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Abstract

Hashing based Approximate Nearest Neigh-
bor (ANN) search has attracted much atten-
tion due to its fast query time and drastically
reduced storage. However, most of the hash-
ing methods either use random projections or
extract principal directions from the data to
derive hash functions. The resulting embed-
ding suffers from poor discrimination when
compact codes are used. In this paper, we
propose a novel data-dependent projection
learning method such that each hash func-
tion is designed to correct the errors made by
the previous one sequentially. The proposed
method easily adapts to both unsupervised
and semi-supervised scenarios and shows sig-
nificant performance gains over the state-of-
the-art methods on two large datasets con-
taining up to 1 million points.

1. Introduction

Nearest neighbor search is a fundamental step in many
machine learning algorithms that have been quite suc-
cessful in fields like computer vision and information
retrieval. Nowadays, datasets containing millions or
even billions of points are becoming quite common
with data dimensionality easily exceeding hundreds or
thousands. Thus, exhaustive linear search is infeasible
in such gigantic datasets. Moreover, storage of such
large datasets also causes an implementation bottle-
neck. Fortunately, in many applications, it is suffi-
cient to find Approximate Nearest Neighbors (ANNs)
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instead, which allows fast search in large databases.
Tree-based methods and hashing techniques are two
popular frameworks for ANN search. The tree-based
methods require large memory, and their efficiency re-
duces significantly when data dimension is high. On
the contrary, hashing approaches achieve fast query
time and need substantially reduced storage by index-
ing data with compact hash codes. Hence, in this work
we focus on hashing methods, particularly, those rep-
resenting each point as a binary code.

Binary hashing aims to map the original dataset X ∈
R

D×n containing n D-dimensional points to a Ham-
ming space such that near neighbors in the origi-
nal space have similar binary codes. To generate a
K-bit Hamming embedding Y ∈ B

K×n, K binary
hash functions are used. In this work, we focus on
linear projection-based hashing methods since they
are very simple and efficient. In linear projection-
based hashing, the kth hash function is defined as
hk(x) = sgn(f(w⊤

k x + bk)), where x is a data point,
wk is a projection vector and bk is a threshold. Since
h(x) ∈ {−1, 1}, the corresponding binary hash bit can
be simply expressed as: yk(x) = (1 + hk(x))/2.

Different choices ofw and f(·) lead to different hashing
approaches. For example, Locality Sensitive Hashing
(LSH) keeps f(·) to be an identity function and sam-
ples w randomly from a p-stable distribution, and b
from a uniform distribution (Datar et al., 2004). Shift-
Invariant Kernel-based Hashing (SIKH) samples w

similar to LSH but chooses f(·) to be a shifted co-
sine function (Raginsky & Lazebnik, 2009). Spectral
Hash (SH) uses similar f(·) as SIKH but w is chosen
to be a principal direction of data (Weiss et al., 2008).

Methods that use random projections, i.e, LSH and
SIKH, have interesting asymptotic theoretical proper-
ties and have been shown to work well with a large
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number of bits. But, for short codes, such data-
independent projections do not give good discrimina-
tion. Moreover, if long codes are used for creating hash
lookup tables, one needs to use many tables to get rea-
sonable recall since collision probability decreases ex-
ponentially as the code length increases. This makes
the search much slower and also leads to significant
increase in storage. To be able to deal with very large
datasets, ideally one would like to use codes that are
as compact as possible while keeping a desired accu-
racy level. For this, learning data-dependent projec-
tions is crucial, which is the focus of this work. SH
learns data-dependent directions via principal compo-
nent analysis and usually performs better than LSH
or SIKH for short codes. But its performance may de-
crease substantially when most of the data variance in
contained in top few principal directions, a common
characteristics of many real-world datasets.

In all of the above methods, each projection is learned
independently in the sense that the coding errors made
by any bit does not influence the learning of other
bits. To address this shortcoming, in this work we
propose to learn a series of data-dependent and bit-
correlated hash functions sequentially. Each new bit
is specifically designed to correct the errors made by
the previous bits, leading to powerful compact codes.

