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Abstract

Q-learning in single-agent environments is
known to converge in the limit given suffi-
cient exploration. The same algorithm has
been applied, with some success, in multi-
agent environments, where traditional anal-
ysis techniques break down. Using estab-
lished dynamical systems methods, we de-
rive and study an idealization of Q-learning
in 2-player 2-action repeated general-sum
games. In particular, we address the dis-
continuous case of ε-greedy exploration and
use it as a proxy for value-based algorithms
to highlight a contrast with existing results
in policy search. Analogously to previous
results for gradient ascent algorithms, we
provide a complete catalog of the conver-
gence behavior of the ε-greedy Q-learning
algorithm by introducing new subclasses of
these games. We identify two subclasses of
Prisoner’s Dilemma-like games where the ap-
plication of Q-learning with ε-greedy explo-
ration results in higher-than-Nash average
payoffs for some initial conditions.

1. Introduction

Q-learning (Watkins & Dayan, 1992) was developed
as a reinforcement-learning (RL) algorithm to maxi-
mize long-term expected reward in multistate environ-
ments. It is known to converge to optimal values in en-
vironments that can be formulated as Markov decision
processes (Tsitsiklis, 1994). Its elegance and simplicity
make Q-learning a natural candidate for application to
multiplayer general-sum games, leading to questions
about its asymptotic behavior in this context. While
the study of simultaneous learning agents has gener-
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ated much interest, characterization of their behavior
is still incomplete. Algorithms such as Q-learning that
use accumulated data about the values of actions are
of interest beyond RL, as similar mechanisms are hy-
pothesized to exist in mammalian brains (Dayan &
Niv, 2008).

In this work, we examine the behavior of two players
executing ε-greedy Q-learning in a repeated general-
sum game. Although some applications of Q-learning
have used state representations that include recent his-
tory (Littman & Stone, 2001), we focus on a simpler
representation consisting of just a single state. Our
idealized algorithm is one that consists of infinitely
small learning steps making it possible to apply ideas
from dynamical systems theory directly to the algo-
rithm (Tuyls et al., 2003). We map the varied behavior
of this algorithm using much of the same terminology
and methods as has been applied to other multiagent
dynamical approaches.

As opposed to a purely value-based approach like
Q-learning, past work using dynamical systems to
analyze multiagent learners has centered on policy-
search algorithms (Singh et al., 2000) or a mix of the
two (Bowling & Veloso, 2001). In cases where learn-
ing is equivalent to or resembles policy-gradient al-
gorithms, researchers have found that adaptive meth-
ods tend to converge to a Nash equilibrium (Tuyls
et al., 2003) or “orbit” a Nash equilibrium (Singh et al.,
2000). In the mold of this earlier work, the present pa-
per fully describes the long-run convergence behavior
of ε-greedy Q-learning—a commonly used algorithm
that has not yet been analyzed in this way. A sur-
prising finding of this paper is that when Q-learning is
applied to games, a pure greedy value-based approach
causes Q-learning to endlessly “flail” in some games
instead of converging. For the first time, we provide a
detailed picture of the behavior of Q-learning with ε-
greedy exploration across the full spectrum of 2-player
2-action games. While many games finally converge
to a Nash equilibrium, some significant games induce
chaotic behavior that averages higher reward than any
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Nash equilibrium of the game. Since some of these
games have a dominant action, this outcome is some-
what counterintuitive. Nonetheless, we show how this
behavior is not merely an empirical quirk but a funda-
mental property of this algorithm, which holds poten-
tially profound implications. To our knowledge, this
phenomenon has not been reported elsewhere.

Section 2 derives local learning dynamics for the al-
gorithms we consider. Using a dynamical systems ap-
proach in Section 3, we describe the types of asymp-
totic behavior corresponding to different classes of
games. Section 4 goes into greater detail about previ-
ously undescribed non-convergent behavior of ε-greedy
Q-learning in a specific subclass of games. Section 5
compares two learning algorithms.

2. Learning as a Dynamical System

This section introduces IQL-ε and summarizes IGA.

