
The Margin Perceptron with Unlearning

Constantinos Panagiotakopoulos costapan@eng.auth.gr

Petroula Tsampouka petroula@gen.auth.gr

Physics Division, School of Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

We introduce into the classical Perceptron
algorithm with margin a mechanism of un-
learning which in the course of the regu-
lar update allows for a reduction of possi-
ble contributions from “very well classified”
patterns to the weight vector. The resulting
incremental classification algorithm, called
Margin Perceptron with Unlearning (MPU),
provably converges in a finite number of up-
dates to any desirable chosen before running
approximation of either the maximal margin
or the optimal 1-norm soft margin solution.
Moreover, an experimental comparative eval-
uation involving representative linear Sup-
port Vector Machines reveals that the MPU
algorithm is very competitive.

1. Introduction

Support Vector Machines (SVMs) (Boser et al., 1992;
Vapnik, 1998; Cristianini & Shawe-Taylor, 2000) have
been extensively used as linear classifiers either in the
space where the patterns originally reside or in high
dimensional feature spaces induced by kernels. SVMs
appear to be very successful at addressing the prob-
lem of minimising an objective function involving the
empirical risk while at the same time keeping low the
complexity of the classifier. As measures of the em-
pirical risk various quantities have been proposed with
the 1- and 2-norm loss functions being the most widely
accepted ones giving rise to the optimisation problems
known as L1- and L2-SVMs (Cortes & Vapnik, 1995).
In the case that the 2-norm loss function takes the
place of the empirical risk an equivalent formulation
exists which renders the dataset linearly separable in
a high dimensional feature space. Therefore, one can
either solve the general optimisation problem consist-
ing of two terms, namely the capacity term and the
2-norm loss or just attempt to minimise the capacity

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

term in the high dimensional space as long as it en-
sures zero loss for the patterns mapped in that space.
In the second treatment minimisation of the capac-
ity term coincides with maximisation of the margin.
SVMs traditionally follow the second approach.

On the other hand solving the maximum margin prob-
lem has also been the goal of various Perceptron-like al-
gorithms (Li & Long, 2002; Gentile, 2001; Tsampouka
& Shawe-Taylor, 2007). The key characteristic of such
algorithms is that they work in the primal space in an
online manner, i.e. processing one example at a time.
Cycling repeatedly through the patterns they update
their internal state stored in the weight vector each
time a misclassification condition is satisfied by a pat-
tern. More specifically, the Perceptron-like algorithms
mentioned above are able to attain any approximation
of the maximum margin, thereby producing infinitely
close approximations of the L2-SVM solution. On the
contrary, the classical Perceptron algorithm with mar-
gin (Duda & Hart, 1973) provably achieves only up
to 1/2 of the maximum margin (Krauth & Mézard,
1987). The weight vector of the Perceptron algorithm
(Rosenblatt, 1958) is built progressively by adding to
it the patterns found misclassified multiplied by the
corresponding labels. This procedure is characterised
as learning. However, by introducing in the present
work what we call unlearning, a mechanism allowing
for a reduction or even elimination of the contribution
that some patterns have to the solution weight vector
when they are “very well classified”, we find that the
Perceptron’s inability to provably achieve maximum
margin is miraculously remedied. The possibility that
the contribution of a given pattern to the current so-
lution may increase or decrease with running time is
very common to SVM algorithms although the pro-
cedure by which this is achieved does not tempt one
to pay particular attention to a clear-cut distinction
between learning and unlearning.

Since the L1-SVM problem is not known to admit
an equivalent maximum margin interpretation via a
mapping to an appropriate space Perceptron-like al-
gorithms appeared so far unable to deal with such a
task. In early attempts (Guyon & Stork, 1999) at ad-



The Margin Perceptron with Unlearning

dressing the L1-SVM problem with a Perceptron an
upper bound was set on the number of updates asso-
ciated with any pattern before that pattern ended up
being ignored in the process, thereby establishing ar-
tificially linear separability. The defect of the method
was the impossibility for the patterns ignored to reen-
ter the process rendering the effect of any early up-
dates performed towards wrong directions totally ir-
reversible. As a consequence, the outcome lacked the
uniqueness dictated by optimisation theory since it de-
pended heavily on the sequence according to which the
patterns were presented to the algorithm. Here, we
follow a procedure which does not suffer from the pre-
vious restrictions and through which the Perceptron is
able in a finite number of steps to achieve any desir-
able fixed before running approximation of the optimal
solution. Again, the mechanism of unlearning may be
identified as the decisive factor in phasing out the mis-
leading effect that some patterns have, mostly during
early stages of the algorithm.

