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Abstract

We present an overview of FAB-MAP, an
algorithm for place recognition and map-
ping developed for infrastructure-free mobile
robot navigation in large environments. The
system allows a robot to identify when it
is revisiting a previously seen location, on
the basis of imagery captured by the robot’s
camera. We outline a complete probabilis-
tic framework for the task, which is applica-
ble even in visually repetitive environments
where many locations may appear identi-
cal. Our work introduces a number of tech-
nical innovations - notably we demonstrate
that place recognition performance can be
improved by learning an approximation to
the joint distribution over visual elements.
We also investigate several principled ap-
proaches to making the system robust in visu-
ally repetitive environments, and define an ef-
ficient bail-out strategy for multi-hypothesis
testing to improve system speed. Our model
has been shown to substantially outperform
standard tf-idf ranking on our task of inter-
est. We demonstrate the system performing
reliable online appearance mapping and loop
closure detection over a 1,000 km trajectory,
with mean filter update times of 14ms.

1. Introduction

This paper reviews FAB-MAP (Fast Appearance
Based Mapping), a technique for place recognition and
mapping developed for mobile robotics applications. It
addresses some key aspects of the navigation problem,
which is a core task for autonomous robots. FAB-
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MAP is developed in detail in (Cummins & Newman,
2008a;b; 2009; Cummins, 2009; Newman et al., 2009),
and is presented in overview here.

For many tasks, a robot must be able to reliably de-
termine its position within its environment. It is often
necessary to solve this navigation problem on the ba-
sis of the robot’s internal sensors alone, without the
aid of external infrastructure. This can dictated by
considerations of flexibility and costs, or by necessity.
For example, no infrastructure is available to plane-
tary exploration robots, and GPS is unavailable in
many terrestrial environments such as indoors, near
tall buildings, under foliage, underground and under-
water. In these situations the robotic system must
solve the navigation problem unaided. This problem
is known as Simultaneous Localization and Mapping
(SLAM), and has been an active area of research in
mobile robotics for several decades.

A broad class of techniques, which we will refer to
as “metric SLAM”, approach the problem by jointly
maintaining an estimate of the pose of the robot and a
set of map landmarks using an Extended Kalman Fil-
ter or particle filter (Durrant-Whyte & Bailey, 2006).
These metric SLAM techniques have been very suc-
cessful in small to moderately sized environments, but
tend to experience problems at larger scales. In partic-
ular, it is common for these techniques to fail when a
robot revisits a previously seen location after conduct-
ing a long traverse through unexplored terrain. This
is known as the “loop closure problem”. There are a
number of reasons why this situation poses a challenge
to SLAM algorithms; one of the most fundamental is
that map landmarks are typically tracked locally, with-
out any efficient method for recognising them when a
location is revisited.

FAB-MAP and related approaches, which we term
“appearance-only SLAM” or appearance-based navi-
gation, have been developed as a solution to the prob-
lem of loop closure detection. In contrast to metric
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SLAM techniques, we do not maintain any explicit es-
timate of vehicle position, but rather aim to recognise
places via their appearance. The system navigates in
“appearance space”, assigning each new observation
to either a new or previously visited location, with-
out reference to metric position. The map of loca-
tions is constructed fully incrementally, even in repet-
itive environments. Because distinctive places can be
recognized after unknown vehicle motion, appearance-
only SLAM techniques provide a natural solution to
loop-closure detection, multi-session mapping and kid-
napped robot problems which are challenging for met-
ric SLAM systems.

2. Outline of the Problem

In constructing our appearance-based navigation sys-
tem, the core problem that we must address is the
following: Given two observations or sequences of ob-
servations (typically images), what is the probability
that these observations were collected at the same lo-
cation?

This is a hard problem for a number of reasons. Firstly,
the world is dynamic. Two images of the same loca-
tion may look different due to changes in lighting or
viewpoint, arrival or departure of vehicles, changes in
weather, etc. Secondly, and more challengingly, the
world is visually repetitive. Common textures such as
brickwork and foliage are present everywhere. Mass
produced objects and symbols such as road markings
appear throughout the environment. These problems
are illustrated in Figure 1. Under many reasonable
metrics, the image pair shown in Figure 1(b) is more
similar than the pair in 1(a). In our bag-of-words rep-
resentation (introduced later), 1(b) share 28% of their
visual words, whereas 1(a) share only 15%. However,
we would like to build a system that asserts with high
confidence that 1(a) shows two images of the same lo-
cation, whereas 1(b) probably does not. To do this, we
must go beyond a simple computation of image sim-
ilarity, and build a model that allows us to evaluate
the distinctiveness of images. This will involve learn-
ing a probability distribution over the space of images,
which captures the fact that the scene in Figure 1(b)
is common in the environment, so despite the simi-
larity the images are unlikely to come from the same
location.

