performing impor-
tance sampling naturally leads to ways to improve MCMC-
MLE. We propose particle filtered MCMC-MLE, which
casts the algorithm within a sequential Monte Carlo frame-
work (Doucet et al., 2001). Specifically, our PF ap-
proach adapts the sampling-importance-resampling (SIR)
technique (Smith & Gelfand, 1992) to the task of estimat-
ing the second term of the gradient in eq. 5. At a high level,
SIR is a way to perform importance sampling recursively
using intermediate distributions, in such a way that the de-
generacy of the importance weights is controlled.

In the SIR framework, each particle is initially sampled
from the initial distribution p(x|θ0) and the weights of all
particles are set to 1. Then importance sampling is per-
formed recursively on a sequence of intermediate distribu-
tions {p(x|θi)}. In our task of finding the MLE, we spec-
ify the sequence of distributions to be precisely the algo-
rithmic trail {θ0, θ1, . . .} taken by our optimization algo-
rithm. This specification of intermediate distributions bears
resemblance to the technique of Carbonetto et al. (2009).

At each iteration i, each particle weight ws is calculated
recursively in the standard SIR scheme:

ws ← ws p(xs|θi)
p(xs|θi−1)

. (10)

These weights can be normalized such that
∑

s ws = 1.
This procedure is equivalent to calculating the weight non-
recursively (via eq. 6), based on the current θ and the θprev
when the particles were last resampled. The Monte Carlo
approximation of the weights is used here as well.

An important aspect of this approach is monitoring the par-
ticle set’s quality. The effective sample size (ESS) reveals
the number of random samples needed to match the Monte
Carlo variation of the particle set. ESS can be approxi-
mately computed using the weights (Kong et al., 1994),

ESS({ws}) =
(
∑

s ws)2∑
s(ws)2

. (11)

An ESS that is low (i.e. below a predetermined threshold)
suggests that the importance weights have become degen-
erate and that resampling and rejuvenation are necessary to
replenish the diversity of the particles.

Resampling is performed by sampling S particles from the
set {xs} with replacement, with probabilities proportional
to {ws}. After resampling, the weights are reset to 1. More
advanced resampling techniques, such as stratified resam-
pling, are also possible (Kitagawa, 1996). Particles with
high relative weights (indicating closeness to the target)
are sampled more frequently, while low-weight particles
are often eliminated from the set. In the degenerate case

Algorithm 2 Particle Filtered MCMC-MLE
Initialize θ0

Sample {xs} ∼ p(x|θ0)
θ1 ← θ0

for i = 1 to max-iterations (or convergence) do
Calculate {ws} via eq. 10, using θi, θi−1, {xs}
if ESS({ws}) < threshold then

Resample {xs} in proportion to {ws}
{ws} ← 1
Rejuvenate {xs} for n MCMC steps, using θi

end if
Calculate ∇L̃ via eq. 5, using {ws}, {xs}
θi+1 ← θi + η∇L̃

end for

where only a few particles have dominating weights, only
those particles would be replicated and the diversity of the
set would diminish greatly.

Rejuvenation combats the problem of degeneracy by ap-
plying MCMC move-steps to the particles after the resam-
pling step (Gilks & Berzuini, 2001; Ridgeway & Madigan,
2003). Specifically, for each particle s, an MCMC chain
governed by p(x|θi) is initialized at xs and is advanced
for n steps, leading to a new configuration for that parti-
cle. Rejuvenation increases the diversity of samples but can
be computationally expensive, depending on the number of
steps and distributions. To mitigate this cost, we restrict
ourselves to rejuvenation steps only after resampling.

Pseudocode for our PF method is in Algorithm 2. One
needs to specify the initial parameters θ0, number of par-
ticles S, ESS threshold, rejuvenation length n, learning
rate η, and convergence criteria. While the optimization
algorithm shown is gradient ascent, one could also use
(quasi)Newton methods. Note that as the number of parti-
cles goes to infinity, the likelihood gradient becomes exact.