2.1. ε-Greedy Infinitesimal Q-learning (IQL-ε)

The ε-greedy Q-learning algorithm selects its high-
est valued (greedy) action with some fixed probabil-
ity (1− ε(k−1)

k ) and randomly selects among all other
k − 1 actions with probability ε

k . Earlier papers have
demonstrated superior performance of this algorithm
in games (Sandholm & Crites, 1995; Zawadzki et al.,
November 2008) relative to similar learners and car-
ried out dynamical systems analysis (Gomes & Kowal-
czyk, 2009) as a model for ordinary Q-learning. How-
ever, none has systematically documented the result-
ing range of outcomes of the dynamics model itself. In
particular, we are the first to fully describe the behav-
ior of a deterministic model of the algorithm for all
possible games within the 2-person 2-action space.

The (one-state) Q-learning update rule when an agent
takes action a and receives reward R

Q(a) = Q(a) + α(R+ γmax
a′

Q(a′)−Q(a))

becomes ∂Q(a)
∂t = R+ γmaxa′ Q(a′)−Q(a) when α→

0. We call this algorithm IQL-ε for Infinitesimal Q-
learning with ε-greedy exploration. The discount rate
is γ. We write

• Qai and Qbj for the Q-values of action i for row
player RP, and action j for column player CP,

• Q̇ai for ∂Q(ai)
∂t , the update of action i for RP and

Q̇bj for the update of action j for CP,

• (rij , cij) for the respective payoffs, or rewards, for
RP and CP when RP plays i and CP j.

Due to the fact that there can be only one greedy ac-
tion at a time, IQL-ε’s updates lead to semi-continuous
dynamics best classified as a piecewise-smooth, or hy-
brid, dynamical system. A general hybrid dynamical
system (GHDS) is a system H = [P,Σ, J ] with the
following parts (Di Bernardo et al., 2008):

• P is the set of index states or discrete dynamical
system states;

• Σ =
⋃
p∈P Σp is the set of ordinary differential

equations (or flows) for index state p;

• J = Jp∈P is the set of jump transition maps.

The simple IQL-ε GHDS can be represented as an au-
tomaton whose nodes are four complete and separate
dynamical system flows and where transitions between
the nodes, or index states, must be taken when certain
conditions along them are met. When the values for
one players actions change ordering, the system jumps
to the index state containing the dynamics correspond-
ing to the new greedy policies. For this paper, only
one state exists in the agents’ environment—all state
transitions are jump transitions in this model.

Using this notation, we examine the following equa-
tions for a combination of possible greedy actions for
the two players. Consider what happens when a∗1
and b∗1 are greedy. RP chooses a∗1 1 − ε

2 of the time
and â2

ε
2 of the time, making its expected reward

R11 = r11(1 − ε
2 ) + r12

ε
2 where ε is the exploration

rate. In this case, RP will update Qa1 according to:

Q̇a1 = r11(1− ε

2
) + r12

ε

2
+ (γ − 1)Qa1

= R11 + γmax
a′

Qa′ −Qa1 .

However, this equation only describes the rate of up-
date when the value of a1 is updated. To capture the
exact rate, consider that the greedy action is taken a
fraction (1− ε

2 ) of the time. In contrast, the non-greedy
action is taken ε

2 often. Weighting the updates appro-
priately, when Action a1 is greedy for both players, the
four Q-values obey the following system of differential
equations (Gomes & Kowalczyk, 2009), Σa∗1b∗1 :

Q̇a1 = (R11 +Qa1(γ − 1))(1− ε

2
),

Q̇a2 = (R21 +Qa1γ −Qa2)
ε

2
,

Q̇b1 = (C11 +Qb1(γ − 1))(1− ε

2
),

Q̇b2 = (C12 +Qb1γ −Qb2)
ε

2
.