3. Related Work

While appearance-based navigation has a long history
within robotics (Dudek & Jugessur, 2000), there has
been considerable development in the field in the last

five years. Appearance-based navigation and loop clo-
sure detection systems operating on trajectories on the
order of a few kilometers in length are now common-
place. Indeed, place recognition systems similar in
character to the one described here are now used even
in single-camera SLAM systems designed for small-
scale applications (Eade & Drummond, 2008).

Use of these systems on the scale of tens of kilometers
or more has also begun to be feasible. For example,
in (Milford & Wyeth, 2008) a system employing a set
of biologically inspired approaches achieved success-
ful loop closure detection and mapping in a collection
of more than 12,000 images from a 66 km trajectory,
with processing time of less than 100ms per image.
The appearance-recognition component of the system
was based on direct template matching, so scaled lin-
early with the size of the environment. Operating at
a similar scale, Bosse and Zlot describe a place recog-
nition system based on distinctive keypoints extracted
from 2D lidar data (Bosse & Zlot, 2008), and demon-
strate good precision-recall performance over an 18 km
suburban data set. In (Cummins & Newman, 2009),
we demonstrated successful loop closure detection on
a 1,000 km trajectory, using a version of FAB-MAP
modified to work with an inverted index architecture.

Another recent research direction is the development
of integrated systems which combine appearance and
metric information. Olson described an approach to
increasing the robustness of general loop closure de-
tection systems by using both appearance and relative
metric information to select a single consistent set of
loop closures from a larger number of candidates (Ol-
son, 2008). The method was evaluated over several
kilometers of urban data and shown to recover high-
precision loop closures even with the use of artificially
poor image features. More loosely coupled systems
have also recently described in (Konolige et al., 2009;
Newman et al., 2009).

Considerable relevant work also exists on the more re-
stricted problem of global localization. For example,
Schindler et al. describe a city-scale location recogni-
tion system (Schindler et al., 2007) based on the vocab-
ulary tree approach of (Nistér & Stewenius, 2006). The
system was demonstrated on a 30,000 image data set
from 20 km of urban streets, with retrieval times be-
low 200ms. Also of direct relevance is the research on
content-based image retrieval systems in the computer
vision community, where systems have been described
that deal with more than a million images (Philbin
et al., 2007; Nistér & Stewenius, 2006; Jégou et al.,
2008) . However, the problem of retrieval from a fixed
index is considerably easier than the full loop-closure
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(a) Perceptual Variability (b) Perceptual Aliasing

Figure 1. Appearance based navigation systems must assess the probability that two images come from the same place.
This is difficult because place appearance can vary, (a), and more challengingly, because different places in the environment
can appear identical, (b). The appearance based navigation problem is thus harder than typical content based image
retrieval tasks.

problem, because it is possible to tune the system di-
rectly on the images to be recognized, and the difficult
issue of new place detection does not arise. We believe
the results presented in (Cummins & Newman, 2009)
and summarized in this paper represent the largest
scale system that fully addresses these issues of incre-
mentality and perceptual aliasing.

4. Technical Overview

The FAB-MAP system is at heart a bag-of-words im-
age retrieval system similar to those developed in the
computer vision community (Sivic & Zisserman, 2003).
While these systems employ many image-specific opti-
misations in parts of their architecture, the final rank-
ing of images is almost universally based on the stan-
dard tf-idf relevance measure borrowed from text re-
trieval. We argue that tf-idf ranking is not particularly
suitable for image data, and that by paying attention
to the specific qualities of imagery, much better rank-
ing measures can be derived.

