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Abstract

Transfer learning can be described as the
distillation of abstract knowledge from one
learning domain or task and the reuse of that
knowledge in a related domain or task. In
categorization settings, transfer learning is
the modification by past experience of prior
expectations about what types of categories
are likely to exist in the world. While trans-
fer learning is an important and active re-
search topic in machine learning, there have
been few studies of transfer learning in hu-
man categorization. We propose an expla-
nation for transfer learning effects in human
categorization, implementing a model from
the statistical machine learning literature –
the hierarchical Dirichlet process (HDP) – to
make empirical evaluations of its ability to
explain these effects. We present two labora-
tory experiments which measure the degree
to which people engage in transfer learning
in a controlled setting, and we compare our
model to their performance. We find that the
HDP provides a good explanation for transfer
learning exhibited by human learners.

1. Introduction

In most learning environments, people do not start
from a tabula rasa when forming hypotheses and draw-
ing inferences. Rather, knowledge gained from one do-
main is abstracted and reused in other domains. This
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behavior, called transfer learning, has been demon-
strated in children as young as 3 years (Brown & Kane,
1988) and is central to people’s ability to quickly adapt
to new situations given a limited amount of data. It is
also a major area of machine learning research, since
automated systems that are capable of learning rapidly
in a variety of domains will need to be able to transfer
the knowledge that they acquire in one domain to an-
other (Thrun & Pratt, 1998). Despite the importance
of transfer learning as part of an explanation for how
people learn new concepts, most studies of human cat-
egory learning have focused on settings where people
learn independent categories, with little opportunity
for the learning of one category to influence the learn-
ing of another. In this paper, we explore how people
who learn systems of inter-related categories exhibit
transfer effects, and how these effects can be modeled
using tools from hierarchical Bayesian statistics.

Transfer learning in human categorization can occur
in a number of ways. One example is dimensional at-
tention: previously learned categories can reveal which
dimensions are more diagnostic of category member-
ship. This type of transfer can be modeled by ex-
plicitly representing a saliency factor for each dimen-
sion, and is a standard part of existing categorization
models, e.g., (Nosofsky, 1986; Kruschke, 1992; Perfors
& Tenenbaum, 2009). However, recent work on ra-
tional models of human category learning has taken
an approach that can support a novel kind of trans-
fer learning. In these models – the rational model of
categorization (Anderson, 1991), the mixture model
of categorization (Rosseel, 2002), and the hierarchi-
cal Dirichlet process model (Griffiths et al., 2007a) –
categories are represented as a set of clusters of ob-
jects. Learning a system of categories involves learn-
ing which objects cluster together and which clusters
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belong to each category. Importantly, these models
can allow for the possibility that categories share clus-
ters of objects, providing a way for transfer learning
to take place: the clusters induced by learning one
category can be used to inform learning about other
categories. For example, if learning the category of
cats leads to the formation of clusters corresponding
to different kinds of cats – such as Siamese, Persians,
and tabbies – one might more quickly learn the cate-
gory of striped objects, having the expectation that if
one of the members of a cluster (such as a tabby cat)
belongs to the category, the other members will too.

Using category labels to identify meaningful clusters
of objects is a particularly interesting form of trans-
fer learning, as it means that learners are dynamically
developing a vocabulary with which to describe novel
concepts. Whether people perform this kind of trans-
fer learning has not previously been explored. Conse-
quently, we present an empirical analysis of how simul-
taneously learning clusters and categories can affect
categorization performance. We describe two labora-
tory experiments in which people are taught systems
of related categories and we measured the degree to
which their training affects future decisions.

The plan of the paper is as follows. Section 2 intro-
duces the idea of representing categories with learned
clusters of objects, laying out the probabilistic model –
the hierarchical Dirichlet process – we use to describe
this form of learning. Section 3 outlines the motivation
for our human learning experiments, and Sections 4
and 5 present experiments examining whether these
effects are observed with discrete and continuous stim-
uli, respectively. Section 6 discusses the implications
of our results and concludes the paper.