3.2. Connection to Contrastive Divergence

Contrastive divergence (CD) is a popular learning algo-
rithm that has been applied to a variety of models (Hinton,
2002). While CD’s objective function is technically a dif-
ference of two KL divergences, the practical CD algorithm
can be obtained by considering the data log-likelihood. In-
stead of using eq. 3, we derive the gradient of the likelihood
in eq. 2 directly and apply a Monte Carlo approximation:

dL(θ|X)
dθ

=
1
N

N∑
i=1

g(xi)−
∑

x

g(x)p(x|θ) (12)

≈ 1
N

N∑
i=1

g(xi)− 1
S

S∑
s=1

g(xs). (13)
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The samples {xs} in eq. 13 are drawn from p(x|θ) via
MCMC. However, to obtain an accurate sample from the
distribution, the MCMC chain would need to reach equi-
librium. Since the CD philosophy values computational
efficiency, CD-n initializes the chains from the data dis-
tribution (to get close to the true modes) and then runs the
MCMC chain for only n steps, where n is often 1 (i.e. a
full sweep over the variables). The rationale behind CD is
that only a rough estimate of the gradient is necessary to
move the parameters in the right direction. Note that as the
number of steps n and the number of samples S go to infin-
ity, the gradient calculation becomes exact. It is interesting
to compare this feature to PF, which only needs the number
of particles S to go to infinity to obtain an exact gradient.

Persistent contrastive divergence (PCD-n) is a version of
CD-n where MCMC chains are persisted across iterations
(Tieleman, 2008). At iteration i, each xs is advanced n
steps using the MCMC sampler governed by p(x|θi) where
θi is the set of parameters at that iteration. At iteration i+1,
the MCMC chain for each particle xs is initialized with the
end sample of the previous iteration’s chain for xs, and then
the chain is advanced n MCMC steps under the distribu-
tion p(x|θi+1). At each step, these configurations {xs} are
used to estimate the gradient in eq. 13. A decreasing sched-
ule for η can be used to obtain a stochastic approximation
guarantee of asymptotic convergence to the MLE (Younes,
1988; Salakhutdinov, 2009).

Since xs is approximately sampled from p(x|θi) at the
end of iteration i, and since the goal in iteration i + 1
is to compute an expectation of the sufficient statistics
under the distribution p(x|θi+1) (i.e. eq. 13), a natural
extension is to augment PCD by inserting a sampling-
importance-resampling step between iterations. Surpris-
ingly, this slightly modified version of PCD is equivalent
to our PF algorithm. Within our PF framework, we ob-
tain this modified version of PCD-n if we (1) initialize θ0

in such a way that sampling from p(x|θ0) is easy, (2) set
the ESS threshold to be greater than S so that resampling
and rejuvenation take place every iteration, and (3) set the
length of rejuvenation to be n.

The standard version of PCD can be viewed as PF with all
the importance weights fixed to 1. In Algorithm 3, we show
the pseudocode of PCD-n, in particle filtering terminology.
The resampling step is not needed since all weights are 1.

The n sampling steps within each iteration of PCD can be
interpreted as simply being forced rejuvenation steps. PCD
does rejuvenation every iteration by construction, but if we
follow the PF approach of monitoring the ESS, it is not
necessary to rejuvenate every iteration. In iterations when
the ESS remains high, PF essentially performs “PCD-0”
(since there are 0 MCMC rejuvenation steps). This feature
can potentially make PF faster than PCD.