We can find the solutions for the above equations using
linear dynamical systems theory (Di Bernardo et al.,
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2008). While the solutions define a single dynamical
flow Σa∗1b∗1 where a∗1 and b∗1 are the greedy actions for
RP and CP, similar equations can be defined for the
other three joint greedy policies. Note that because
the system can switch flows, the values may not con-
verge to the end point dictated by this flow alone. We
say that the learning algorithm has converged if the ra-
tio of strategies in a small period of time stays within
a fixed range. See Figure 1 for examples of converg-
ing and non-converging policies. Also, note that the
equations are deterministic, in spite of the random ex-
ploration, because of the infinitesimal learning rate.

2.2. One-player Sliding Greedy Update

In cases in which the convergence points of the flows lie
within the index state of a single flow, the above IQL-
ε analysis is sufficient to disclose the final destination
of the algorithm’s values. If there is disagreement,
the IQL-ε GHDS can end up with dynamics that slide
along the boundary between two or more index states.
An investigation of the resulting dynamics, known as
a Filippov sliding system (Di Bernardo et al., 2008), is
crucial for analyzing these more complex situations.

When one player has two equal Q-values and both
sums of discounted rewards are lower than the current
value, this player has a sliding greedy action. The val-
ues may change in lockstep, although the two actions
are selected at different rates. Consider what happens
when CP has one clear greedy action. Figure 2(inset)
shows an illustrated example of this update dynamics.
Here, the two actions for RP have the same value and
the Q-values for both players drop until CP’s greedy
action switches. The term “greedy” does not fully cap-
ture this type of dynamics for RP because, essentially,
its greedy action alternates infinitely often over a given
interval so it has no particular greedy action. Instead,
define the current favored action to be the action f
with the higher expected reward during a sliding up-
date (let f̄ be the other action). It turns out that
f also has a higher probability of play than f̄ when
both values are dropping. Therefore, f is the action
played more often. Define φf to be the fraction of time
where RP plays f . The updates Q̇f̄ and Q̇f , taken
from the definition of Q-learning, capture the change
of respective Q-values over continuous time, observed
separately. The formula for φfb∗ is the ratio of the
non-favored action’s update rate to the total update
rate while CP’s greedy action is b∗ and its non-greedy
action is b̂:

φfb∗ =
Q̇f̄

Q̇f̄ + Q̇f
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Figure 1. Probabilities for Action 1 for RP in two self-play
scenarios both in the Prisoner’s Dilemma game. WoLF-
IGA is seen to converge to the defection action (Nash),
while IQL-ε oscillates around a mix of both actions, mostly
cooperation. See Figure 2 and Section 5 for more details.

=
rf̄b∗ (1− ε2 )+rf̄ b̂

ε
2 +Qf̄ (γ−1)

(rf̄b∗+rfb∗ )(1− ε2 )+(rf̄ b̂+rfb̂)
ε
2 +(Qf̄+Qf )(γ−1) .

There is a natural intuition behind the ratio φfb∗ . Ig-
noring exploration, if each update is different and neg-
ative, the algorithm more often selects the one that
decreases more slowly because it is more often the
greedy action. In fact, the ratio selected is identical
to the ratio of the other value’s standalone rate of de-
crease to the combined rates for both actions. If RP
plays f with this proportion, then both values actually
decrease at the same overall rate as the faster one is
selected less frequently. As a result, the update rates
for CP depend on this fraction φfb∗ :

Q̇b∗ = ((1− φfb∗)cf̄b∗ + φfb∗cfb∗)(1−
ε

2
),

Q̇b̂ = ((1− φfb∗)cf̄ b̂ + φfb∗cfb̂)
ε

2
.

This reasoning only applies to falling values. If values
rise, the arbitrarily chosen greedy one will be updated
more rapidly resulting in a positive feedback loop.

2.3. Two-player Sliding Greedy Update

At times, if both players have Q-values at parity, the
GHDS may comprise a dual sliding system. In the
language of hybrid dynamical systems, this situation is
equivalent to very low thresholds of switching between
index states, meaning that no single flow describes the
behavior in this regime. While some definable patterns
show up during these periods, researchers in this field
acknowledge the potential for unpredictable or chaotic
behavior as α→ 0 (Di Bernardo et al., 2008).