2. Representing categories with learned
clusters of objects

Rational models of cognition explain human behavior
as an attempt to find optimal solutions to the compu-
tational challenges posed by the environment (Ander-
son, 1990). Rational models of categorization repre-
sent categories as probability distributions over stim-
uli and decide what category a new stimulus belongs
to by performing Bayesian inference (Anderson, 1991;
Griffiths et al., 2007b). More formally, if each cat-
egory c is associated with a probability distribution
p(x|c) over stimuli x, Bayes’ rule indicates the poste-
rior probability that a stimulus x belongs to category
c is

p(c|x) =
p(x|c)p(c)∑
c′ p(x|c′)p(c′)

, (1)

where the sum in the denominator ranges over all the
categories, and p(c) reflects the prior probability that
a stimulus belongs to category c.

This probabilistic perspective provides a way to unify
existing psychological models of categorization (Ashby
& Alfonso-Reese, 1995; Griffiths et al., 2007b). Much
empirical work in psychology has focused on differen-
tiating between prototype models, e.g., (Reed, 1972),
in which a category is represented by a prototypical
member, and exemplar models, e.g., (Medin & Schaf-
fer, 1978; Nosofsky, 1986), in which a category is rep-
resented by all of the observed members. These two
models can be shown to correspond to different statis-
tical strategies for estimating p(x|c), with prototype
models corresponding to parametric density estima-
tion and exemplar models corresponding to nonpara-
metric density estimation (Ashby & Alfonso-Reese,
1995). Recently, several psychological models have
been proposed that compromise between prototype
and exemplar models, with a category being repre-
sented by a set of clusters, each of which has its own
prototype, e.g., (Love et al., 2004; Vanpaemel et al.,
2005). These models also have probabilistic analogues,
in which p(x|c) is a mixture distribution, with

p(x|c) =
∑
z

p(x|z)p(z|c), (2)

where p(x|z) is a distribution over stimuli associated
with mixture component z, and p(z|c) is the weight
assigned to that component by category c (Anderson,
1991; Rosseel, 2002; Griffiths et al., 2007a). Intuitively,
each mixture component corresponds to a cluster of
stimuli, and a category is a combination of the clusters.

Categorization models based on mixture distributions
support a novel kind of transfer learning, where clus-
ters are shared between categories. We focus on one
such model here: the hierarchical Dirichlet process
(HDP; Teh et al., 2006). Focusing on this model does
not limit the scope of our conclusions, as the other
models we have mentioned can be shown to be special
cases of the HDP (Griffiths et al., 2007a). The model
samples p(x|c) from a Dirichlet process for each cate-
gory c, so categories are represented by an unbounded
number of components. Sharing between categories
is implemented by generating the categories’ common
base distribution from a global Dirichlet process, al-
lowing components to occur in multiple categories.

An intuitive understanding of the way categories are
represented in the HDP can be obtained by consid-
ering the process by which the model assumes stim-
uli are generated. When a new stimulus is generated
from category c, the model selects a cluster z from
which to generate that stimulus. The cluster z might
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already exist in c, or it could be new to category c.
The probability of each cluster is given by a stochas-
tic process known as the Chinese restaurant process
(Aldous, 1985; Pitman & Picard, 2006), with

p(z = k|zc) =

{ nk

nc+α
k is an existing cluster

α
nc+α

k is a new cluster
(3)

where zc are the cluster assignments of all other stimuli
from category c, nk is the number of stimuli from clus-
ter k in the category, nc is the total number of stimuli
in the category, and α is the concentration parame-
ter of the model. If the stimulus is to be generated
from a cluster that is new to category c, the cluster
is generated from another Chinese restaurant process
(with concentration parameter γ), this time selecting
clusters based on their frequency across all categories.
If this second process elects to generate a completely
new cluster, parameters θ for that cluster are sampled
from a global base distribution, and then the stimulus
x is generated from a parametric distribution p(x|θ).

The generative process assumed by the HDP provides
a way to generate categories that share clusters, with
the tendency to share being regulated by the parame-
ters of the model. As α increases, the number of clus-
ters used to represent each category increases. As γ
increases, the degree to which these clusters are shared
between categories decreases. The model can be used
to estimate a set of densities associated with categories
by inferring the values of these parameters and the set-
tings of the latent variables – the assignment of stimuli
to clusters and clusters to categories – that make the
observed data most probable. This can be done using
standard Markov chain Monte Carlo algorithms devel-
oped for the HDP (Teh et al., 2006; Griffiths et al.,
2007a). As a consequence, this model allows us to ex-
plore how the capacity to share clusters between cat-
egories influences category learning by comparing the
performance of models that allow sharing (with γ free
to vary) and models that do not (with γ → ∞). We
can compare the results of both of these types of mod-
els to human performance on categorization tasks to
explore whether cluster-sharing models provide an ex-
planation for certain types of human transfer learning.