Algorithm 3 PCD-n (in particle filtering terminology)
Initialize θ0

Sample {xs} ∼ p(x|θ0) using n steps of MCMC
θ1 ← θ0

for i = 1 to max-iterations (or convergence) do
Fix {ws} ← 1
if true then

Rejuvenate {xs} for n MCMC steps, using θi

end if
Calculate ∇L̃ via eq. 5, using {ws}, {xs}
θi+1 ← θi + η∇L̃

end for

An issue with PF is that it can still have weight degener-
acy issues if the step size η moves the parameters too far at
each iteration. PCD sidesteps this issue since all particles
are fixed to have weights of 1 a priori. An alternative tech-
nique to obtain weights approaching 1 is to heuristically
introduce a temperature T in the importance weights:

ws =
p

1
T (xs|θ)

p
1
T (xs|θ0)

=
p(xs|θ)

p
1
T (xs|θ0)p1− 1

T (xs|θ)
(14)

As T → ∞, the weights move towards 1. A way to mo-
tivate this heuristic “smoothing” of the weights is that in-
stead of estimating the current health of the particle xs, we
are trying to estimate the future health of the particle after
n steps of rejuvenation under distribution p(xs|θ), and thus
we interpolate between p(xs|θ0) and p(xs|θ) in the denom-
inator of eq. 14. It may be possible to adaptively learn the
optimal T , but as we will see in the experiment in Figure 4,
even using a fixed T > 1 can help in cases when weight
degeneracy occurs in PF. Nonetheless, this heuristic is not
needed as long as η is small enough, and in most of our
experiments, we leave T = 1.

4. Experimental Analysis
We empirically compare MCMC-MLE, PF, and PCD on
undirected models such as visible Boltzmann machines, ex-
ponential random graph models, conditional random fields,
and restricted Boltzmann machines. Our experimental re-
sults suggest that PF generally outperforms MCMC-MLE
and in some cases is computationally faster than PCD.

4.1. Visible Boltzmann Machines

Our first model is a visible Boltzmann machine (VBM) of
the form p(x|θ) = 1

Z(θ) exp {
∑

i<j θi,jxixj} where x is a
vector of 15 binary variables (-1/1). This small model al-
lows us to exactly compute log-likelihoods for evaluation.
We perform 100 VBM experiments in the following man-
ner. First, the model parameters θi,j are randomly drawn
from N (0, 1), and then 500 training cases and 100 test
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(c) Likelihoods achieved in the time it takes PF
to run 2,000 epochs, for 100 different models.

Figure 1. Comparison of MCMC-MLE, PF, and PCD on visible
Boltzmann machines with 15 variables.

cases are drawn from p(x|θ). For 10 different initial set-
tings (θ0 ∼ N (0, 1)), we run MCMC-MLE, PF, and PCD
on the training set for thousands of epochs, using S = 50
chains and an initial rate η = 0.01 that is gradually de-
creased. For PCD and PF, the number of rejuvenation steps
is n = 1 (one pass through the variables). For MCMC-
MLE and PF, we use 10 sampling steps to sample parti-
cles from the initial distribution p(x|θ0). For PF, the ESS
threshold is 0.9×S; furthermore, we enable a rejuvenation
every 100 epochs. We run MCMC-MLE iteratively as de-
scribed in Section 2; the algorithm is reinitialized whenever
there is convergence to the maximizer θ̂approx (using the cri-
teria that the L1 norm of the gradient is less then a thresh-
old) or if 100 iterations are reached. At each reinitializa-
tion of MCMC-MLE, 10 steps are used to sample xs from
the distribution at the previous maximizer p(x|θ̂approx). The
chains are persisted across MCMC-MLE rounds.

Figures 1(a) and 1(b) show the average test log-likelihood
achieved by each algorithm as a function of the number of
epochs and the amount of time, for one of the experiments
above. The error bars show the variation between 10 dif-
ferent initial settings of θ0. Figure 1(a) shows that PF and
PCD converge at the same rate, while MCMC-MLE is sig-
nificantly underperforming due to the lack of rejuvenation
of the importance samples. In Figure 1(b), we observe that
PF is computationally faster than PCD, since PF is able
to skip rejuvenation steps when the ESS is high. MCMC-
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Figure 2. Comparison of MCMC-MLE, PF, and PCD on expo-
nential random graph models.