The decision of whether the contribution of a pattern
to the weight vector should be reduced concerns only
the pattern that is currently presented to the algo-
rithm. Consequently, the mechanism of unlearning
becomes vacuous if our algorithm is implemented in
a strictly online setting in which all examples are con-
sidered to be distinct. This reveals an important dif-
ference from the Budget Perceptron (Crammer et al.,
2003), an online algorithm featuring a removal of past
examples from the expression of the weight vector
which, however, only takes place whenever the pat-
tern currently presented to the algorithm is inserted.
Furthermore, in a batch setting we aim at convergence
to the known SVM solution.

The paper is organised as follows. Section 2 describes
the algorithm. Section 3 is devoted to a theoretical
analysis. In Section 4 we give details concerning the
implementation of our algorithm while in Section 5
we deliver our experimental results. Finally, Section 6
contains our conclusions.

2. The Margin Perceptron Algorithm

with Unlearning

Given a training set which may be already mapped
into a feature space of higher dimensionality we place
all patterns in the same position at a distance ρ in an
additional dimension, thereby constructing an embed-
ding of our data into the so-called augmented space
(Duda & Hart, 1973). The advantage of this embed-
ding is that the linear hypothesis in the augmented
space becomes homogeneous. Throughout our discus-
sion we assume that the augmented patterns are mul-

tiplied by the corresponding labels in order to allow
for a uniform treatment of both categories of patterns.
Also, R ≡ max

k
‖yk‖ with yk the k-th augmented pat-

tern multiplied by its label.

First we assume that the training set is linearly sepa-
rable in the appropriate feature space. The relation
characterising optimally correct classification of the
training patterns by a weight vector u of unit norm
in the augmented space is

u · yk ≥ γd ≡ max
u

′ :

∥

∥u
′

∥

∥ = 1

min
i
{u′ · yi} ∀k. (1)

Here γd is the maximum margin in the augmented
space with respect to hyperplanes passing through the
origin which should be distinguished from the maxi-
mum geometric margin γ in the non-augmented fea-
ture space.

The Margin Perceptron with Unlearning (MPU) at its
t-th step maintains two vectors. The first is the usual
augmented weight vector at in the primal representa-
tion having the dimensionality M of the feature space.
The second is a vector of non-negative integer-valued
components It

k and dimensionality equal to the num-
ber N of patterns which keeps track of the update
history of the algorithm. Both are initially set to zero,
i.e. a0 = 0 and I0

k = 0 ∀k, and are updated according
to the rule

at+1 = at + ηtyk

It+1
k = It

k + ηt
(2)

each time the training pattern yk presented to the al-
gorithm satisfies either one of the conditions appearing
in the following definition of ηt

ηt =

{

+1, if at · yk ≤ b
−1, if at · yk ≥ b + δb and It

k > 0.
(3)

Here b and δb are positive constants. We shall refer to
an update with ηt = +1 as a learning update (step)
whereas to an update with ηt = −1 as an unlearn-
ing update (step). Thus, the variable It

k is equal to
the difference between the number of learning and un-
learning steps associated with the k-th pattern. The
total number of learning or unlearning steps will be
denoted as t+ or t−, respectively. Obviously, the total
number of updates t is

t = t+ + t− (4)

and
∑

k

It
k =

t−1
∑

τ=0

ητ = t+ − t−. (5)



The Margin Perceptron with Unlearning

Algorithm 1 The Margin Perceptron with Unlearning

Input: A dataset S = (y1, . . . , yk, . . . , yN ) with yk

the k-th augmented pattern multiplied by its label
Define: R ≡ max

k
‖yk‖

Require: I, b > 0, δb > R2

Initialise: t = 0, a0 = 0, I0
k = 0 ∀k

repeat

for k = 1 to N do

ptk = at · yk

if (ptk ≤ b and It
k < I) then

at+1 = at + yk

It+1
k = It

k + 1
t← t + 1

else if It
k = 0 then

continue

else if ptk ≥ b + δb then

at+1 = at − yk

It+1
k = It

k − 1
t← t + 1

end if

end for

until no update made within the for loop

It should be clear that with the variables It
k produced

by the algorithm as described above the weight vector
admits the so-called dual representation

at =
∑

k

It
kyk (6)

as a linear combination with positive coefficients of
the training patterns. Consequently, the It

k’s play the
role of the dual variables. A learning step takes place
whenever the pattern yk satisfies the misclassification
condition at · yk ≤ b meaning that yk is either a clas-
sification or a margin error. We shall refer to such a
pattern as misclassified. Instead, an unlearning step
takes place whenever the pattern yk is “very well clas-
sified”, i.e. at · yk ≥ b + δb, and provided this pattern
does have a non-vanishing contribution to the dual rep-
resentation (6) of the current weight vector. Thus, a
prerequisite for unlearning is that learning has pre-
viously taken place involving the pattern in question.
Moreover, unlearning may be regarded as a mechanism
preventing the dual representation (6) from expanding
unnecessarily. Notice, that due to the “discrete” na-
ture of the update rule the dual variables It

k remain
naturally non-negative without having to be clipped
as in the case of SVMs.