3. Motivation for experiments

Most empirical studies of human categorization focus
on learning category systems in isolation, eliminating
the possibility of transfer effects. Instead, we are inter-
ested in measuring the extent to which the inductive
biases that guide human learning of a new category de-
pend on the previous or simultaneous learning of other
categories. To this end, we conducted two experiments

in which participants learned multiple categories over
the same set of stimuli, creating an opportunity for do-
main knowledge to be transferred between categories.

When learners engage in transfer learning in a cat-
egorization task, they are not simply learning what
objects belong to each category; they are also learning
how to learn about categories in general. This meta-
level knowledge can be described in terms of overhy-
potheses that govern what types of categories are more
likely a priori to be observed than others. In the hier-
archical Bayesian framework, this is realized by plac-
ing a distribution over the categories in which they
are probabilistically dependent, so knowledge about
one category affects the distribution over the others.
The categories in our experiments are constructed so
that the HDP can express the relevant overhypothe-
ses, with certain clusters of objects reappearing across
categories. We conducted two experiments, one with
discrete stimuli and one with continuous stimuli, to
evaluate the extent to which this type of transfer learn-
ing is evident in human learning.

4. Experiment 1: Discrete stimuli

4.1. Method

Fifty-seven undergraduate students, aged 18 to 27,
participated in the experiment for course credit. The
experiment is comprised of three sessions in which par-
ticipants learn to partition a set of stimuli into two
categories. The stimuli have four binary-valued fea-
tures, and the same 24 = 16 objects are used in each
session. The category members are chosen as follows.
In the first session, the stimuli are split into two cate-
gories based on their feature value (0 vs. 1) on a single
dimension. In the second session, their category mem-
bership is based on their feature value on a second
dimension. The two relevant dimensions are randomly
chosen for each participant. In the third session, cat-
egory membership is determined using an exclusive-or
(XOR) rule. The two dimensions involved in the XOR
rule depended on which of two conditions the partic-
ipant is assigned to. In the consistent condition, the
rule is an XOR over the same two dimensions used in
the first two sessions. In the inconsistent condition,
the XOR rule involves the remaining two dimensions.

The stimuli are adopted from a previous categorization
experiment (Sakamoto & Love, 2004) and consist of
square figures with five binary-valued dimensions: size
(small or large), color (blue or purple), border (yellow
or white), texture (smooth or dotted), and diagonal
cross (present or absent). The dimensions were found
to be independent and equally salient by a multidi-
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Figure 1. A screenshot from the third session of Experi-
ment 1. Four cards are locked, four unlocked cards have
been placed, and eight remain to be placed. The categories
of the first two sessions are shown for reference.

mensional scaling of similarity ratings collected from a
separate pool of participants (Sakamoto & Love, 2004).
In our experiment, each participant is exposed to only
16 of the 32 possible stimuli, selected by choosing a
random feature value, for example, a yellow border,
and eliminating all stimuli with that feature.

Figure 1 shows a screenshot from the experimental
setup. The stimuli are depicted on cards, and partici-
pants categorize them by dragging each card into one
of two regions labelled with the two category names.
When a participant finishes placing all of the cards,
one card is randomly chosen, and the participant re-
ceives visual feedback telling them whether that card
was correctly categorized or not. If the card is cor-
rect, it is locked in place, and feedback continues with
another randomly-chosen card. If it is incorrect, it
is moved to the correct category and locked in place,
and the remaining unlocked cards are moved to the
bottom of the screen for the participant to try again.
Each time a card is locked is considered the end of a
block. The number of correctly categorized cards per
block is recorded for each participant.