In this work, we use linear projection coupled with
mean thresholding as a hash function, i.e., hk(xi) =
sgn(w⊤

k xi + bk). Without loss of generality, let data
be normalized to have zero mean. Hence, bk = 0
for mean thresholding, and hk(xi) = sgn(w⊤

k xi). Let
H = [h1, . . . , hK ] be a sequence of hash functions and
W = [w1, . . . ,wK ] ∈ R

D×K be a set of vectors in R
D

where ‖wk‖
2 = 1 ∀k . Our method sequentially learns

wk’s and works under both unsupervised and semi-
supervised scenarios. In the semi-supervised case, one
is given a few labeled pairs indicating whether the
specified pair contains neighboring or non-neighboring
points. The sequential method maximizes the empiri-
cal accuracy on the labeled data while an information-
theoretic term acts as a regularizer to avoid overfit-
ting. In the unsupervised case, a set of pseudo-labels
are generated sequentially using the probable mistakes
made by the previous bit. Each new hash function tries
to minimize these errors subject to the same regular-
izer as in the semi-supervised case. We conduct exper-
iments on the MNIST dataset for the semi-supervised
case and SIFT-1-million dataset for the unsupervised
case. Both experiments show superior performance of
the proposed sequential learning method over the ex-
isting state-of-the-art approaches.

The remainder of this paper is organized as follows.

We first present sequential projection learning in semi-
supervised scenario in Section 2. We further extend
our approach to the unsupervised case in Section 3,
where the key idea is to generate pseudo-labels from
each hash bit. Section 4 gives the experimental results
including the comparison with several state-of-the-art
approaches. Concluding remarks are provided in Sec-
tion 5.

2. Semi-supervised Sequential Learning

For many real-world tasks, it is possible to obtain a
few data pairs in which points are known to be either
neighbors or non-neighbors. In some cases, labels for a
few points in the dataset are known and it is trivial to
generate such pairs from them. Suppose, one is given
a set of n points, X = [xi], i = 1 . . . n, where xi ∈
R

D and X ∈ R
D×n, in which a fraction of points are

associated with two categories of relationships, M and
C. Specifically, a pair of points (xi,xj) ∈ M is denoted
as neighbor-pair when points are either neighbors in a
metric space or share common class labels. Similarly, a
pair (xi,xj) ∈ C is called a non-neighbor-pair if points
are far away in a metric space or have different class
labels. Further, suppose there are l points, l < n,
each of which is associated with at least one of the
two categories M or C. The matrix formed by these l
columns of X is denoted as Xl ∈ R

D×l. The goal is to
learn hash functions that minimize the errors on the
labeled training data Xl.

2.1. Empirical Accuracy

The empirical accuracy for a family of hash functions
H is defined as the difference of the total number
of correctly classified pairs and the total number of
wrongly classified pairs by each bit:

J(H)=
∑

k







∑

(xi,xj)∈M

hk(xi)hk(xj)−
∑

(xi,xj)∈C

hk(xi)hk(xj)







. (1)

The above function is not differentiable since hk(xi) =
sgn(w⊤

k xi). Hence, we relax the objective function
J(H) by replacing the sgn(·) with its signed magnitude
and rewrite the objective as a function of W

J(W)=
∑

k







∑

(xi,xj)∈M

w⊤
k xix

⊤
j wk−

∑

(xi,xj)∈C

w⊤
k xix

⊤
j wk







. (2)

This relaxation is quite intuitive in the sense that it
not only desires similar/dissimilar points to have the
same/different signs but also large projection magni-
tudes. To simplify the above form, we define a label
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matrix S ∈ R
l×l which incorporates the pairwise rela-

tionship between points from Xl as:

Sij =







1 : (xi,xj) ∈ M
−1 : (xi,xj) ∈ C
0 : otherwise.