MLE is slower because it needs to wait for the MCMC
chains to reach equilibrium (which is approximately done
by using 10 sampling steps). Figure 1(c) compares the log-
likelihood achieved by PF after 2,000 epochs (for each of
the 100 experiments) to the corresponding log-likelihoods
achieved by PCD and MCMC-MLE in the time it takes for
PF to reach 2,000 epochs. This result suggests that PF is
generally faster than PCD and MCMC-MLE at estimating
the parameters for this model.

We also tried other learning rates (η = 0.1 to 0.001),
various amounts of chains (S = 20 to 500), and various
ESS thresholds, and the results were qualitatively similar.
MCMC-MLE can be made almost as fast as PCD by reduc-
ing the number of sampling steps from 10 to 5; however, as
this number is reduced, we stray further from the main phi-
losophy of MCMC-MLE (which waits until the chains have
reached equilibrium) and move closer to the PF approach.
The variance of MCMC-MLE in Figure 1(a) suggests that
MCMC-MLE is sensitive to parameter initialization.

4.2. Exponential Random Graph Models

We consider exponential random graph models (ERGMs),
also known as p* models, which are widely used in so-
cial network analysis (Robins et al., 2007). ERGMs take
the form p(x|θ) = 1

Z(θ) exp {θ′g(x)} where x is a vec-
tor of binary variables (0/1) denoting the presence or ab-
sence of edges in a social network, and g(x) are graph-
based statistics. We use a well-known triad model with
three graph-based statistics: number of edges, number of
two-stars, and number of triangles (Snijders, 2002); thus,
this model has three θ parameters. As in the VBM case, we
run 100 different experiments, on networks with 10 nodes
and 45 edge variables. Our ground truth parameters θ are
randomly drawn from N (0, 1), and we check that θ is not
in a degenerate region (where one configuration is domi-
nant). 500 training cases are drawn from p(x|θ). We run
MCMC-MLE, PF, and PCD on the training set for thou-
sands of epochs, using S = 100 chains and an initial rate
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Figure 3. Comparison of MCMC-MLE, PF, and PCD on a condi-
tional random field for image segmentation.

η = 0.005 that is gradually decreased. We initialize each
algorithm at approximately the MPLE (found by CD with
a single-variable sampling step). For PCD and PF, n = 1.
For PF, the ESS threshold is 0.9 × S. We use 10 sampling
steps to sample particles from the initial distribution θ0. We
run MCMC-MLE as described in the VBM case, with 10
sampling steps per reinitialization of the algorithm.

Figure 2(a) shows the L1 error between the ground truth pa-
rameters and the parameters estimated by each algorithm,
as a function of time, for one of the experiments. As in
the VBM case, PF is significantly faster than both PCD
and MCMC-MLE. MCMC-MLE performs well relative to
PCD, due to the fact that we started with a good initializa-
tion for θ0. When initializing at θ0 = [0, 0, 0], we found
that MCMC-MLE typically performs much worse than
PCD. Figure 2(b) shows the L1 error after 40,000 epochs of
PF for each of the 100 experiments, compared to the L1 er-
rors of PCD and MCMC-MLE at the time it takes for PF to
reach 40,000 epochs. In virtually all cases, PF outperforms
both PCD and MCMC-MLE for these ERGMs.

4.3. Conditional Random Fields

We also test our method on a conditional random field
(CRF) for image segmentation (Kumar & Hebert, 2003;
Vishwanathan et al., 2006). Let x be a binary image, where
xj = ±1 is the label of the jth pixel. Let y be a noisy obser-
vation of x. In this CRF, the posterior distribution p(x|y) is
specified as an Ising model,

p(x|y, θ) =
1
Z

exp(
∑

j

wT hj(y)xj +
∑
i∼j

vT hij(y)xixj),

where i ∼ j indicates that pixel i and pixel j are adjacent
in the image. Meanwhile, hj(y) and hij(y) are the node
features and edge features. In this setting, the features are
defined as hi(y) = [1, yi] and hij(y) = [1, |yi − yj |].