4.2. Results

The results are shown in Figure 2 (a). As expected,
the human learners were able to quickly achieve a high
level of accuracy on the two training sessions, in which
the stimuli were split based on just one dimension.
They learned more slowly in the test conditions, in
which category membership was based on an XOR
rule. Most interestingly, there was a statistically sig-
nificant difference between the observed accuracies in
the consistent and inconsistent test conditions. The
experiment was designed so that the same feedback is
presented to the participants in both test conditions
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Figure 2. Results from Experiment 1. Each plot shows
the accuracy in categorizing the stimuli for each of the 16
blocks of each session.

until block 9, so any differences in performance before
then are statistical noise. Correspondingly, we per-
formed a one-sided t-test of the null hypothesis that
the the average accuracy over blocks 10 through 15
for the participants in the consistent condition was
less than or equal to that of the participants in the
inconsistent condition, producing p = 0.032. Partici-
pants were more accurate when learning an exclusive-
or (XOR) rule based on the two dimensions that they
used in the training sessions than for an XOR rule
based on the other two dimensions.

4.3. Modeling

To evaluate the degree to which the type of trans-
fer learning used by the HDP can explain the effect
found in the human data, we ran an HDP model
with cluster-sharing (with 0<γ<∞) and one without
cluster-sharing (with γ →∞) on the same tasks. The
models were evaluated by separately estimating the
probabilities of all 74 assignments of stimuli to cate-
gories (modulo rotations and inversions) using Gibbs
sampling (burn-in of 10000, followed by 50000 sam-
ples, with concentration parameters being estimated
from the data). Calculation of the posterior probabil-
ity of an inferred category structure, conditioned on
observed stimuli, then reduced to looking up one of
the 74 pre-computed probabilities and dividing by the
sum of the probabilities of the assignments consistent
with the observed data.

The performance of the two learning algorithms is
shown in Figure 2 (b) and (c). The HDP without
sharing treats categories independently; therefore, the
two training sessions are equivalent under this model,
as are the two test conditions. It achieves a good fit to
human performance for all the individual sessions, but
it fails to account for the difference in performance be-
tween the two test conditions. The HDP model with
sharing shows an increased learning rate for the consis-
tent test condition compared to the inconsistent test
condition, providing a possible explanation for the dif-
ference found in human performance.
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Interestingly, the HDP model with sharing also pre-
dicts a transfer effect between the two training ses-
sions, where the second training session is learned more
slowly than the first. One possible explanation for why
this effect is not found in the human data is that par-
ticipants were not sufficiently aware that the category
systems in the first two sessions are meant to be related
to each other. The fact that the HDP model without
sharing accurately predicts human performance for the
first two sessions provides evidence for this hypothesis
(the difference in human performance between the two
training sessions is not statistically significant: run-
ning the same type of t-test used to compare the test
sessions resulted in p = 0.12).

The concentration hyperparameters for the models
were chosen to best fit the human data by visual in-
spection. The parameters for the HDP model with-
out sharing are as follows. The base distribution for
each Bernoulli parameter was set at Beta(0.1, 0.1), and
the concentration parameter α was learned from the
data using a Gamma(10, 14) prior distribution. The
best-fitting hyperparameters for the HDP model with
sharing were as follows. For the two training sessions,
the base distribution for each Bernoulli parameter was
set at Beta(0.7, 0.7), the concentration parameter α
was learned from the data using a Gamma(10, 50)
prior distribution. For the two test sessions, the base
distribution for each Bernoulli parameter was set at
Beta(0.1, 0.1), and the concentration parameter α was
learned from the data using a Gamma(10, 25) prior
distribution. For all four sessions, the concentra-
tion parameter γ was learned from the data using a
Gamma(10, 6) prior distribution. The posterior dis-
tributions were fairly sensitive to these prior distribu-
tions; this indicates that to the extent that the HDP
model accurately describes the way people represent
categories, human performance can provide informa-
tion about their prior distributions over concentration
parameters. For all sessions and both models, the es-
timated posterior distribution was raised to the power
of 1.5 before sampling the model’s responses, as in the
exponentiated Luce choice rule often used in psycho-
logical categorization models (Kruschke, 1992).

Although the increased learning rate for participants
in the consistent test condition provides evidence for
the HDP model of categorization, this effect could also
be explained in terms of dimensional salience parame-
ters. Attention parameters allow a model to learn after
the first two training sessions that dimensions 1 and
2 are more salient than dimensions 3 and 4 because
they have been more relevant for determining cate-
gory membership. Models can then use these param-
eters to increase the significance of differences along

Figure 3. Examples of stimuli from the eight clusters used
in Experiment 2. Each row contains ten examples from a
cluster. Each cluster varies along one of the four dimen-
sions: size, shape, hue, and lightness. For each of the four
dimensions, there are exactly two clusters varying along
that dimension, so that after learning the clusters, none of
the dimensions is more globally salient than the others.

dimensions 1 and 2 in subsequent learning sessions,
leading to the same observed transfer learning effect.
Our second experiment eliminates the use of dimen-
sional salience parameters as a potential explanation
for transfer learning, and broadens our investigation
to a new experimental paradigm and stimulus set.