(3)

With this label matrix S, one can rewrite (2) as

J(W)=
1

2

∑

k

w⊤
k XlSX

⊤
l wk=

1

2
tr

{

W⊤XlSX
⊤
l W

}

. (4)

2.2. Information-Theoretic Regularizer

Maximizing empirical accuracy for just a few pairs
can lead to severe overfitting, as illustrated in Fig-
ure 1. Hence, we use a regularizer which utilizes both
labeled and unlabeled data. From the information-
theoretic point of view, one would like to maximize
the information provided by each bit (Baluja & Covell,
2008). Using maximum entropy principle, a binary
bit that gives balanced partitioning of X provides
maximum information. Thus, it is desired to have
∑n

i=1 hk(xi) = 0. However, finding mean-thresholded
hash functions that meet the balancing requirement
is an NP hard problem (Weiss et al., 2008). Instead,
we use this property to construct a regularizer for the
empirical accuracy given in (4). We now show that
maximum entropy partition is equivalent to maximiz-
ing the variance of a bit.

Proposition 2.1. [maximum variance condition] A
hash function with maximum entropy H(hk(x)) must
maximize the variance of the hash values, and vice-
versa, i.e.,

maxH(hk(x)) ⇐⇒ max var[h(x)]

Proof. Assume hk has a probability p of assigning the
hash value hk(x) = 1 to a data point and 1 − p for
hk(x) = −1. The entropy of hk(x) can be computed
as

H(hk(x)) = −p log2 p− (1− p) log2(1− p)

It is easy to show that the maximum entropy is
maxH(hk(x)) = 1 when the partition is balanced, i.e.,
p = 1/2. Now we show that balanced partitioning im-
plies maximum bit variance. The mean of hash value
is E[h(x)] = µ = 2p− 1 and the variance is:

var[hk(x)] = E[(hk(x)− µ)2]

= 4(1− p)2p+ 4p2(1− p) = 4p(1− p)

Clearly, var[h(x)] is concave with respect to p and its
maximum is reached at p = 1/2, i.e. balanced par-
titioning. Also, since var[h(x)] has a unique maxi-
mum, it is easy to see that the maximum variance

Neighbor pair Non-neighbor pair

Figure 1. An illustration of partitioning with maximum
empirical fitness and entropy. Both of the partitions sat-
isfy the given pairwise labels, while the right one is more
informative due to higher entropy.

partitioning also maximizes the entropy of the hash
function.

Using the above proposition, the regularizer term is
defined as,

R(W) =
∑

k

var[hk(x)] =
∑

k

var[sgn(w⊤
k x)] (5)

Maximizing the above function with respect to W is
still hard due to its non-differentiability. To overcome
this problem, we first show that the maximum vari-
ance of a hash function is lower-bounded by the scaled
variance of the projected data.

Proposition 2.2. [lower bound on maximum variance
of a hash function] The maximum variance of a hash
function is lower-bounded by the scaled variance of the
projected data, i.e.,

max var[hk(x)] ≥ α · var[w⊤
k x],

where α is a positive constant.

Proof. Suppose, ‖xi‖
2 ≤ β ∀i. Since ‖wk‖

2 = 1 ∀k,
from cauchy-schwarz inequality,

‖w⊤
k x‖

2 ≤ ‖wk‖
2 · ‖x‖2 ≤ β = β · ‖ sgn(w⊤

k x)‖
2

⇒ E
[

‖ sgn(w⊤
k x)‖

2
]

≥
1

β
E
[

‖w⊤
k x‖

2
]

⇒ max var[hk(x)] ≥
1

β
var[w⊤

k x]

Here, we have used the properties that the data is
zero-centered, i.e., E[w⊤

k x] = 0, and for maximum bit
variance E[sgn(w⊤

k x)] = 0.