For our FAB-MAP navigation system, we develop a
probabilistic model on top of the bag-of-words repre-
sentation which allows us to define appearance-based
navigation as recursive Bayesian filtering problem.
This framework is similar to many other established
SLAM techniques. In defining this model, the ques-
tion arises of how to account for the probabilistic na-
ture of visual word occurrence, and how to treat the
correlations between visual words. We show that by

approximating the joint distribution using a Chow Liu
tree, inference performance can be improved relative
to a naive Bayes model. We also introduce a noisy
detector model to account for the unreliable nature of
visual feature detection. We show that for our task the
model outperforms the standard tf-idf ranking. This
work is outlined in (Cummins & Newman, 2008a; 2007;
2009; Cummins, 2009).

Our initial model is somewhat slow to evaluate, lim-
iting application to a few thousand images or about
two kilometers of robot exploration. In subsequent
work we developed a number of techniques to improve
the speed of the system. In (Cummins & Newman,
2008b), we in introduced a probabilistic bail-out test
based on the use of concentration inequalities (specifi-
cally Bennett’s inequality), which enabled the system
to rapidly identify promising location hypotheses and
exclude less likely locations from further processing.
This yielded 25-50x speedup with minimal loss of ac-
curacy. The general approach is applicable to many
types of multi-hypothesis testing. In (Cummins &
Newman, 2009; Cummins, 2009) we introduced a sec-
ond approach to improving system speed. This sub-
sequent work adapts our probabilistic model for use
with an inverted index architecture similar to typical
search engines. This approach allowed us to apply
FAB-MAP to navigation problems on the very largest
scale, investigating performance on robot navigation
tasks on trajectories 1,000 km in length.
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5. Probabilistic Model

Our probabilistic model outlined in detail in (Cum-
mins & Newman, 2008a; Cummins, 2009). We review
it briefly here.

The basic data representation used is the bag-of-words
approach developed in the computer vision commu-
nity (Sivic & Zisserman, 2003). Features are de-
tected in raw sensory data, and these features are then
quantized with respect to a vocabulary, yielding visual
words. The vocabulary is learned by clustering all fea-
ture vectors from a set of training data. The Voronoi
regions of the cluster centres then define the set of
feature vectors that correspond to a particular visual
word. The continuous space of feature vectors is thus
mapped into the discrete space of visual words, which
enables the use of efficient inference and retrieval tech-
niques. In this paper, the raw sensor data of interest
is imagery, processed with the SURF feature detector
(Bay et al., 2006), though in principle the approach is
applicable to any sensor or combination of sensors, and
we have explored multi-sensory applications elsewhere.

FAB-MAP, our appearance-only SLAM system, de-
fines a probabilistic model over the bag-of-words rep-
resentation. An observation of local scene appear-
ance captured at time k is denoted Zk =

{

z1, . . . , z|v|
}

,
where |v| is the number of words in the visual vocab-
ulary. The binary variable zq, which we refer to as
an observation component, takes value 1 when the qth

word of the vocabulary is present in the observation.
Zk is used to denote the set of all observations up to
time k.

At time k, our map of the environment is a collection of
nk discrete and disjoint locations Lk = {L1, . . . , Lnk

}.
Each of these locations has an associated appearance
model, which we parameterize in terms of unobserv-
able “scene elements”, eq. A detector yields visual
word observations zq, which are noisy measurements
of the existence of the underlying scene element eq.
The appearance model of a location in the map is our
belief about the existence of each scene element at that
location:

Li :
{

p(e1 = 1|Li), . . . , p(e|v| = 1|Li)
}

(1)

where each of the scene elements eq are generated in-
dependently by the location. A detector model relates
scene elements eq to feature detection zq. The detector
is specified by

D :

{

p(zq = 1|eq = 0), false positive probability.
p(zq = 0|eq = 1), false negative probability.

(2)

A further salient aspect of the data is that visual words

do not occur independently – indeed, word occurrence
tends to be highly correlated. For example, words as-
sociated with car wheels and car doors are likely to be
observed simultaneously. We capture these dependen-
cies by learning a tree-structured Bayesian network us-
ing the Chow Liu algorithm, which yields the optimal
approximation to the joint distribution over word oc-
currence within the space of tree-structured networks.
Importantly, tree-structured networks also permit effi-
cient learning and inference even for very large visual
vocabulary sizes.