5. Experiment 2: Continuous stimuli

5.1. Method

The experiment was completed by 73 participants,
aged 18 through 42, who were compensated with ei-
ther course credit or payment. The experiment is com-
prised of three sessions: a pre-test session, a training
session, and a post-test session. The two test sessions
are identical, except that their trials are presented in
random orders. Thus, the experiment allows us to
measure the extent to which the training session alters
participants’ inductive biases about new categories by
looking for any differences in performance between the
pre-test and post-test sessions.

Participants are given a cover story about being a
farmer’s apprentice and having to learn about four
different types of crops. The stimuli are adopted
from a previous psychological experiment (Sanborn
et al., 2009). They are generated using six param-
eters, but we selected a four-dimensional manifold
within the original space to create our stimuli. The
four roughly psychologically-independent dimensions
we selected correspond to size, shape, hue, and light-
ness. Within this 4-dimensional space, we chose eight
multivariate Gaussian distributions to serve as clusters
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which comprise the categories. The eight clusters are
depicted in Figure 3. Each cluster is axis-aligned, i.e.,
has zero correlation between the dimensions, and has
non-negligible variance in only one of the dimensions.
Furthermore, there are exactly two clusters that vary
in any given dimension, so given on observations from
all clusters, the dimensions are equally salient. Fig-
ure 4 depicts the arrangement of the eight clusters in
the four-dimensional space in which they vary.

The pre-test is comprised of 48 trials, during each of
which, participants are presented with a single stim-
ulus observation and told to imagine that it belongs
to a novel category. They are then asked to click on
one of two alternative stimuli that appear below it,
indicating which one they believe to be more likely
to belong to the same category as the first stimulus.
In each of these trials, the observed stimulus and one
of the two alternatives are generated from one of the
eight Gaussian clusters, and the other alternative is
generated from a different cluster. Critically, the two
alternatives are equidistant from the observed stimulus
in the underlying 4-dimensional space. For example,
if the observed stimulus in a test trial occupies the
front-upper-left corner of the left cube in Figure 4, the
two alternatives would occupy the rear-upper-left and
front-upper-right corners of the left cube. Since the
participants have not yet been exposed to the clusters
of stimuli, they have no reason to prefer one test alter-
native over the other, and we predict they will choose
the within-cluster alternative 50% of the time on av-
erage. We record the percentage of pre-test trials for
which the within-cluster alternative is selected and call
this the participant’s pre-test score.

Following the pre-test is the training session, in which
participants are asked to help the farmer harvest four
different types of crops. The eight clusters are ran-
domly grouped into pairs to form the four categories,
and participants repeat training blocks until they learn
to differentiate between the four categories. First, an
8×8 grid of crops is displayed. Eight stimuli are gener-
ated from each cluster and randomly positioned to fill
the grid. Participants are then asked to harvest all of
the crops belonging to one of the four categories, which
are labeled with the nonsense words relts, pasps, worbs,
and broms. Participants harvest crops by clicking on
them, and each time a correct stimulus is chosen, it is
moved to the right side of the screen in a region cor-
responding to the appropriate category. Once all the
category members are harvested, the field is randomly
repopulated and the participant is asked to harvest the
next group of crops, rotating through all four until the
performance criterion (no more than four errors in the
last four blocks of training) is met.

shape
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Figure 4. Spatial orientation of the stimuli in Experiment
2. A 4-dimensional hypercube is depicted as two cubes,
with the dimensions labeled above. The probability den-
sity of the stimuli under each of the eight clusters is an
axis-aligned multivariate normal distribution with non-
negligible variance in only one dimension. The clusters
are shown as the thick black edges of the hypercube; the
other edges are dashed gray lines.

The post-test follows the training session. It is identi-
cal to the pre-test, with the trials randomly permuted.
Again, we record the percentage of post-test trials for
which the within-cluster alternative is selected and call
this the participant’s post-test score.