Given the above proposition, we use the lower bound
on the maximum variance of a hash function as a reg-
ularizer, which is easy to optimize, i.e.,

R(W)=
1

β

∑

k

E[‖w⊤
k x‖

2]=
1

nβ

∑

k

w⊤
k XX⊤wk (6)
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2.3. Total Objective

The overall objection function combines the empirical
accuracy given in (4) and the regularizer (6) as,

J(W) ==
1

2

∑

k

w⊤
k XlSX

⊤
l wk +

η

2nβ

∑

k

w⊤
k XX⊤wk

Here η is the regularization coefficient. Absorbing con-
stants like n and β in η, one can write the overall ob-
jective function in a more compact matrix form as

J(W) =
1

2
tr

{

W⊤XlSX
⊤
l W

}

+
η

2
tr

[

W⊤XX⊤W
]

=
1

2
tr

{

W⊤
[

XlSX
⊤
l + ηXX⊤

]

W
}

. (7)

In summary, the above semi-supervised formulation
consists of two components. First, a supervised term
that measures the empirical accuracy of the learned
hash functions over the labeled pairs. Second, an un-
supervised term that acts as a regularizer and prefers
directions maximizing the variance of the projected
data.

The optimal solution Ŵ = argmaxW J(W) is ob-
tained by maximizing (7). This can be done easily
if additional orthogonality constraints are imposed on
W, i.e., W⊤W = I. Such constraints try to minimize
redundancy in bits by effectively decorrelating them.
In that case, the solution is simply given by top K
eigenvectors of the following matrix

M = XlSX
⊤
l + ηXX⊤, (8)

which can be obtained in a single shot without need-
ing any sequential optimization. Mathematically, it is
very similar to finding maximum variance direction us-
ing PCA except that the data covariance matrix gets
“adjusted” by another matrix arising from the labeled
data. Since it is essentially a PCA based hashing
method, in this work we refer to it as PCAH. Even
though computationally simple, the imposition of or-
thogonality constraints leads to a practical problem.
It is well known that for many real-world datasets,
most of the variance is contained in top few principal
directions. The orthogonality constraints force one to
progressively pick those directions that have low vari-
ance, thus, substantially reducing the quality of such
bits. A possible remedy is to relax the hard orthogo-
nality constraints by adding a soft penalty term which
penalizes non-orthogonal directions. The final solu-
tion can be achieved via single-shot adjustment over
the orthogonal ones, as discussed in our previous work
(Wang et al., 2010). However, the resulting solution
is sensitive to the choice of the penalty coefficient.
Moreover, such single-shot solution does not have the

Algorithm 1 Semi-supervised sequential projection
learning for hashing (S3PLH)

Input: data X, pairwise labeled data Xl, initial
pairwise labels S1, length of hash codes K, constant
α
for k = 1 to K do

Compute adjusted covariance matrix:
Mk = XlSkX

⊤
l + ηXX⊤

Extract the first eigenvector e of Mk and set:
wk = e

Update the labels from vector wk:

Sk+1 = Sk − αT
(

S̃k,Sk

)

Compute the residual:
X = X−wkw

⊤
k X

end for

sequential error correcting property where each hash
function tries to correct the errors made by the previ-
ous one. In the next section, we propose an alternative
solution to learn a sequence of projections, which can
be extended to unsupervised case also as shown later.

2.4. Sequential Projection Learning

The idea of sequential projection learning is quite intu-
itive. The hash functions are learned iteratively such
that in each iteration, the pairwise label matrix S in
(3) is updated by imposing higher weights on point
pairs violated by the previous hash function. This
sequential process implicitly creates dependency be-
tween bits and progressively minimizes empirical er-
ror. The sign of Sij , representing the logical relation-
ship in a point pair (xi,xj), remains unchanged in the
entire process and only its magnitude |Sij | is updated.
Algorithm 1 describes the proposed semi-supervised
sequential projection learning.