In some instances, the close distance between values
can mean that decisions regarding how to implement
continuous estimation can also affect long-run conver-
gence, even for α → 0. There are several ways to
define the idealized continuous version of Q-learning
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in this situation. For the rest of the analysis, we fol-
low the convention of assuming discrete updates, but
keep α → 0. This definition is consistent with the
original setup and does not require new assumptions.
It also recognizes that the two updates are always sep-
arate, even if values are equal. As a result of multi-
ple sliding updates, a solution is no longer provided
by solving a single hybrid system of differential equa-
tions, thereby complicating exact prediction of behav-
ior. Fortunately, we are still able to clearly predict
whether the system moves into a steady attractor for
this particular GHDS (Sections 3 and 4).

2.4. Infinitesimal Gradient Ascent (IGA)

IGA (Singh et al., 2000) defines the joint strategy of
the players by a pair (p, q), the probabilities of the first
action for both players. Strategies are updated in the
direction of the gradient of the reward at time t:

pt+1 = pt + α
∂Vr(p, q)

∂p
qt+1 = qt + α

∂Vc(p, q)
∂q

.

It has been shown that IGA either leads the strategy
pair to a Nash equilibrium or an orbit yielding an aver-
age reward equal to the Nash equilibrium. A modified
version, WoLF-IGA, always converges to the Nash in
these games (Bowling & Veloso, 2001).

3. Classes of 2-player 2-action games

The space of games can be divided according to char-
acterizations of their equilibria. We show how IQL-ε
behaves in each of these classes. For simplicity, we as-
sume all reward values are distinct. (Ties can make
games belong to multiple subclasses, complicating ex-
position.) Table 1 gives payoff matrices for some of
the games we mention. The main results of this sec-
tion and the paper are summed up by Table 2.

Subclass 1 covers games that only have a single mixed
Nash equilibrium, meaning that the players play their
actions with probabilities p and q such that 0 < p, q <
1. The space includes games that meet all of the
following conditions: (R11 − R21)(R12 − R22) < 0,
(C11 − C12)(C21 − C22) < 0, and (R11 − R21)(C11 −
C12) < 0. Zero-sum games like Matching Pennies
(MP) are in this category, as is the new Spoiled Child
(SC) game. Subclass 2 contains games that have two
pure Nashes and one mixed Nash. These games satisfy
the following conditions: (R11 −R21)(R12 −R22) < 0,
(C11 − C12)(C21 − C22) < 0, and (R11 − R21)(C11 −
C12) > 0. Examples of games in this category include
Bach/Stravinsky (B/S), Chicken (CH), and some Co-
ordination games. Subclass 3 is the set of games in
which at least one of the players has a pure dom-

Table 1. Payoffs for representative games in each subclass.
RP’s rewards are listed first in each pair.

Subclass 1a Subclass 1b
Matching Pennies Spoiled Child
MP H T
H 1, 0 0, 1
T 0, 1 1, 0

SC B M
S 1, 2 0, 3
P 0, 1 2, 0

Subclass 2a Subclass 2b
Bach/Stravinsky Chicken
B/S B S
B 1, 2 0, 0
S 0, 0 2, 1

CH D H
D 15, 15 1, 20
H 20, 1 0, 0

Subclass 3a Subclass 3b
Deadlock Prisoner’s Dilemma

DL b1 b2
a1 1, 1 0, 3
a2 3, 0 2, 2

PD C D
C 3, 3 0, 4
D 4, 0 1, 1

inant strategy, if (R11 − R21)(R12 − R22) > 0 or
(C11 − C12)(C21 − C22) > 0. Examples in this class
include all variants of Prisoner’s Dilemma (PD) and
Deadlock (DL).

Our results explicate the behavior of IQL-ε in these
various classes, taking exploration into account. For
clarity, our analyses generally assume that the initial
Q-values are their maximum possible values given the
payoff matrix. It is common practice (Sutton & Barto,
1998) to initialize learning algorithms this way and it
ensures that the algorithms play all actions greedily for
some amount of time before settling down. IGA has
its own classes based on the level of payoff sensitivity
to the other player’s strategy (Singh et al., 2000).