Given our probabilistic appearance model, localization
and mapping can be cast as a recursive Bayes estima-
tion problem, closely analogous to metric SLAM. A
pdf over location given the set of observations up to
time k is given by:

p(Li|Z
k) =

p(Zk|Li,Z
k−1)p(Li|Z

k−1)

p(Zk|Zk−1)
(3)

Here p(Li|Z
k−1) is our prior belief about our loca-

tion, p(Zk|Li,Z
k−1) is the observation likelihood, and

p(Zk|Z
k−1) is a normalizing term. We briefly discuss

the evaluation of each of these terms below. For a
detailed treatment we refer readers to (Cummins &
Newman, 2008a; Cummins, 2009).

Observation Likelihood

To evaluate the observation likelihood, we assume in-
dependence between the current and past observations
conditioned on the location, and make use the Chow
Liu model of the joint distribution, yielding:

p(Zk|Li)=p(zr|Li)

|v|
∏

q=2

p(zq|zpq
, Li) (4)

where zr is the root of the Chow Liu tree and zpq
is

the parent of zq in the tree. After some further ma-
nipulation (see (Cummins & Newman, 2008a)), each
term in the product can be further expanded as:

p(zq|zpq
, Li) =

∑

seq∈{0,1}

p(zq|eq = seq , zpq
)p(eq = seq |Li)

(5)
which can be evaluated explicitly.

In some configurations of the system we find that these
likelihood are be too peaked, so we introduce an op-
tional smoothing step which can be applied:

p(Zk|Li) −→ σp(Zk|Li) +
(1− σ)

nk

(6)
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where nk is the number of places in the map and σ is
the smoothing parameter, which we typically set to be
slightly less than 1.

Location Prior

The location prior p(Li|Z
k−1) is obtained by trans-

forming the previous position estimate via a simple
motion model. The model assumes that if the vehicle
is at location i at time k − 1, it is likely to be at one
of the topologically adjacent locations at time k.

Normalization

In contrast to a localization system, a SLAM system
requires an explicit evaluation of the normalizing term
p(Zk|Z

k−1). The normalizing term converts the ap-
pearance likelihood into a probability of loop closure,
by accounting for the possibility that the current ob-
servation comes from a location not currently in the
robot’s map. Intuitively p(Zk|Z

k−1) is a measure of
the distinctiveness of an observation, and thus directly
related to the problem of perceptual aliasing.

To calculate p(Zk|Z
k−1), we divide the world into the

set of places in our current map, Lk, and the set of
unmapped places Lk, so that

p(Zk|Z
k−1) =

∑

m∈Lk

p(Zk|Lm)p(Lm|Zk−1) (7)

+
∑

u∈Lk

p(Zk|Lu)p(Lu|Z
k−1) (8)

The second summation cannot be evaluated directly
because it involves all possible unknown locations.
However, if we have a large set of randomly collected
location models Lu, (readily available from previous
runs of the robot or other suitable data sources such
as, for our application, Google Street View), we can
approximate the summation by Monte Carlo sampling.
Assuming a uniform prior over the samples, this yields:

p(Zk|Z
k−1) ≈

∑

m∈Lk

p(Zk|Lm)p(Lm|Zk−1) (9)

+p(Lnew|Z
k−1)

ns
∑

u=1

p(Zk|Lu)

ns

(10)

where ns is the number of samples used, and
p(Lnew|Z

k−1) is our prior probability of being at a
new location.

Data Association

Once the pdf over locations is computed, a data as-
sociation decision is made. The observation Zk is
used either to initialize a new location, or update
the appearance model of an existing location. Recall
that an appearance model consists of a set of beliefs
about the existence of scene elements at the location,
{

p(e1 = 1|Li), . . . , p(e|v| = 1|Li)
}

. Each component of
the appearance model can be updated according to:

p(ei = 1|Lj ,Z
k) =

p(Zk|ei = 1, Lj)p(ei = 1|Lj ,Z
k−1)

p(Zk|Lj)
(11)

In the case of new locations, the values p(ei = 1|L) are
first initialized to the marginal probability p(ei = 1)
derived from training data, and then the update is
applied.

6. Overview of Results

For a detailed evaluation of the system, we refer read-
ers to our other publications. We briefly present typi-
cal results here.