An important feature of the algorithm is the existence
of the gap δb between the threshold b of the misclassi-
fication condition at ·yk ≤ b and the threshold b+δb of
the condition at ·yk ≥ b+δb for exceedingly good clas-

sification. Actually, it is not very difficult to see that
such a gap should necessarily satisfy the constraint

δb > R2 (7)

in order for the algorithm to have a chance of con-
verging in a finite number of steps. Indeed, let us as-
sume that the pattern yk presented to the algorithm
satisfies at · yk = b. Then, a learning update takes
place as a result of which the weight vector becomes
at+1 = at + yk. Now, consider a situation in which
the same pattern is presented once again to the algo-
rithm without another update having intervened. We
have at+1 · yk = b + ‖yk‖

2
and It+1

k > 0. Therefore,

if δb ≤ ‖yk‖
2

an unlearning step will take place which
will exactly cancel the effect of the learning step. This
procedure may be repeated again and again leading to
a closed loop. If, instead, δb > ‖yk‖

2 ∀k, i.e. δb > R2

such unwanted situations are naturally avoided. The
same condition also ensures that

t+ > t−, if t > 0.

Obviously, one step before we arrive at the situation
where the number of learning steps equals the num-
ber of unlearning steps we should have t+ = t− + 1
meaning that all dual variables vanish except for one
which takes the value 1. So, let us assume that this
happens at the t-th step of the algorithm and that the
only non-vanishing dual variable is associated with the
k-th pattern, i.e. It

k = 1 holds. Then, at = yk from

where at · yk = ‖yk‖
2

< δb < b + δb forbidding the
unlearning step that would lead to equality between
learnings and unlearnings.

In the case that the assumption of linear separability
in the feature space is relaxed we impose the further
condition that a learning update is allowed provided
that the dual variable It

k associated with the misclas-
sified pattern yk satisfies the constraint It

k < I, where
I is a positive integer. In such a case the update rule
(2) remains the same but ηt is now defined by

ηt =

{

+1, if at · yk ≤ b and It
k < I

−1, if at · yk ≥ b + δb and It
k > 0.

(8)

Notice that again as a result of the “discrete” nature
of the update rule the dual variables satisfy naturally
the condition

0 ≤ It
k ≤ I ∀k (9)

without any need for clipping. Setting I = ∞ in (8)
we recover (3).

Finally, in the case that the mapping into the feature
space is induced by a kernel and a primal representa-
tion of at is unavailable it suffices to update the dual
variables It

k according to (2) and perform the inner
products using the dual representation (6) of at.



The Margin Perceptron with Unlearning

3. Theoretical Analysis

We first consider a linearly separable training set pos-
sessing maximum margin γd in the augmented space
with respect to hyperplanes passing through the origin.

Theorem 1 The Margin Perceptron with Unlearning

and I =∞ converges in a finite number tc of updates

satisfying the bound

tc ≤
R2 + 2b

γ2
d

(

1 +
R2 + 2b

4(δb−R2)

)

. (10)

Moreover, the zero-threshold solution hyperplane pos-

sesses margin γ′
d which is a fraction f of the maximum

margin γd obeying the inequality

f ≡ γ′
d/γd >

(

1 + min{δb, b + R2}/b
)−1

. (11)

Finally, an after-running lower bound on f involving

the margin γ′
d achieved, the length ‖atc‖ of the solution

weight vector atc and the final difference between the

number of learning and unlearning steps (t+c − t−c ) is

given by

f = γ′
d/γd ≥ γ′

d(t+c − t−c )/‖atc‖. (12)

Proof Taking the inner product with the optimal di-
rection u in (6) and using (1) and (5) we obtain

‖at‖ ≥ at·u =
∑

k

It
k(yk·u) ≥ γd

∑

k

It
k = γd(t+−t−).

(13)
From the update rule (2) taking into account the con-
ditions under which the update takes place and the
definition of ηt we get

‖at+1‖
2 − ‖at‖

2 = ‖yk‖
2 + 2ηtat · yk

≤ R2 + 2ηtb− δb(1− ηt)

a repeated application of which, using also (4) and (5)
and the initial condition a0 = 0, gives

‖at‖
2
≤ R2t + 2b

t−1
∑

τ=0

ητ − δb

(

t−

t−1
∑

τ=0

ητ

)

= R2t + 2b(t+ − t−)− δb(t− (t+ − t−))

= (R2 + 2b)(t+ − t−)− 2(δb−R2)t−. (14)

Combining (13) and (14) we obtain a Novikoff-like
(Novikoff, 1962) squeezing relation

γ2
d(t+−t−)2 ≤ ‖at‖

2
≤ (R2+2b)(t+−t−)−2(δb−R2)t−.