In each of these subclasses, IQL-ε further divides the
space according to a simple rule so that on one side
the algorithm always converges while on the other it
is not guaranteed. Define Subclasses 1b, 2b, and 3b
such that ∃i, j Rij > RN and Cij > CN , where RN
and CN are either the unique expected Nash payoffs
for RP and CP, or the lowest value Nash payoffs (in
Subclass 2). Thus, there is some pure non-Nash strat-
egy combination that is a higher payoff than the Nash
equilibrium value for both players, much like the co-
operative payoff in PD. While IGA gradually alters its
strategy toward a best response, IQL-ε, in contrast,
switches its greedy action suddenly, starving one value
of updates. As a result, sometimes an action retains a
relatively high value even when not a best response.

Theorem 1 IQL-ε converges to the mixed Nash equi-
librium when playing any game in Subclass 1a.

Proof (sketch) It is clear that no pure strategies will
ultimately be successful because the other player can
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Table 2. A summary of the behavior of IQL-ε and a tax-
onomy of games.

Subclass 1a 1b 2a 2b 3a 3b
# Pure Nashes 0 0 2 2 1 1

# Mixed Nashes 1 1 1 1 0 0
RP Action 2
is dominant? No No No No Yes Yes
∃i, j Rij > RN
& Cij > CN? No Yes No Yes No Yes

Example game MP SC B/S CH DL PD
IQL-ε converges? Yes No Yes Y/N Yes Y/N

exploit any non-Nash strategy. IQL’s Q-values con-
verge to tied values where the ratio of actions selected
matches that of the Nash equilibrium. In Q-learning,
however, the agents can only approximate a mixed
strategy by continually shifting their greedy actions.

During learning, the values and strategies seem to cy-
cle repeatedly at points removed from the mixed Nash,
only to slowly approach it in the long term. As the
greedy strategy combination loops around the payoff
table, exploration causes a slight convergence between
the greedy and non-greedy value. On the next itera-
tion, the values are closer to the Nash by some factor
that depends on ε. In the limit, therefore, the policies
close in on this equilibrium. �

Theorem 2 In all Subclass 1b games, IQL-ε never
converges to a single strategy, pure or mixed.

Proof (sketch) This result arises because the “coop-
erative” joint strategy that has higher values than the
Nash equilibrium acts temporarily as a better attrac-
tor than the Nash whenever both of those actions are
greedy. The metaphor of a Spoiled Child (SC) illus-
trates the dynamics of this subclass, where the parent
is RP and the child is CP. There is no pure Nash equi-
librium in this class of games, so the IQL-ε players
first drift towards playing the actions with a ratio re-
sembling the mixed Nash strategy. As the values drop
toward the value of this equilibrium, parent and child
eventually greedily play the cooperative actions (Spoil
and Behave, respectively). These values rise above the
lower Nash values toward the cooperative payoff. How-
ever, this new attractor is not stable either, because
the child would rather Misbehave, at which point the
parent prefers the harmful Punish action. Thus, the
system switches to a new set of dynamics and the cy-
cle repeats. Unlike Subclass 1a, both greedy actions
move away from Nash during cooperation and there-
fore prevent convergence to a mixed strategy. �

Theorem 3 IQL-ε converges to one of the two pure
Nash equilibria in all games of Subclass 2a.

Proof (sketch) Consider the behavior of the dynam-
ics once all Q-values have dropped below or are at the
level of one of the Nash equilibria. At any point, the
values move toward the payoffs resulting from the cur-
rent greedy actions. This payoff either represents one
of the pure Nashes or it does not. If it does, the greedy
actions remain greedy, as neither player get a higher
value by exploring. If the greedy actions do not corre-
spond to a pure Nash, then at some point one player
switches greedy actions. The new combination is nec-
essarily a Nash equilibrium by the payoff structure of
this class. In addition, the mixed Nash is unstable
because the dynamics of the payoff structure deviate
from any mixed strategy to one of the pure strategies,
returning to the earlier argument for convergence. �

Theorem 4 IQL-ε may or may not converge to one
of the two pure Nash equilibria in Subclass 2b.