5.2. Results

The results of the experiment are given in Figure 5 (a).
All of the pre-test scores are clustered around 50%, as
expected. Although many of the post-test scores are
also clustered around 50%, a significant number of hu-
man learners exhibited a transfer learning effect where
after being exposed to the eight Gaussian clusters dur-
ing training, they preferred to generalize novel cate-
gories to stimuli within the same cluster as observed
stimuli. A one-tailed, within-subjects t-test confirmed
that the difference between pre-test scores and post-
test scores is statistically significant (p < 10−8).

Further analysis of the results suggested that the post-
test transfer learning was an effect of participants pre-
ferring to generalize to stimuli within the same cate-
gory as the observed stimulus, rather than the more
specific preference for generalizing to stimuli within
the same cluster. When the analysis is restricted
to only those test trials where both alternatives are
within the same category as the observed stimulus (but
one is in the same cluster and one is not), participants
perform at chance (scoring near 50% on average) for
the post-test. The results thus indicate a strong trans-
fer learning effect, but one in which participants as-
sume that entire categories, rather than clusters within
those categories, can be repeated.
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Figure 5. Results from (a) the human learners and (b,c) the two models in Experiment 2. Each marker represents one
participant or one sample from the models. The x axis on each plot is the percentage of test trials where the learner
generalized a novel category to a stimulus within the same cluster as the observed stimulus. The y axis is the same
percentage for the post-test trials. Marginal histograms are shown for each axis. Before training, participants are very
tightly clustered around 50% (random chance for trials with two options), while after training, some participants show a
strong bias to generalize to within-cluster fruit. This post-test bias is also evident in the cluster-sharing HDP.

5.3. Modeling

As in Experiment 1, we modeled the human learners
using both a cluster-sharing and a non-cluster-sharing
HDP model. One sample from each of the models
was taken for each participant, with the models re-
ceiving the same amount of training data as the cor-
responding participant. The model predictions were
made using an independent round of Gibbs sampling
for each pre-test and post-test trial. In the cluster-
sharing HDP model, the γ parameter was learned from
the data using a Gamma(2, 1

10 ) prior distribution. In
both models, the α parameters were learned using a
Gamma(2, 23 ) prior distribution. The cluster-specific
multivariate Gaussian densities were assumed to be
axis-aligned, with parameters µ and σ2 being drawn
from a Gaussian-inverse gamma distribution with pa-
rameters λ = 1

2 , ν = 1, α = 3, and β = 1.

The model results are shown in Figure 5 (b) and
(c). Before training, the models have no observations
to condition on, so their pre-test scores are drawn
from a Binomial(48, 0.5) distribution. This aligns with
the human performance, although the human learn-
ers seem to be more tightly clustered around 50%.
This could be due to the use of particular classifica-
tion strategies throughout the pre-test. For example,
a participant who decides to categorize on the basis of
color alone will have a pre-test score of exactly 50%.

Because the HDP model without cluster sharing treats
categories independently, the training session has no
effect on the post-test, so its post-test scores are also
clustered around 50%. The HDP model with cluster

sharing shows a strong transfer effect, as seen in the
human data. However, this version of the model pre-
dicts that generalization should take place at the level
of clusters rather than categories, which is inconsistent
with the human data. Generalization at the level of
categories rather than clusters could be produced by
constraining the model to have only a single cluster per
category, taking α→0 rather than estimating α from
the data. In future work we hope to further investigate
this phenomenon, getting a better sense of the level at
which people transfer knowledge of category structure.

6. Conclusion

Most theoretical and empirical studies of human cate-
gorization have focused on learning a small number of
categories independently of each other. However, there
is much evidence that humans use knowledge acquired
during past category learning episodes when learning
new categories of objects. In this paper, we evaluated
the degree to which transfer learning in human catego-
rization can be explained by simultaneously learning
categories consisting of shared clusters. The catego-
rization model we adopted to achieve this effect, the
hierarchical Dirichlet process (HDP), is a generaliza-
tion of several recently proposed rational models of
human categorization. Although we do not propose
the HDP as a complete account of transfer learning in
humans, we believe it explains some types of transfer.
We have experimentally confirmed through two experi-
ments that human learners engage in transfer learning
in categorization tasks, and we have shown that the
HDP can provide an explanation for these effects.
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Beyond the specific model and experiments we consid-
ered in this paper, we anticipate that understanding
how people transfer knowledge from one domain to an-
other will play a significant role in building automated
systems capable of rapidly learning new concepts.
The form of transfer learning investigated here estab-
lishes an interesting connection with machine learn-
ing, where hierarchical Bayesian models have been pro-
posed as a formalism in which to develop systems ca-
pable of transfer learning (Baxter, 1997). Hierarchical
Bayesian models can be used to express hypotheses
at multiple levels of abstraction and can consequently
form generalizations that span multiple domains. Such
models are already being used to explain human trans-
fer learning in a variety of settings, laying the founda-
tions for a formal framework that brings human and
machine learning closer together.
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In École d’été de probabilités de Saint-Flour, XIII—
1983, pp. 1–198. Springer, Berlin, 1985.