Here, S̃k ∈ R
l×l measures the signed magnitude of

pairwise relationships of the kth projections of Xl:

S̃k = X⊤
l wkw

⊤
k Xl (9)

Mathematically, S̃k is simply the derivative of empir-
ical accuracy of kth hash function, i.e., S̃k = ∇SJk,
where Jk = w⊤

k XlSX
⊤
l wk. The function T(·) derives

the truncated gradient of Jk:

T(S̃k
ij ,Sij)=

{

S̃k
ij : sgn(Sij · S̃

k
ij) < 0

0 : sgn(Sij · S̃
k
ij) ≥ 0

(10)

The condition sgn(Sij · S̃k
ij) < 0 for a pair (xi,xj)

indicates that hash bits hk(xi) and hk(xj) contradict
the given pairwise label. In other words, points in a
neighbor pair (xi,xi) ∈ M are assigned different bits
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Figure 2. Potential errors due to thresholding (red line) of
the projected data to generate a bit. Points in r

− and r
+,

are assigned different bits even though they are quite close.
Also, points in R

− (R+) and r
− (r+) are assigned the same

bit even though they are quite far.

or those in (xi,xi) ∈ C are assigned the same bit. For
each such violation, Sij is updated as Sij = Sij−αS̃k

ij .

The step size α is chosen such that α ≤ 1
β

where

β = maxi ‖xi‖
2, ensuring |αS̃k

ij | ≤ 1. This leads to
numerically stable updates without changing the sign
of Sij . Those pairs for which current hash function

produces the correct bits, i.e., sgn(Sij · S̃
k
ij) > 0, Sij

is kept unchanged by setting T(S̃k
ij ,Sij) = 0. Thus,

those labeled pairs for which the current hash func-
tion does not predict the bits correctly exert more in-
fluence on the learning of the next function, biasing the
new projection to produce correct bits for such pairs.
Intuitively, it has a flavor of boosting-based methods
commonly used for classification.

After extracting a projection direction using Mk, the
contribution of the subspace spanned by that direc-
tion is removed from X to minimize the redundancy
in bits. Note that this is not the same as imposing the
orthogonality constraints on W discussed in Section
2.3. Since the supervised term XlSkX

⊤
l still contains

information potentially from the whole space spanned
by original X, the new direction may still have a com-
ponent in the subspace spanned by the previous direc-
tions. Thus, the proposed formulation automatically
decides the level of desired correlations between suc-
cessive hash functions. If empirical accuracy is not
affected, it prefers to pick uncorrelated projections.
Thus, unlike the single-shot solution discussed earlier,
the proposed sequential method aggregates various de-
sirable properties in a single formulation leading to
superior performance on real-world tasks as shown in
Section 4. Next we show how one can adapt the se-
quential learning method to the unsupervised case.

3. Unsupervised Sequential Learning

Unlike the semi-supervised case, pairwise labels are
not available in the unsupervised case. To apply the
general framework of sequential projection learning to
an unsupervised setting, we propose the idea of gen-

Algorithm 2 Unsupervised sequential projection
learning for hashing (USPLH)

Input: data X, length of hashing codes K
Initialize X0

MC
= ∅,S0

MC
= 0.

for k = 1 to K do

Compute adjusted covariance matrix:

Mk =
k−1
∑

i=0

λk−iXi
MC

Si
MC

Xi
MC

⊤
+ ηXX⊤

Extract the first eigenvector e of Mk and set:
wk = e

Generate pseudo labels from projection wk:
Sample Xk

MC
and construct Sk

MC

Compute the residual:
X = X−wkw

⊤
k X

end for

erating pseudo labels at each iteration of learning. In
fact, while generating a bit via a binary hash function,
there are two types of boundary errors one encounters
due to thresholding of the projected data. Suppose
all the data points are projected on a one-dimensional
axis as shown in Figure 2, and the red vertical line is
the partition boundary, i.e. w⊤