(15)
From (15) we get

2(δb−R2)t−≤ (R2 + 2b)(t+ − t−)− γ2
d(t+ − t−)2

≤ (R2 + 2b)2/4γ2
d

by making use of the fact that the quantity (R2 +
2b)(t+− t−)− γ2

d(t+ − t−)2 acquires a maximum with
respect to (t+ − t−) for (t+ − t−) = (R2 + 2b)/2γ2

d.
Then, taking into account (7) we immediately obtain

t− ≤
(R2 + 2b)2

8γ2
d(δb−R2)

. (16)

Again from (15) by dropping the last term in the upper

bound on ‖at‖
2

we have γ2
d(t+−t−)2 ≤ (R2+2b)(t+−

t−) or
t+ − t− ≤ (R2 + 2b)/γ2

d. (17)

Combining (16) and (17) we obtain the upper bound
on the number t of updates given by the r.h.s. of (10).

Upon convergence of the algorithm in tc updates it is
obvious that all the patterns yk which have a non-
vanishing contribution to the expansion (6) of the so-
lution weight vector atc necessarily have their inner
product with atc in the interval (b, b + δb), i.e.

b < atc · yk < b + δb , if Itc
k > 0. (18)

From (6) with t = tc we get

‖atc‖
2

= atc ·

(

∑

k

Itc
k yk

)

=
∑

k

Itc
k atc · yk

or, taking into account (5) and (18),

b(t+c − t−c ) < ‖atc‖
2

< (b + δb)(t+c − t−c ). (19)

Since upon convergence all patterns violate the mis-
classification condition we have atc · yk > b ∀k
or equivalently utc · yk > b/ ‖atc‖ ∀k with utc ≡
atc/ ‖atc‖. Stated differently, the margin achieved sat-
isfies γ′

d = min
k
{utc

· yk} > b/‖atc‖. Additionally,

from (13)
1/γd ≥ (t+c − t−c )/‖atc‖. (20)

Thus, we obtain

f = γ′
d/γd > (b/‖atc‖)/γd ≥ b(t+c − t−c )/‖atc‖

2
.
(21)

If we now make use in (21) of the upper bound on

‖atc‖
2 from (19) we get f > (1 + δb/b)−1. If, instead,

we employ (15) to obtain the bound ‖atc‖
2
≤ (R2 +

2b)(t+c − t−c ) we get f >
(

2 + R2/b
)−1

. The above
lower bounds on f written compactly lead to (11).

Finally, (12) follows readily from (20).

Remark 1 From (11) it becomes apparent that as
b → ∞ with δb kept fixed the MPU algorithm with
I =∞ is guaranteed before running to converge to the
maximum margin solution, i.e. γ′

d → γd. If, instead,
we first take the limit δb→∞ (thereby recovering the
classical Perceptron with margin) and then the limit
b→∞ we get γ′

d > γd/2.



The Margin Perceptron with Unlearning

Remark 2 The lower bound on ‖atc‖
2

from (15) with
the upper bound from (19) lead to t+c − t−c < (b +

δb)/γ2
d. Also, from γd ≥ γ′

d > b/‖atc‖ we get ‖atc‖
2

>

b2/γ2
d which combined with the upper bound on ‖atc‖

2

from (19) leads to t+c − t−c > b2(b + δb)−1γ−2
d . Thus,

upon convergence of the MPU algorithm it holds that

(1 + δb/b)−1bγ−2
d < t+c − t−c < (1 + δb/b)bγ−2

d

meaning that t+c − t−c is strongly constrained. More-
over, (t+c − t−c )/b→ γ−2

d as b→∞. This is the analog
of the well-known result

∑

k α?
k = γ−2 for the hard

margin SVM with α?
k being the optimal dual variables.

Remark 3 As we already pointed out the MPU algo-
rithm in a strictly online setting reduces to the classical
Perceptron with margin. Nevertheless, our derivation
of the upper bound on the number of updates given by
the r.h.s. of (10) does hold in the context of any related
strictly online scenario, e.g. a variation of the variable-
size cache Budget Perceptron, in the t-th step of which
the insertion (ηt = +1) or the removal (ηt = −1) of the
pattern yk is performed according to the rule (2) under
the conditions stated in (3) (with It

k ∈ {0, 1}). Crucial
in this respect is the validity of δb > R2. The r.h.s.
of (17) was shown in (Crammer et al., 2003) to be an
upper bound on the variable cache size of the Budget
Perceptron but no mistake bound was obtained.