Anderson, John R. The Adaptive Character of
Thought. Erlbaum, Hillsdale, NJ, 1990.

Anderson, John R. The adaptive nature of human cat-
egorization. Psychological Review, 98(3):409–429,
1991.

Ashby, F. Gregory and Alfonso-Reese, Leola A. Cate-
gorization as probability density estimation. Journal
of Mathematical Psychology, 39:216–233, 1995.

Baxter, Jonathan. A Bayesian/information theoretic
model of learning to learn via multiple task sam-
pling. Machine Learning, 28:7–39, 1997.

Brown, Ann L. and Kane, Mary Jo. Preschool children
can learn to transfer: Learning to learn and learning
from example. Cognitive Psychology, 20(4):493–523,
1988.

Griffiths, Thomas L., Canini, Kevin R., Sanborn,
Adam N., and Navarro, Daniel J. Unifying rational
models of categorization via the hierarchical Dirich-
let process. In Proceedings of the 29th Annual Con-
ference of the Cognitive Science Society, pp. 323–
328, 2007a.

Griffiths, Thomas L., Sanborn, Adam N., Canini,
Kevin R., and Navarro, Daniel J. Categorization
as nonparametric Bayesian density estimation. In
Chater, Nick and Oaksford, Mike (eds.), The Proba-
bilistic Mind: Prospects for Bayesian Cognitive Sci-
ence, pp. 303–328. Oxford University Press, 2007b.

Kruschke, John K. ALCOVE: An exemplar-based con-
nectionist model of category learning. Psychological
Review, 99(1):22–44, January 1992.

Love, Bradley C., Medin, Douglas L., and Gureckis,
Todd M. SUSTAIN: A network model of cate-
gory learning. Psychological Review, 111(2):309–
332, 2004.

Medin, Douglas L. and Schaffer, Marguerite M. Con-
text theory of classification learning. Psychological
Review, 85(3):207–238, 1978.

Nosofsky, Robert M. Attention, similarity, and the
identification-categorization relationship. Journal of
Experimental Psychology: General, 115:39–57, 1986.

Perfors, Amy and Tenenbaum, Joshua B. Learning to
learn categories. In Proceedings of the 31st Annual
Conference of the Cognitive Science Society, 2009.

Pitman, Jim and Picard, Jean. Combinatorial Stochas-
tic Processes. Springer, Berlin, 2006.

Reed, Stephen K. Pattern recognition and categoriza-
tion. Cognitive Psychology, 3:393–407, 1972.

Rosseel, Yves. Mixture models of categorization. Jour-
nal of Mathematical Psychology, 46:178–210, 2002.

Sakamoto, Yasuaki and Love, Bradley C. Schematic
influences on category learning and recognition
memory. Journal of Experimental Psychology: Gen-
eral, 133(4):534–553, 2004.

Sanborn, Adam N., Griffiths, Thomas L., and Shiffrin,
Richard M. Uncovering mental representations with
Markov chain Monte Carlo. Cognitive Psychology,
2009.

Teh, Yee Whye, Jordan, Michael I., Beal, Matthew J.,
and Blei, David M. Hierarchical Dirichlet processes.
Journal of the American Statistical Association, 101
(476):1566–1581, December 2006.

Thrun, Sebastian and Pratt, Lorien (eds.). Learning
to Learn. Kluwer Academic Publishers, 1998.

Vanpaemel, Wolf, Storms, Gert, and Ons, Bart. A
varying abstraction model for categorization. In
Proceedings of the 27th Annual Conference of the
Cognitive Science Society, pp. 2277–2282, 2005.