k x = 0. The points left
to the boundary are assigned a hash value hk(x) = −1
and those on the right are assigned a value hk(x) = 1.
The regions marked as r−, r+ are located very close to
the boundary and regions R−, R+ are located far from
it. Due to thresholding, points in the pair (xi,xj),
where xi ∈ r− and xj ∈ r+, are assigned different hash
bits even though their projections are quite close. On
the other hand, points in pair (xi,xj), where xi ∈ r−

and xj ∈ R− or xi ∈ r+ and xi ∈ R+, are assigned the
same hash bit even though their projected values are
quite far apart. To correct these two types of bound-
ary “errors”, we first introduce a neighbor-pair set M
and a non-neighbor-pair set C:

M={(xi, xj)} : h(xi) · h(xj)=−1, |w⊤(xi−xj)| ≤ ǫ

C = {(xi, xj)} : h(xi) · h(xj) = 1, |w⊤(xi − xj)| ≥ ζ

Then, given the current hash function, a desired num-
ber of point pairs are sampled from both M and C.
Suppose, XMC contains all the points that are part
of at least one sampled pair. Using the labeled pairs
and XMC , a pairwise label matrix Sk

MC
is constructed

similar to Equation (3). In other words, for a pair
of samples (xi,xj) ∈ M, a pseudo label Sk

MC
= 1 is

assigned while for those (xi,xj) ∈ C, Sk
MC

= −1 is
assigned. In the next iteration, these pseudo labels
enforce point pair in M to be assigned the same hash
values and those in C different ones. Thus it sequen-
tially tries to correct the potential errors made by the
previous hash functions.
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Note that each hash function hk(·) produces a pseudo
label set Xk

MC
and the corresponding label matrix

Sk
MC

. The new label information is used to adjust
the data covariance matrix in each iteration of sequen-
tial learning, similar to that for the semi-supervised
case. However, the unsupervised setting does not have
a boosting-like update of the label matrix unlike the
semi-supervised case. Each iteration results in its own
label matrix depending on the hash function. Hence,
to learn a new projection, all the pairwise label matri-
ces since the beginning are used but their contribution
is decayed exponentially by a factor λ at each itera-
tion. Note that one does not need to store these ma-
trices explicitly since incremental update can be done
at each iteration resulting in the same memory and
time complexity as for the semi-supervised case. The
detailed learning procedure is described in Algorithm
2. Since there exist no pseudo labels at the beginning,
the first vector w1 is just the first principal direction
of the data. Then, each hash function is learned to
satisfy the pseudo labels iteratively by adjusting the
data covariance matrix, similar to S3PLH approach.

4. Experiments

To evaluate the performance of our sequential pro-
jection learning method for semi-supervised (S3PLH)
and unsupervised (USPLH) cases, we used two large
datasets: MNIST (70K points) and SIFT-1M (1 mil-
lion points). We compare against several state-of-the-
art hashing approaches, including LSH, SH, and SIKH.
In addition, the sequential learning results are con-
trasted with those from single-shot learning using ad-
justed data covariance (PCAH) as discussed in Section
2.3. From the supervised domain, we also compare
against two popular techniques i.e., Restricted Boltz-
man Machines (RBMs) (Hinton & Salakhutdinov,
2006; Torralba et al., 2008), and a boosting-style
method based on the standard LSH called Boosting
SSC (BSSC) (Shakhnarovich, 2005). In BSSC, pair-
wise labels are used to gradually tune thresholding for
binary partitioning and weights of each hash bit, re-
sulting in sequential error correcting properties.