Now we relax the assumption of linear separability of
the training set in the feature space and we move on
to the analysis of the MPU algorithm with I <∞.

Theorem 2 The Margin Perceptron with Unlearning

converges in a finite number tc of updates satisfying

the bound

tc ≤ NI
2b + δb

δb−R2
. (22)

Let us consider the “objective” function

J (w, Cp) ≡
1

2
‖w‖

2
+ Cp

∑

k

max{1−w · yk, 0},

where Cp > 0 is a “penalty” parameter and

Jopt(Cp) ≡ min
w

J (w, Cp)

its minimal value with Cp fixed. Then, with atc being

the solution weight vector and provided b > δb

δJ

Jopt

≡
J (atc/b, I/b)− Jopt(I/b)

Jopt(I/b)
< δ ≡

2δb/b

1− δb/b
.

(23)
Moreover, δJ

Jopt
satisfies the after-running bound

δJ

Jopt

≤ δaft ≡

1
2
‖atc‖

2
+ I

∑

k

max{b− atc · yk, 0}

b(t+c − t−c )− 1
2
‖atc‖

2
−1.

(24)

Proof From (5) and the restriction It
k ≤ I we have

t+ − t− =
∑

k

It
k ≤ NI. (25)

Also, from (14) and taking into account (25) we get

2(δb−R2)t− ≤ (R2 + 2b)(t+ − t−) ≤ NI(R2 + 2b)

or

t− ≤ NI
R2 + 2b

2(δb−R2)

which combined with (25) leads to the upper bound
on the number t of updates given by the r.h.s. of (22).

Let us assume that the algorithm has converged in tc
updates to the solution weight vector atc . We define

wc =
atc

b
, αc

k =
Itc
k

b
(0 ≤ αc

k ≤
I

b
), ε =

δb

b
< 1

and notice that only the αc
k’s with k from the sets

K1 = {k : αc
k > 0, 1 < wc · yk < 1 + ε}

K2 = {k : αc
k = I/b, wc · yk ≤ 1} (26)

are non-zero and consequently

wc =
∑

k

αc
kyk =

∑

k∈K1

αc
kyk +

∑

k∈K2

αc
kyk.

Then,

‖wc‖
2

= wc ·

(

∑

k

αc
kyk

)

=
∑

k

αc
kwc · yk

=
∑

k∈K1

αc
kwc · yk +

∑

k∈K2

αc
kwc · yk

< (1 + ε)
∑

k∈K1

αc
k +

∑

k∈K2

αc
k −

∑

k∈K2

αc
k +

∑

k∈K2

αc
kwc · yk

< (1 + ε)

(

∑

k∈K1

αc
k +

∑

k∈K2

αc
k

)

−
∑

k∈K2

αc
k (1−wc · yk)

= (1 + ε)
∑

k

αc
k −

I

b

∑

k

max {1−wc · yk, 0} . (27)

Now, taking into account (27) we have

J (wc, I/b)= ‖wc‖
2
−

1

2
‖wc‖

2

+
I

b

∑

k

max {1−wc · yk, 0}

= ‖wc‖
2
−

1

2

∑

i,j

αc
iα

c
jyi · yj

+
I

b

∑

k

max {1−wc · yk, 0}

< (1 + ε)
∑

k

αc
k −

1

2

∑

i,j

αc
iα

c
jyi · yj .

(28)



The Margin Perceptron with Unlearning

From the weak duality theorem it follows that

J (w, Cp) ≥ L(α) =
∑

k

αk −
1

2

∑

i,j

αiαjyi · yj ,

where L(α) is the dual Lagrangian and 0 ≤ αk ≤ Cp.
Thus, setting Cp = I/b and αk = αc

k we get

J (wc, I/b) ≥ Jopt(I/b) ≥
∑

k

αc
k −

1

2

∑

i,j

αc
iα

c
jyi · yj .

(29)
Combining (28) with (29) we obtain

J (wc, I/b)− Jopt(I/b) < ε
∑

k

αc
k. (30)

Moreover, taking into account (27) we get

∑

k

αc
k −

1

2

∑

i,j

αc
iα

c
jyi · yj =

∑

k

αc
k −

1

2
‖wc‖

2

>
∑

k

αc
k −

1

2
(1 + ε)

∑

k

αc
k =

1

2
(1− ε)

∑

k

αc
k

which combined with (29) leads to

Jopt(I/b) >
1

2
(1− ε)

∑

k

αc
k. (31)

From (30) and (31) we immediately obtain (23).