Proof (sketch) Some values lead the dynamics to one
of the stable pure Nashes, while others cycle much like
Subclass 1b (Wunder et al., 2010). �

4. Analysis of Convergence in
Dominant Action Games

This section delves into the convergence behavior for
Subclass 3 games, which have a dominant action for
at least one player. Intuitively, this class seems the
simplest—no matter what actions its opponent plays,
a player always has an unchanging preferred response.
In fact, IGA behaves this way by increasing its domi-
nant action probability until it reaches a Nash strategy.
In the IQL-ε system, dominant actions can be unstable
and lead to sudden shifts of fortune, or even chaotic
behavior. The PD time series in Figures 1 and 2 show
the strange, non-repeating pattern of updates possible
in Subclass 3b, which persists at all learning rates and
is therefore an intrinsic property of Q-learning.

4.1. Dominant Action Games: Subclass 3a

Call RP’s action a2 dominant when R11 < R21 and
R12 < R22. If ¬(∃i, j Rij > RN and Cij > CN ), the
game is a member of Subclass 3a.

Theorem 5 In Subclass 3a games, IQL-ε converges
to the pure Nash equilibrium identified by one player’s
dominant action and the other player’s best response.

Proof (sketch) If there is no payoff preferable to the
Nash for both players involving RP’s non-dominant
action a1, it simply plays a2. Once RP’s Q-values
drop below R21

1−γ or R22
1−γ , no other payoff can attract the

algorithm to play a1. At that point, CP is faced with
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a static optimization problem and its values inevitably
converge to C21

1−γ and C22
1−γ . Therefore, IQL-ε converges

to the Nash equilibrium by definition. �

4.2. Conditions for Convergence in Subclass 3b

Define Subclass 3b as the remaining dominant action
games, those for which ∃i, j Rij > RN and Cij > CN .
Prisoner’s Dilemma resides in this class, where unex-
pected dynamics proceed according to a predictable
sequence of update phases (Figure 2 and Table 3).
Each phase represents a temporarily stable combina-
tion of index states and flows that persist until con-
ditions change. The phases arise from a conflict be-
tween the selfish incentive of the dominant action and
the mutual benefit of cooperative action. In a pattern
similar to human conflict, the flows transition from I,
peaceful cooperation, to II, aggressive war, to III, dom-
ination, to IV, rebellion, then either back to I or to
DD, total war. Aggressive war breaks the peace so
that one player’s values gain advantage, while the re-
bellion results from the reaction of the long-dominated
player. These repeated phases form a chaotic attractor
due to the dual sliding update (Figure 2(right)).

For the dynamics to converge to the Nash equilibrium,
one of the players (CP, for instance) must sustain the
dominant action greedily against both actions of RP so
RP’s values can fall. Figure 2(inset) shows an exam-
ple of this condition in phase IV. To keep the values
decreasing to the Nash point, the players must switch
roles before both cooperative actions become greedy
again, thereby perpetuating phase IV. Once one of the
players can defect greedily against the other’s greedy
defection, convergence to Nash is assured. The value
below which mutual defection (DD) is inevitable is the
following threshold QDD, found when (non-greedy up-
date) Q̇b̂1 is less than (greedy update) Q̇b∗2 :

ε

2
(C21+(γ−1)QDD) < (1− ε

2
)(C22+(γ−1)QDD) (1)

QDD <
− ε

2C21 + (1− ε
2 )C22

(1− γ)(1− ε)
. (2)

As CP’s values decrease during phase III, they drop
below a defection threshold (DT) where exploring Qb̂1
drops faster than greedy Qb∗2 . In this case b∗2, D, is
greedy in response to mixed actions of RP. Say Cφ22 is
the D reward against RP’s sliding update. Like above,
QDT is defined by the inequality Q̇b̂1 < Q̇b∗2 :

QDT <
− ε

2Cφ21 + (1− ε
2 )Cφ22

(1− γ)(1− ε)
.