In our experiment, we use an X-shaped image with 32×32

pixels, and we generate 15 noisy images by addingN (0, 1)
noise on the original image. We use 10 noisy images (to-
taling 10,240 pixels) for training and 5 images (totaling
5,120 pixels) for testing. We then run MCMC-MLE, PF,
and PCD to estimate the parameters [w, v], with η = 0.001,
S = 100, and the ESS threshold in PF equal to 0.95 × S.
For each rejuvenation step, we run 100 steps of random-
scan Gibbs sampling. Note that since there are 1,024 vari-
ables in our model, 100 steps of random-scan sampling is
1/10 of a normal systematic step. For MCMC-MLE, we use
3× 1024 random-scan sampling steps for each reinitializa-
tion. We then use loopy BP to estimate the MAP image on
test data and we calculate the average error rate of the MAP
image with respect to the original image.

Figure 3(a) shows the percentage of errors achieved by each
algorithm as a function of time. While PF significantly out-
performs MCMC-MLE, it performs similarly to PCD due
to a low ESS that frequently triggers the rejuvenation step,
causing PF to lose its computational advantage over PCD
in this case. Figure 3(b) shows the reconstructed version
of the noisy image achieved by each algorithm at time 120,
which suggests that MCMC-MLE is much slower at recov-
ering the parameters than either PF or PCD.

4.4. Restricted Boltzmann Machines

Finally, we compare the performance of the algorithms on a
restricted Boltzmann machine (RBM) (Hinton & Salakhut-
dinov, 2006) which takes the form,

P (x|w, b, c) =
1
Z

∑
h

exp{−E(x, h|w, b, c)},

where x are observed binary variables (or “visible units”),
h are hidden units, and E(x, h|w, b, c) is the energy,

E(x, h|w, b, c) = −
∑
i,j

xihjwij −
∑

i

xibi −
∑

j

hjcj ,

where w are the interaction weights, b are the biases of the
observed units, and c are the biases of the hidden units.

For this experiment, we use the standard MNIST data (Le-
Cun & Cortes) which consists of handwritten digit images
(0-9), each of size 28 × 28 pixels. The training set con-
tains 60,000 images, while the test set contains 10,000 im-
ages. While each pixel has an intensity i from 0 to 255,
we binarize each pixel by drawing from a Bernoulli with
probability i

255 ; thus, each data case becomes a binary vec-
tor of length 784. Each training label is a binary vector
of length 10, indicating the particular digit of the training
case. We use the “classification” RBM described by Tiele-
man (2008), where visible units are comprised of the data
augmented with the label (totaling 794 visible units in the
case of MNIST); furthermore, we use 500 hidden units.
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Since RBMs have hidden units, the log-likelihood gradient
is slightly different from eq. 5. The first term of the gradient
in eq. 5 involves a little more computation (see Tieleman
(2008) for details), while the second term of the gradient is
an expectation with respect to the joint distribution p(x, h).
Nonetheless, our importance sampling techniques can be
directly applied to the estimation of this gradient.

We run our algorithms on this RBM for 100 epochs, using
S = 100 chains and an initial rate of 0.05 which is gradu-
ally reduced. We also use a momentum term of 10−6 and a
weight-decay term of 10−5. We perform mini-batch learn-
ing where the training set is divided into 600 batches of 100
data cases, with a gradient ascent step applied after each
batch. For PF and PCD, n = 1 (one pass over all units). For
MCMC-MLE, 10 sampling passes are performed per reini-
tialization, which occurs at least once every 100 batches (or
even more frequently if the convergence criteria is met).
The ESS threshold for PF is 0.9 × S. Once the parame-
ters are learned, the probability of each label unit given a
test case can be computed, and the highest-probability label
unit is used to predict the test case’s digit.