Finally, using
∑

k αc
k =

∑

k Itc
k /b = (t+c − t−c )/b, the

definition of J and the lower bound on Jopt from (29)
we easily derive (24).

Remark 4 From the before-running “accuracy” δ of
(23) it follows that as b grows with δb kept fixed the
MPU algorithm is guaranteed to converge to solu-
tions for which the objective function J (atc/b, I/b)
approaches as close as one wishes the optimal one
Jopt(Cp) with Cp = I/b. Thus, if we allow only b
to grow while keeping δb and I fixed we will asymp-
totically approach an optimal objective with vanish-
ing penalty parameter Cp. If, instead, our goal is to
approach the optimal objective Jopt(Cp) with a given
value of Cp we should follow a limiting process in which
both I and b increase with their ratio kept all the way
equal to the desirable value of Cp. A simple way of do-
ing so is to choose first a sufficiently large value for the
integer I and then determine b from the relation b =
I/Cp with the value of δb kept fixed. To select the ap-
propriate value of I which ensures before running the
desired accuracy δ we should, of course, express δ in

terms of I and Cp as δ = 2CpδbI−1
(

1− CpδbI−1
)−1

from where I = [Cpδb(2 + δ)δ−1] + 1 (with [x] the in-
teger part of x ≥ 0). We conclude that the size of
the upper bound I on the dual variables in the MPU
algorithm does not depend on the penalty parameter
Cp alone but on the required accuracy δ as well.

4. Implementation

To reduce the computational cost we construct a two-
member sequence of reduced “active sets” of data
points with the second being a subset of the first.
As we cycle once through the full dataset the largest
active set (first-level active set) is formed from the
points of the full dataset either satisfying the condi-
tion at · yk ≤ c̄b with c̄ ≥ 1 or having It

k > 0. The
second-level active set is built as we cycle once through
the first-level active set and comprises the points yk

for which It
k undergoes a change and remains positive.

Of course, as we cycle through the full dataset or the
first-level active set along with the selection of points
which form the first-level or the second-level active
set we do perform updates whenever a point satisfies
the conditions either for learning or unlearning. The
second-level active set is presented repetitively to the
algorithm for Nep2

mini-epochs. Then, the first-level
active set becomes the set under consideration which
is presented once again to the algorithm. During each
round involving the first-level set, a new second-level
set is constructed and a new cycle of Nep2

passes be-
gins. By invoking the first-level set for the (Nep1

+1)th

time we trigger the loading of the full dataset and the
procedure starts all over again until no update occurs
as we run over the full dataset. It is understood, of
course, that the maximum number of rounds Nep1

and
Nep2

for each active set is not exhausted in the case
that no update occurs during a round. Finally, follow-
ing a common practice every time we make use of the
full dataset we actually employ a permuted instance of
it since presenting the points to the algorithm in a dif-
ferent order helps avoiding the disorientation caused
by spurious patterns in the sequence of examples. Ev-
idently, the whole procedure amounts to a different
way of sequentially presenting the patterns to the al-
gorithm and does not affect the validity of our analysis.

An additional mechanism providing a very substan-
tial improvement of the computational efficiency is the
one of performing multiple updates once a data point
is presented to the algorithm1. It is understood, of
course, that in order for a multiple update to be com-
patible with our theoretical analysis it should be equiv-
alent to a certain number of updates occuring as a re-
sult of repeatedly presenting to the algorithm the point
in question. In the case of learning we are allowed to
perform min{λ, I − It

k} learning updates at once with

λ = [(b−at · yk) ‖yk‖
−2] + 1. Indeed, for any positive

integer n < min{λ, I − It
k} ≤ λ and at+n = at + nyk

it holds that at+n · yk = at · yk + n ‖yk‖
2
≤ at · yk +

1The MPU with multiple updates bears some resem-
blance to the algorithm of (Hsieh et al., 2008).



The Margin Perceptron with Unlearning

Table 1. Results of a high accuracy comparative study of the MPU, DCD, SVMperf and Pegasos algorithms.

data MPU DCD SVMperf Pegasos
set J Secs ε J Secs ε J Secs iter J Secs

Adult 11434.4 0.4 0.06 11434.4 0.3 0.004 11434.4 9.3 3× 107 11434.9 397.0
Web 6605.17 0.1 0.07 6605.15 0.1 0.001 6605.22 11.1 2× 107 6605.31 199.7

Physics 49643.6 0.4 0.05 49642.6 2.0 0.02 49644.1 2.2 5× 105 49644.2 13.3
Real-sim 5402.25 0.5 0.01 5402.22 0.4 0.001 5402.58 6.1 2× 107 5402.53 395.3
News20 2562.57 4.9 0.003 2562.57 4.2 0.001 2562.71 659.6 1× 107 2562.69 1673.0