These dynamics from Section 2.2 imply φ22 is equiva-
lent to the percentage of time that RP spends playing

Table 3. Properties of phase dynamics during repeated
Prisoner’s Dilemma by phase. These phases repeat in the
order identified in Figure 2. (Arrows denote transitions.)

Comparison I II III IV
RP Value Qa1 ? Qa2 > < = =
CP Value Qb1 ? Qb2 >→< <→= = <

RP Update ˙Qa1 ? Q̇a2 >→< <→> ≤ =
CP Update Q̇b1 ? Q̇b2 > <→= = <→>

a2 when its dropping values are equal and CP is play-
ing b2 greedily. In general, φ22 rises as values decrease.

An important cooperation threshold (CT), QCT , re-
lates to the level where Q̇â2 > Q̇a∗1 . Essentially, if both
of a player’s values are very close and above QCT , it
cannot cooperate for long before Qâ2 overtakes Qa∗1 :

ε

2
((γ−1)QCT +R21) ≥ (1− ε

2
)((γ−1)QCT +R11) (3)

QCT ≥
(1− ε

2 )R11 − ε
2R21

(1− ε)(1− γ)
. (4)

As long as QCT ≤ QDT for some player, then conver-
gence to the Nash equilibrium is assured because it has
nothing to lose by defecting. If this condition is true
for long enough, the other player may be in a position
to trigger a chain of defections leading to the Nash.

Phase IV, observed in the closeup Figure 2(inset), ei-
ther leads to convergence or back to I, depending on
its length and its values when it commences. It be-
gins when CP plays D greedily against greedy C be-
low the threshold QDT , thereby dropping RP’s values.
If phase IV begins with Qb2 just below QDT , then it
will be too short and convergence cannot happen, as
the flow returns to peaceful cooperation and the cy-
cle restarts. However, phase IV might not begin as
soon as Qb2 crosses the threshold if the possibility of
transitioning to the crucial index state is zero, regard-
less of the continuity of the updates. Delaying phase
IV makes CP eventually defect for longer periods, in-
creasing the likelihood of convergence to Nash. In the
case of PD, this question is settled during phase III,
the dual sliding update. Essentially, CP must first
erase RP’s gains made when RP defected against its
C with two Ds. After two defections, RP cooperates,
but now so does CP, so phase III continues. Some
games prevent the onset of IV below defection thresh-
old QDT until φ22 rises above its own threshold. Once
it is known where phase IV must begin as α → 0,
one iteration is enough to show whether the system
converges. We have mapped the region of symmetric
games where uniform IQL-ε does or does not converge
to the Nash equilibrium (Wunder et al., 2010).

Theorem 6 In Subclass 3b games, certain starting
values guarantee the IQL-ε dynamics converge to the
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Figure 2. (left) The sequence of phases I-IV during PD with IQL-ε agents. The value ordering is documented in Table 3.
Some of these phases exist entirely within a single index state of the GHDS (I), while others rotate between all four
index states (III). In the peaceful cooperation phase I, both agents cooperate greedily. Eventually, via exploration,
the defection value appeals to one of the players, RP, leading to aggressive war (II). In II, RP forces both of CP’s
values to drop until neither player has a clear greedy action. Phase III, domination, is the dual sliding update, so that
the algorithm alternates between mutual cooperation and one player defecting. When CP’s values drop below the QDT

threshold, it becomes profitable to defect against both actions of the other player, initiating rebellion (IV). After this
final phase, both players re-enter peaceful phase I, thereby renewing the cycle. (inset) Close-up of phase IV of the cycle.
(right) A 2-D projection of the chaotic attractor over many cycles. The system switches flows along the x=0 and y=0
axes. Note how at these values the system avoids the unstable mutual defection flow in the lower left quadrant.

pure Nash. For other values, the dynamics do not per-
manently converge to any particular strategy, but aver-
age rewards of both players are higher than the Nash.

Proof (sketch) There exists a DD threshold QDD
below which two-player greedy defection (Σa∗2b∗2 ) is a
sink and does not jump to another index state. Start-
ing values that meet this condition, or lead later to
values that do, converge to the Nash. In addition, a
high R21 value that delays phase IV while QDT ≥ QCT
encourages convergence as RP can defect freely.