Figure 4 shows the classification errors achieved by the al-
gorithms as a function of the number of epochs. We ob-
serve that MCMC-MLE is performing significantly worse
than the other algorithms in this high-dimensional problem
since the importance samples are quickly becoming impov-
erished. We also plot another run of MCMC-MLE where
the rate is decreased to η = 0.001, allowing it to perform
better. We also show the results of CD-1. While PF per-
forms better than both MCMC-MLE and CD-1, it is less
accurate than PCD in this case. At each iteration, the PF
weights become degenerate since the parameters are shift-
ing quickly, and the ESS becomes low. Resampling based
on these degenerate weights depletes the particle set, lead-
ing to less accurate gradient estimates. However, Figure 4
suggests that PF can nearly match the accuracy of PCD
when the temperature in eq. 14 is raised to T = 10.

We note that the MNIST data has been widely studied, with
advanced classification techniques reaching as low as 0.4%
error (LeCun & Cortes); however, our main goal is to sim-
ply compare MCMC-MLE, PF, and PCD on this problem.

4.5. General Insights

Several insights can be drawn from these empirical results.
While MCMC-MLE can reach accurate estimates relatively
quickly if θ0 is initialized close to the target (as in the
ERGM case), we observe inaccurate results and slow con-
vergence if the initialization is arbitrary or if the problem is
high-dimensional. In the models we have analyzed, PF sig-
nificantly outperforms MCMC-MLE in both computational
efficiency and the ability to handle the impoverishment of
the samples. For models such as VBMs and ERGMs, we
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Figure 4. Classification error achieved by MCMC-MLE, PF, and
PCD on MNIST digit data, using a restricted Boltzmann machine.
We also show CD-1, PF with T = 10, and a run of MCMC-MLE
with a smaller learning rate η = 0.001.

find that PF is also computationally faster than PCD since
it can skip rejuvenation steps. However, for certain prob-
lems (like learning RBMs on MNIST), it seems necessary
to perform rejuvenation at each iteration to cope with the
fast movement of the parameters, and in these cases, PF
loses its computational advantage over PCD. In these cases,
a weight temperature may also be useful in preventing the
resampling step from depleting the particle set.

5. Related Work
The work of Carbonetto et al. (2009) is the technique most
closely related to our own. Their technique uses stochas-
tic approximation and sequential Monte Carlo methods to
perform Bayesian inference on graphical models, using the
variational framework of minimizing KL divergence. Like
our PF method, the intermediate distributions used within
their scheme are dictated by the algorithmic path taken
when optimizing the variational parameters. The main dif-
ference to our work is that we focus on the task of maxi-
mum likelihood estimation for undirected graphical mod-
els. Another difference is that we incorporate MCMC reju-
venation steps after resampling, which assists in combating
degeneracy and allows us to highlight a close connection
between our PF approach and the CD framework.

Another related method is annealed importance sampling
(AIS) (Neal, 2001) which estimates ratios of partition func-
tions and has been used to evaluate models such as deep be-
lief networks (Salakhutdinov & Murray, 2008). AIS spec-
ifies a sequence of intermediate annealed distributions be-
tween initial and target distributions. AIS recursively up-
dates importance weights using this sequence, by creating
samples which are rejuvenated by each intermediate dis-
tribution. Our PF method is similar, with the main differ-
ence being the specification of the intermediate distribu-
tions; also, we use these weights for parameter estimation.
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There also exist other ways to improve MCMC-MLE, in-
cluding the use of a mixture umbrella distribution that
takes advantage of samples drawn from previous rounds
of MCMC-MLE (Bartz et al., 2008). In addition, there are
techniques for improving persistent contrastive divergence,
including parallel tempering (Desjardins et al., 2010), tem-
pered transitions (Salakhutdinov, 2009), and fast weights
(Tieleman & Hinton, 2009). Younes (1998) explores the
use of Newton’s method in PCD. We believe that these
advanced techniques could be straightforwardly integrated
into our general PF framework.

6. Conclusion
We have introduced a particle filtered version of MCMC-
MLE and have shown close connections to the contrastive
divergence framework. Empirical results show that our
proposed PF approach generally outperforms MCMC-
MLE and in some cases provides computational gains over
persistent contrastive divergence. We anticipate that the
unified view between these different techniques will allow
for the design of more efficient and accurate algorithms that
utilize advanced sequential Monte Carlo methods.
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