Webspam 69592.1 3.1 0.07 69591.4 2.8 0.001 69592.9 10.3 9× 106 69599.6 297.7
Covertype 340490 22.2 0.08 340491 46.6 0.008 340493 505.4 1× 108 340505 2447.9

C11 44725.4 5.7 0.02 44725.3 5.1 0.001 44730.5 29.2 1× 108 44730.3 2743.6
CCAT 92990.2 8.1 0.02 92989.3 7.9 0.001 92992.8 54.3 1× 108 93000.5 3103.6

(λ−1) ‖yk‖
2
≤ at ·yk +(b−at ·yk) ‖yk‖

−2
‖yk‖

2
= b

meaning that after n consecutive updates the pattern
yk is still misclassified with It+n

k = It
k + n < I and

consequently one more learning update involving that
pattern could legitimately take place. Similarly, in the
case of unlearning we can show that we are allowed to
perform min{λ, It

k} unlearning updates at once with

λ = [(at · yk − (b + δb)) ‖yk‖
−2

] + 1. Obviously, the
gain from the mechanism of multiple updates lies in
the fact that at the expense of a single inner product
calculation we effectively perform numerous updates.

Finally, we point out that we may terminate the MPU
algorithm with I < ∞ before it converges when the
after-running accuracy δaft entering (24) (with atc and
(t+c − t+c ) now being the final weight vector and the
final value of (t+− t−), respectively) falls below a cer-
tain desirable level δstop at the end of a complete cycle
through the full dataset. Notice, that the derivation of
(24) relies only on the validity of (5) and (9) which are
always respected by the algorithm. Moreover, if the
guaranteed before-running accuracy δ of (23) is equal
or smaller than δstop it is obvious that, despite the
early stopping, the algorithm will necessarily achieve
the required accuracy δstop in at most the number of
updates given by the r.h.s. of (22). Similarly, if I =∞
we may terminate the MPU algorithm when the lower
bound of (12) on f falls below the r.h.s. of (11).

5. Experiments

We concentrate on the more popular L1-SVM prob-
lem and compare the MPU algorithm with SVMs on
the basis of their ability to arrive fast at a certain
approximation of the optimal 1-norm soft margin so-
lution. Moreover, in order to be able to train on rather
large datasets we choose as feature space the initial in-
stance space. Recently, a lot of effort has been devoted
to developing algorithms which are able to train fast

on large datasets provided linear kernels are employed.
Among such algorithms we choose for our experiments
the Dual Coordinate Descent (DCD) algorithm (Hsieh
et al., 2008), SVMperf (Joachims, 2006), the first
cutting-plane algorithm for training linear SVMs and
Pegasos (Shalev-Schwartz et al., 2007), a stochastic
gradient descent algorithm. The source for DCD (ver-
sion 1.5) is available at http://www.csie.ntu.edu.

tw/∼cjlin/liblinear, for SVMperf (version 2.50) at
http://smvlight.joachims.org and for Pegasos at
http://ttic.uchicago.edu/∼shai/code.

The datasets we used for training are the binary
Adult (N=32561, M=123) and Web (N=49749,
M=300) UCI datasets as compiled by Platt,
the training set of the KDD04 Physics dataset
(N=50000, M=70 after removing the 8 columns
containing missing features) obtainable from http:

//kodiak.cs.cornell.edu/kddcup/datasets.html,
the Real-sim (N=72309, M=20958), News20
(N=19996, M=1355191) and Webspam (unigram
treatment with N=350000 and M=254) datasets
all available at http://www.csie.ntu.edu.tw/
∼cjlin/libsvmtools/datasets, the multiclass
Covertype (N=581012, M=54) UCI dataset and the
full Reuters RCV1 dataset (N=804414, M=47236)
obtainable from http://www.jmlr.org/papers/

volume5/lewis04a/lyrl2004 rcv1v2 README.htm.
In the case of the Covertype dataset we study the
binary classification problem of the first class versus
rest while for the RCV1 we consider both the binary
text classification tasks of the C11 and CCAT classes
versus rest. The Physics and Covertype datasets
were rescaled by multiplying all the features with
0.001. The experiments were conducted on a 2.5 GHz
Intel Core 2 Duo processor with 3 GB RAM running
Windows Vista. Our codes written in C++ were
compiled using the g++ compiler under Cygwin.

In our experiments we chose Cp = 1. Also, we did



The Margin Perceptron with Unlearning

Table 2. Results of a low (1%) accuracy comparative study
of the MPU, DCD, SVMperf and Pegasos algorithms. We
report training times in secs keeping the dataset ordering
of Table 1.