Other starting values enter a series of phases. If phase
IV always occurs immediately after the Q-values drop
below QDT , mutual cooperation (Σa∗1b∗1 ) temporarily
attracts the cooperation Q-values away from dominant
action a2 and convergence does not result. Delayed
onset of phase IV, meanwhile, can lead to sustained
greedy defection and convergence. If neither players’
values ever drop below the threshold QDD, by the con-
struction of Q-learning the players must be receiving
higher average values than the Nash values. �

Although IQL-ε does not converge in the usual sense
in some games, certain strategies are clearly prevalent
for low ε. In games where IQL-ε does not reach a
Nash equilibrium, the system remains in the coopera-
tive outcome for time proportional to 1

ε . Therefore, as
ε→ 0, the strategies played by IQL-ε converge to C.

5. Empirical Comparison

We ran IGA and IQL-ε in a representative game from
each class, using the payoffs in Table 1, for 100 simu-

lated units of continuous time. We approximated the
solutions numerically (α = 0.0001) and used parame-
ters of γ = 0 and ε = 0.1. We chose starting Q-values
distinct from the Nash values to allow the algorithms
to demonstrate their full behavior. Figure 3 provides
a time-series plot of the Q-values for representative
games. Larger values of α show the same patterns,
but with more noise (Gomes & Kowalczyk, 2009).

In MP, the two algorithms essentially behave the same
way, ultimately converging to Nash. DL (not shown)
converges simply and similarly for both algorithms.

Both algorithms converge in B/S but identical start-
ing points may lead IQL-ε and IGA to find different
equilibria (coordinating on B vs. S). IGA converges to
a pure Nash in CH (not shown), and IQL-ε sometimes
converges. In the case of cyclic activity, it manages a
minimum average reward of 5.7, higher than either the
mixed Nash (3.3) or lower pure Nash (1).

IQL-ε never converges in SC, but IGA will converge
to the mixed Nash. Once again, we see IQL-ε attain-
ing higher reward than IGA; around 2 and 1.2 for the
two players instead of 1.5 and 1. These observations
provide clues about the diverse and sometimes bene-
ficial nature of non-convergence as well as important
similarities within classes. In contrast to PD, games
in this subclass reach a periodic attractor.

Finally, the PD series (Figure 1) compares the policies
of IQL-ε with IGA. IGA converges to the Nash (DD).
While low initial values will lead IQL-ε to DD, here
IQL-ε does not converge for the chosen starting values.
IQL-ε meets all conditions that describe a chaotic pat-
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Figure 3. Action probabilities for RP in two self-playing algorithms in representative games (Table 1). The policies of
WoLF-IGA converge, while the IQL-ε dynamics do not for some starting values in the PD or SC games. Both agents
converge to one of the pure Nashes in B/S and the mixed Nash in MP. In SC, the IQL-ε players oscillate periodically
while WoLF-IGA reaches the fixed point defined by the mixed Nash of the game. See Section 5 for more details.

tern. The average reward obtained by the IQL-εs is
around 2.75 and 2.45, exceeding IGA’s value of 1.0.

6. Conclusion

Motivated by the important role of Q-learning in mul-
tiagent RL, we set out to catalog the dynamics of a
continuous-time variant. We documented a wide range
of outcomes in 2-player, 2-action games, varying from
rapid convergence to Nash to unceasing oscillations
above the Nash. Of particular interest is the com-
plex behavior of Q-learning with ε-greedy exploration
in Prisoner-Dilemma-like games, since the algorithm is
able to achieve higher-than-Nash outcomes in this pre-
viously undiscovered chaotic system. The increasing
prevalence of mutually cooperative non-Nash strate-
gies as exploration is decreased to zero is itself worthy
of investigation. We see no reason to eliminate the
possibility that this result would arise in games with
more players or actions.

Future work in this setting will investigate the impact
of irregular oscillatory behavior in larger games or real-
world systems. The current work may provide insight
into important related settings like games with more
players or actions as well as Q-learning in games with
history states and in stochastic games.
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