Some examples of typical image matching results are
presented in Figures 2 and 3. Figure 3 highlights ro-
bustness to perceptual aliasing. Here very similar im-
ages that originate from different locations are cor-
rectly assigned low probability of having come from
the same place. We emphasize that these results are
not outliers; they show typical system performance.
The result is possible because most of the probability
mass for the query image is captured by locations in
the sampling set – effectively the system has learned
that images like these are common in the environment.
Of course, had these examples been genuine loop clo-
sures they might also have been assigned low proba-
bility values. We would argue that this is correct be-
haviour, modulo the fact that the probabilities in 3a
and 3b seem too low. The very low probabilities for
these examples are due to the fact that good matches
for the query images are found in the sampling set,
capturing almost all the probability mass. This is less
likely in the case of a true but ambiguous loop closure.

Figure 2 shows matching performance in the presence
of scene change. Many of these image pairs have far
fewer visual words in common than the examples of
perceptual aliasing, yet are assigned high probability
of having come from the same place. To give a quan-
titative example, loop closures detected by the system
sometimes have as few as 8% of their visual words in
common, whereas perceptual aliasing examples often
share most of their visual words – for example, the
images shown in Figure 3b have 46% of their words in
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(a) p=0.999997 (b) p=0.996 (c) p=0.9997

Figure 2. Some images assigned high probability of having come from the same place, despite scene change. Words
common to both images are shown in green, others in red. Loop closure probability indicated between the pairs.

(a) p=4.6x10−10 (b) p=3x10−9 (c) p=0.74

Figure 3. Some similar-looking images from different parts of the workspace correctly assigned low probability of having
come from the same place. Words common to both images are shown in green (in blue for (b)), others in red.
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common.

6.1. Comparing Approximations

This section highlights the effect of correctly account-
ing for the correlations between the words of the visual
vocabulary. We compare the Naive Bayes vs. Chow
Liu approximations to p(Z|Li), and also compare dif-
ferent approaches to the evaluation of the partition
function p(Zk|Z

k−1). For the partition function we
compare the Monte Carlo approximation outlined in
Section 5 with a simpler mean field approximation out-
lined in (Cummins & Newman, 2008a). Figure 4 shows
precision-recall curves from a 2 km data set for the four
possible combinations.

Figure 4. Precision-Recall curves for the four variant algo-
rithms on the New College data set. Notice the scale. All
results include the location prior which allows evidence to
accumulate through a sequence of observations.

6.2. Use with Metric SLAM Systems

The motivation for the development of FAB-MAP was
to solve the loop closure detection and multi-session
mapping problems for metric SLAM systems. Typ-
ical results for this application are shown in Figure
5, where the alignment between two partially overlap-
ping data sets collected on different days is recovered.
The vehicle trajectory, consisting of a set of vehicle
poses and the relative metric transformations between
them (with associated uncertainty), is determined by
a visual SLAM system developed in (Mei et al., 2009).
Loop closure constraints between poses are determined
by FAB-MAP. The relative metric transformation for
these constraints is determined by the visual SLAM
system using stereo image pairs collected by the robot
at each location. The final trajectory estimate is ob-
tained by relaxing the pose graph using the method
described in (Newman et al., 2009).

(a) Two input maps.

(b) Single output map.

Figure 5. Use of FAB-MAP for multi-session mapping.
Sub-figure (a) shows two robot trajectories collected on
different days (blue), which have an unknown transfor-
mation between them. Place recognition constraints be-
tween poses in these trajectories are detected by FAB-
MAP. Constraints within each trajectory are shown as red
links, and between the two trajectories as green links. Pose
graph relaxation yields the final output trajectory shown in
(b). The two trajectories now share a common coordinate
frame.

7. Summary

This paper has presented an overview of a new ap-
proach to appearance-only SLAM. The framework is
fully probabilistic, and deals with challenging issues
such as perceptual aliasing and new place detection. In
other work (Cummins, 2009), we have shown that as
a pure ranking function it considerably out-performs
the baseline tf-idf approach, at least for our task. In
(Cummins, 2009) we evaluated the system on two sub-
stantial data sets, of 70 km and 1,000 km. Both exper-
iments are larger than any existing result we are aware
of. Our approach shows very strong performance on
the 70 km experiment, in conditions of challenging per-
ceptual aliasing. The 1,000 km experiment is more
challenging, and we do not consider it fully solved, nev-
ertheless our system’s performance is already sufficient
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to provide a useful competency for an autonomous ve-
hicle operating at this scale. Our data sets are avail-
able to the research community, and we hope that they
will serve as a benchmark for future systems.
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