MPU 0.1 0.1 0.1 0.3 1.6 1.2 6.2 3.1 3.7
DCD 0.2 0.1 0.1 0.2 0.6 1.4 9.1 3.5 3.6

SVMperf 1.5 0.3 0.3 0.8 12.8 7.4 76.5 12.9 19.3
Pegasos 4.0 1.0 0.3 3.2 10.6 13.7 141.9 27.9 31.6

not include any bias term (i.e. we did not perform
any augmentation). The implementation of the MPU
algorithm followed closely the description of Section
4 with active set parameters c̄ = 1.01, Nep1

= 3
and Nep2

= 10. Moreover, we did make use of
the mechanism of early stopping. We also assumed
δb = 3R2 throughout. For Pegasos we chose k = 30
and λ = N−1 (since (λN)−1 plays the role of Cp).
In the first experiment our procedure was to obtain
a very good approximation of the optimal objective
Jopt (i.e. δJ

Jopt
≤ 10−4 ) using MPU with δ = 10−5

and δstop = 10−4 and then try to achieve compara-
ble values of J with the other linear SVM solvers.
For DCD and SVMperf we employed the “accuracy” ε
(≤ 0.1) whereas for Pegasos the number of iterations
iter in order to obtain the required value of J . Ta-
ble 1 contains our experimental results (objective J
and training runtime) for this high accuracy compara-
tive study. SVMperf is clearly considerably slower than
DCD and MPU but much faster than Pegasos. DCD,
instead, appears to be statistically the fastest but still
its runtimes are very close to the ones of MPU. We also
carried out a second experiment aiming at obtaining a
value of J which deviates from Jopt by 1%. The re-
sults of this low accuracy study are reported in Table
2. We see that DCD and MPU are still the fastest with
close runtimes followed by SVMperf . The remarkable
finding is, however, the spectacular improvement that
Pegasos presents. In the light of our results we may
conclude that the MPU algorithm is very competitive.

6. Conclusions

By enriching the classical Margin Perceptron with a
mechanism of unlearning which allows the algorithm to
recover from any wrong decisions taken on the way we
succeded in tackling both the hard margin and the 1-
norm soft margin problems. We derived upper bounds
on the number of steps required in order for the al-
gorithm to achieve any desirable fixed before running
approximation of the optimal solution for both tasks
and described strategies for its efficient implementa-
tion. Finally, the experiments provided evidence that
the new algorithm is a very competitive linear SVM.

References

Boser, B., Guyon, I., and Vapnik, V. A training algo-
rithm for optimal margin classifiers. In COLT, pp.
144–152, 1992.

Cortes, C. and Vapnik, V. Support vector networks.
Machine Learning, 20:273–297, 1995.

Crammer, K., Kandola, J., and Singer, Y. Online clas-
sification on a budget. In NIPS 16, 2003.

Cristianini, N. and Shawe-Taylor, J. An Introduction

to Support Vector Machines. Cambridge University
Press, 2000.

Duda, R. O. and Hart, P. E. Pattern Classsification

and Scene Analysis. Wiley, 1973.

Gentile, C. A new approximate maximal margin clas-
sification algorithm. JMLR, 2:213–242, 2001.

Guyon, I. and Stork, D. Linear discriminant and sup-
port vector classifiers. In Advances in Large Margin

Classifiers. MIT Press, 1999.

Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S.,
and Sundararajan, S. A dual coordinate descent
method for large-scale linear SVM. In ICML, pp.
408–415, 2008.

Joachims, T. Training linear SVMs in linear time. In
KDD’06, pp. 217–226. ACM Press, 2006.

Krauth, W. and Mézard, M. Learning algorithms with
optimal stability in neural networks. Journal of

Physics A, 20:L745–L752, 1987.

Li, Y. and Long, P. The relaxed online maximum
margin algorithm. Machine Learning, 46:361–387,
2002.

Novikoff, A. B. J. On convergence proofs on percep-
trons. In Proc. Symp. Math. Theory Automata, Vol.

12, pp. 615–622, 1962.

Rosenblatt, F. The perceptron: A probabilistic model
for information storage and organization in the
brain. Psychological Review, 65 (6):386–408, 1958.

Shalev-Schwartz, S., Singer, Y., and Srebro, N. Pega-
sos: Primal estimated sub-gradient solver for SVM.
In ICML, pp. 807–814, 2007.

Tsampouka, P. and Shawe-Taylor, J. Approximate
maximum margin algorithms with rules controlled
by the number of mistakes. In ICML, pp. 903–910,
2007.

Vapnik, V. Statistical Learning Theory. Wiley, 1998.