To perform realtime search, we adopt two methods
commonly used in the literature: (i) Hamming ranking
- all the points in the database are ranked according
to their Hamming distance from the query and the de-
sired neighbors are returned from the top of the ranked
list, and (ii) Hash lookup - a lookup table is con-
structed using the database codes, and all the points in
the buckets that fall within a small Hamming radius of
the query are returned. The complexity of Hamming
ranking is linear even though it is very fast in prac-
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Figure 3. Results on MNIST dataset. a) MAP for different
number of bits using Hamming ranking; b) Precision within
Hamming radius 2 using hash lookup.

tice. On the other hand, the complexity of the hash
lookups is constant time. All the experiments were
conducted using relatively short codes of length up to
64 bits. We use several metrics to measure the quan-
titative performance of different methods. For Ham-
ming ranking based evaluation, Mean Average Preci-
sion (MAP) is computed which approximates the area
under precision-recall curve (Turpin & Scholer, 2006).
To get MAP, at first, precision is computed at each
location of the ranked list where the desired neighbors
lie and averaged over all such locations. Then, mean
of average precision for all the queries yields MAP.
Next, recall is computed for the different methods via
Hamming ranking by progressively scanning the en-
tire dataset. We also compute the precision within
top M neighbors returned from Hamming ranking. Fi-
nally, precision is computed for hash lookup. Similar
to (Weiss et al., 2008), a hamming radius of 2 is used
to retrieve the neighbors. If a query returns no neigh-
bors, it is treated as a failed query with zero precision.

4.1. MNIST Digit Data

We applied our semi-supervised sequential learning
method (S3PLH) on the MNIST dataset, which con-
sists of 70K handwritten digit samples 1. Each sample
is an image of size 28 × 28 pixels yielding a 784-dim
data vector. A class label (digit 0 ∼ 9) is associated
with each sample. Since this dataset is fully annotated,
the neighbor pairs can be obtained easily using the im-
age labels. The entire dataset is partitioned into two
parts: a training set with 69K samples and a test set
with 1K samples. In addition, the S3PLH, RBMs and
BSSC also use a small set of labeled training data while
learning the binary encoding. Therefore, we randomly
sample 1000 points from the training set to construct
neighbor and non-neighbor pairs. A neighbor pair con-
tains two samples that share the same digit label, and
vice-a-versa. RBMs train neural networks using the
labeled pairs for fine-tuning while SP3LH and PCAH
uses them to construct the pairwise label matrix S. Fi-

1http://yann.lecun.com/exdb/mnist/
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Figure 4. Computational costs of different techniques. (a)
Training time (sec in log 10 scale), (b) Test time (sec).

nally, BSSC uses the labeled pairs directly in a boost-
ing framework to learn the thresholds and weights for
each hash function.

Figure 3(a) shows MAP for various methods using dif-
ferent number of bits. As discussed in Section 2.3,
performance of the single-shot adjusted PCA (PCAH)
decreases for higher bits because the later bits are
computed using low-variance projections. SH also
uses PCA directions and suffers from the same prob-
lem. Even though RBMs performs better than other
techniques in semi-supervised setting, our sequential
method (S3PLH) provides the best MAP for all bits.
Figure 3(b) presents the precision using hash lookup
within Hamming radius 2 for different number of bits.
The precision for all the methods drops significantly
when longer codes are used. This is because, for longer
codes, the number of points falling in a bucket decrease
exponentially. Thus, many queries fail by not return-
ing any neighbor even in a Hamming ball of radius
2. This shows a practical problem with hash lookup
tables even though they have faster query response
than Hamming ranking. Even in this case, S3PLH
provides the best performance for most of the cases.
Also, the drop in precision for longer codes is much
less compared to others, indicating less failed queries
for S3PLH.

Figure 4 provides the training and test time for differ-
ent techniques. Clearly, RBMs is most expensive to
train, needing at least two orders of magnitude more
time than any other approach. LSH and SIKH need
least training time because their projection directions
and thresholds are randomly generated instead of be-
ing learned. PCAH and SH take similar training time.
Being a sequential method, S3PLH needs longer train-
ing time than PCAH/SH but is still fast in practice
needing just few hundred seconds for learning 64-bit
codes (slightly faster than BSSC in our experiments).
In terms of test time, RBMs is still most expensive be-
cause it computes the binary codes for a query using
multi-layer neural network. S3LPH along with PCAH,
LSH and BSSC are the four fastest techniques. SH and
SIKH require a little more time than these methods
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Figure 5. (a)-(b) Recall curves on MNIST dataset (a) with
24 bits, and (b) with 48 bits. (c)-(d) Precision of top M

returned neighbors (c) with 24 bits (d) with 48 bits.

due to the computation of nonlinear sinusoidal func-
tions to generate each bit.

Finally, the recall curves for different methods using
Hamming ranking are shown in Figure 5(a) for 24 bits
and Figure 5(b) for 48 bits. S3PLH gives the best
recall among all the methods. Moreover, for higher
bits, the recall of all other methods decreases except
that of S3PLH. Figure 5(c) and 5(d) show the quality
of the first M points retrieved using Hamming ranking
by computing the percentage of true neighbors out of
M points. M is varied from 50 to 1000 and precision is
computed for two different bit lengths as for the recall
curves. S3PLH gives the best precision for almost all
values of M , and the difference from other methods is
more pronounced at higher M ’s.

4.2. SIFT-1M Dataset

Next, we compare the performance of our unsuper-
vised sequential learning method (USPLH) with other
unsupervised methods on SIFT-1M dataset. It con-
tains 1 million local SIFT descriptors extracted from
random images (Lowe, 2004). Each point in the
dataset is a 128-dim vector representing histograms
of gradient orientations. We use 1 million samples for
training and additional 10K for testing. Euclidean
distance is used to determine the nearest neighbors.
Following the criterion used in (Weiss et al., 2008;
Wang et al., 2010), a returned point is considered a
true neighbor if it lies in the top 2 percentile points
closest to a query. Since no labels are available in this
experiment, PCAH has no adjustment term. It uses
just the data covariance to compute the required pro-
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Figure 6. Results on SIFT-1M dataset. a) MAP for differ-
ent number of bits using Hamming ranking; b) Precision
within Hamming radius 2 using hash lookup; Recall curves
(c) with 24 bits, and (d) with 48 bits.

jections. For USPLH, to learn each hash function se-
quentially, we select 2000 samples from each of the four
boundary and margin regions r−, r+, R−, R+. A label
matrix S is constructed by assigning pseudo-labels to
pairs generated from the samples as described in Sec-
tion 3.

Figure 6(a) shows MAP for different methods vary-
ing the number of bits. Methods that learn data-
dependent projections i.e., USPLH, SH and PCAH
perform generally much better than LSH and SIKH.
SH performs better than PCAH for longer codes since,
for this dataset, SH tends to pick the high-variance di-
rections again. USPLH yields the best MAP for all
bits. Figure 6(b) shows the precision curves for differ-
ent methods using hash lookup table. USPLH again
gives the best performance for most cases. Also, the
performance of USPLH does not drop as rapidly as SH
and PCAH with increase in bits. Thus, USPLH leads
to less query failures in comparison to other methods.
Figure 6(c) and 6(d) show the recall curves for dif-
ferent methods using 24-bit and 48-bit codes. Higher
precision and recall for USPLH indicate the advantage
of learning hash functions sequentially even with noisy
pseudo labels.

5. Conclusions

We have proposed a sequential projection learning
paradigm for robust hashing with compact codes.
Each new bit tends to minimize the errors made by
the previous bit. This results in learning correlated
hash functions. When applied in a semi-supervised

setting, it tries to maximize empirical accuracy over
the labeled data while regularizing the solution using
an information-theoretic term. Further, in an unsuper-
vised setting, we show how one can generate pseudo
labels using the potential errors made by the current
bit. The final algorithm in both settings is very sim-
ple, mainly requiring a few matrix multiplications fol-
lowed by extraction of top eigenvector. Experiments
on two large datasets clearly demonstrate the per-
formance gain over several state-of-the-art methods.
In the future, we would like to investigate theoretical
properties of the codes learned by sequential methods.
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